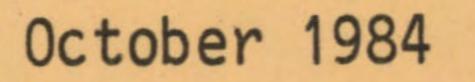


TECHNICAL REPORT No.78


THE ACTIVITY AND POST-EMERGENCE SELECTIVITY OF SOME RECENTLY DEVELOPED HERBICIDES; MCPA-THIOETHYL, MT-124, TRIDIPHANE, ACLONIFEN AND RST 20024 H.

26404 1981

MT-124 is furyloxyfen, RST 20024 H is trimexachlor

. .

W G Richardson and T M West

ISSN 0511 4136 ISBN 0 7084 0315 8

Agricultural and Food Research Council Weed Research Organization, Begbroke Hill, Yarnton, Oxford, OX5 IPF

CONTENTS

SUMMARY

INTRODUCTION

METHODS AND MATERIALS

RESULTS MCDA-thiosthul

MCPA-thioethyl	6
S-ethyl 4-chloro-2-methylphenoxythioacetate	
MT-124	14
3-[2-nitro-5-(2-chloro-4-trifluoromethy1	
phenoxy)phenoxy]tetrahydrofuran	
Tridiphane	22
(+)-2-(3,5-dichloropheny1)-2-(2,2,2-trichloroethy1) oxirane	
Aclonifen	30
2-chloro-6-nitro-3-phenoxyaniline	
RST 20024H	38
∝-chloroacetic-N-(3,5,5-trimethyl-cyclohexen-1-yl)	
-N-isopropylamide	
ACKNOWLEDGEMENTS	45
	15

REFERENCES

APPENDIX

46

45

NOTE

The content of this publication, in whole or in part, may be quoted or reproduced provided the authors and the AFRC Weed Research Organization are fully acknowledged. The correct bibliographical reference is :-

RICHARDSON, W.G. and WEST, T.M. The activity and post-emergence selectivity of some recently developed herbicides: MCPA-thioethyl, MT-124, tridiphane, aclonifen and RST 20024 H. Technical Report Agricultural and Food Research Council Weed Research Organization, 1984, No. 78, pp 48.

Page

2

-

THE ACTIVITY AND POST-EMERGENCE SELECTIVITY OF SOME RECENTLY DEVELOPED HERBICIDES; MCPA-THIOETHYL, MT-124, TRIDIPHANE, ACLONIFEN AND RST 20024H

W G Richardson* and T M West*

Agricultural and Food Research Council Weed Research Organization, Eegbroke Hill, Yarnton, Oxford OX5 1PF, UK.

SUMMARY

Five herbicides were examined for post-emergence selectivity on 38 crop and weed species. The route of action of these herbicides was determined on six selected species in a separate test. The safener 1,8 naphthalic anhydride (NA) was used as a seed dressing on wheat, barley and maize to see if herbicide effects could be reduced.

MCPA-thioethyl is very similar to its chemical analogue MCPA, with growth regulatory properties post-emergence, on most broad-leaved species, with potential for use in graminaceous crops.

MT-124 possesses both pre- and post-emergence activity. Several broad-leaved weeds were controlled post-emergence, including <u>Galium</u> aparine, Veronica persica and Viola arvensis while wheat and barley were tolerant.

Tridiphane controlled only a narrow spectrum of weeds post-emergence, but this included important species such as <u>Alopecurus myosuroides</u>, <u>Galium aparine</u> and <u>Veronica persica</u>. Barley and maize showed high tolerance. Efficacy pre-emergence may be of more importance, however.

Although aclonifen is more effective as a pre-emergence treatment, its post-emergence activity and selectivity are also considerable. Thus control of weeds as important as <u>A. myosuroides</u>, <u>Galium aparine</u>, <u>Viola arvensis</u> and <u>Veronica persica</u> was achieved post-emergence, while cereals such as wheat, barley and maize were tolerant.

RST 20024H is more effective as a pre-emergence treatment; activity and selectivity post-emergence is relatively low.

INTRODUCTION

The pre- and post-emergence selectivities and effects of new herbicides are investigated at WRO on a large number of pot-grown crop and weed species. The limitations of these investigations are that only one crop variety or source of weed species is used and growth is in one particular soil type, at only one depth of sowing without interspecific competition. Consequently, as plant responses in pot experiments can be very different to those in the field the results should only be used as a guide for further work.

This report gives indications of the post-emergence selectivity of five new herbicides. Results of activity experiments are also included to provide information on levels of phytotoxicity, type and route of action.

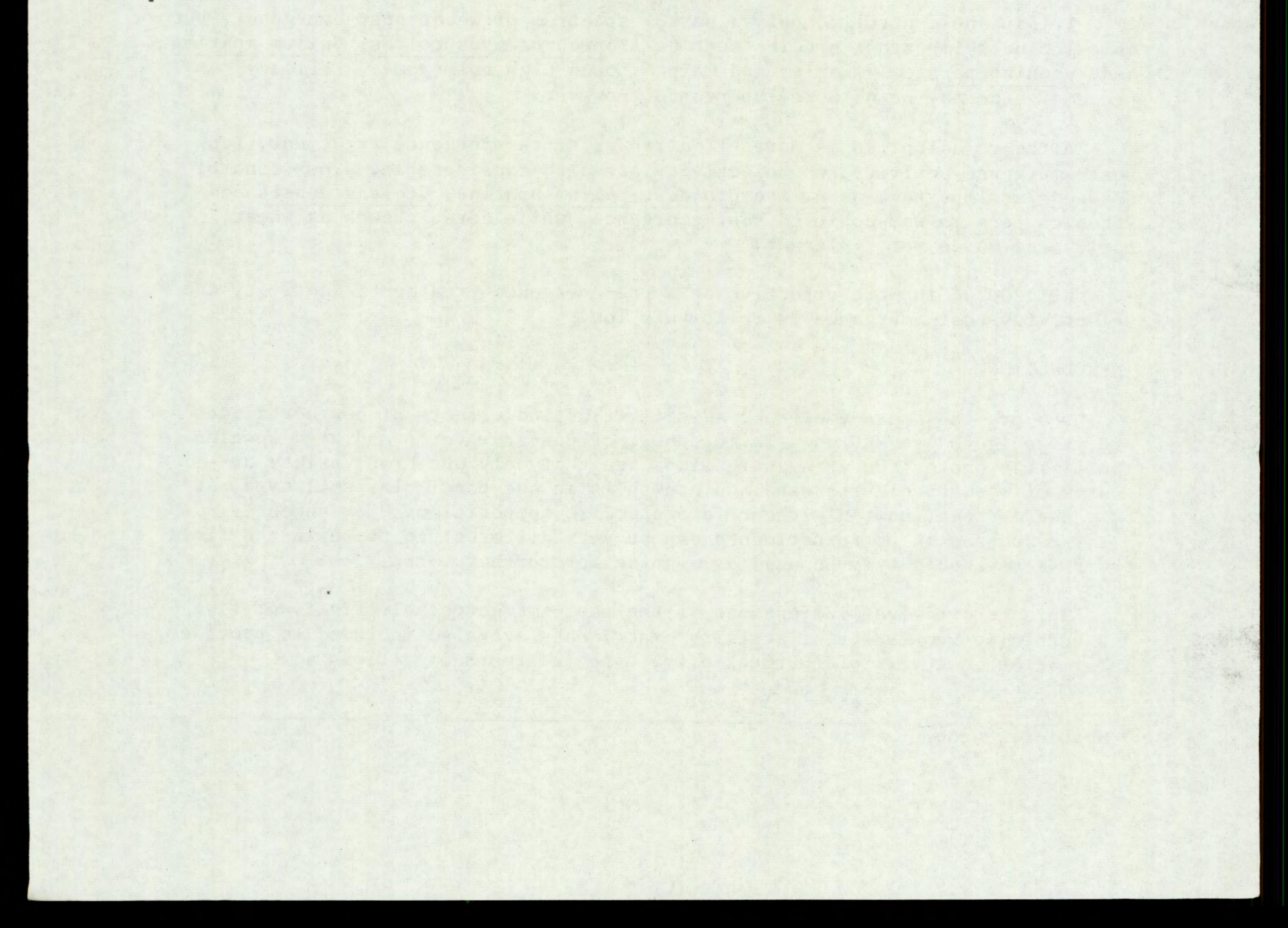
* Herbicide Group

METHODS AND MATERIALS

(a) Activity experiments (AE 1, 2 and 3)

These were carried out on six selected species as described previously (Richardson and Dean, 1974). Three annual species and perennial ryegrass were raised from seeds and two perennials from rhizome fragments. There were two replicates for each treatment. Herbicides were applied by four different methods:-

2


(i) post-emergence spray to the foliage only, avoiding contact with the soil,
(ii) post-emergence to the soil only, as a drench avoiding foliage contact,
(iii) pre-emergence spray to the soil surface,

(iv) pre-emergence with thorough incorporation, before planting.

Experimental details are summarised in Tables 1 and 2.

(b) Post-emergence selectivity experiment

The experimental details were as previously described (Richardson and Parker, 1977). Plants were raised in 9 cm diameter plastic pots in a sandy loam soil taken from a field near Begbroke Hill (Begbroke North). Planting dates were staggered so that the majority of species would reach a pre-determined stage (2-4 leaves) by the time of spraying. All species were raised in the open (except Solanum nigrum) on a paved area, protecting from predators and excess rainfall by means of a wire cage and movable covers.

Table 1. Plant data for activity experiments

	Cultivar/	No. pot	-	Depth of	Stage	of growth	
Species	source	spray pre-	post-	planting (cm)	Spraying post-em	Assess pre-em	post-em
Dwarf bean (Phaseolus vulgaris)	Masterpiece	3-4	2	2.0	2 uni- foliate leaves	1.5-2.5 tri- foliate leaves	2-3 tri- foliate leaves
Kale (Brassica oleracea acephala)	Marrowstem	10	5	0.5	2-2.5 leaves	3.5-5 leaves	4-5 leaves
Polygonum amphibium	WRO Clone 1	6	4-5	1.0	4.5-5.5 leaves	6-9 leaves	9-10 leaves
Perennial ryegrass (Lolium perenne)	S23	15	8-10	0.5	2-3 leaves	4-5 leaves, 1-3 tillers	2-3 tillers
Avena fatua	WRO 1978 WRO 1979	10-	3-5	1.0	2.5-3 leaves	3.5-4.5 leaves 0-2 tillers	2 tillers
Elymus repens	WRO Clone 31	6	45	1.0	2.5-3 leaves	3.5-5 leaves, 0-2 tillers	1-2 tillers

3

-

Table 2. Soil and environmental conditions

	AE 1	AE 2	AE 3	Post-emergence
				selectivity test
Experiment number type and herbicides included		MT-124 ridiphane PA-thioeth		MCPA-thioethyl Aclonifen MT 124 RST 20024H Tridiphane

Date of spraying	13.10.82	29.9.83	31.5.84 & 4.6.84	13.6.84	
Main assessment completed	16.11.82	1.11.83	10.7.84	3.7.84	
Organic carbon (%)	2.2	1.3	2.2	2.2	
Clay content (%)	15.0	16.0	15.0	15.0	
pH (in water; 1:2 soil:water ratio)	7.5	7.4	7.5	7.5	
Ammonium sulphate (g/kg)	-	0.5	0.5	-	
Superphosphate (g/kg)	2.0	1.0	1.0	. 1.0	

Potassium sulphate (g/kg) - 0.6 0.5

Vitax QS 3 fertilizer (g/kg) 2.5 - 2.5

Fritted trace elements - 0.1 0.1 0.1

Hydrated Mg SO₄ $^{7H}2^{0}$ 0.8 0.4 0.4 0.8

Outdoors Temperature (°C) Glasshouse 17 22 12 19 Mean nitro 31 38 18 26 Maximum 12 6 8 12 Minimum

Relative humidity (%)

Mean	60	68	55	48
Maximum	85	90	90	80
	32	33	24	10
Minimum	56			

2 .

In some cases plant material was pre-treated to improve establishment:seeds of <u>Chenopodium album</u> were soaked in 0.1 M potassium nitrate solution and kept in the light for two days prior to planting; <u>Veronica persica</u> was sown in a tray of sterilised soil and seedlings (1-2 leaves) transplanted into the potting medium. <u>Solanium nigrum</u> pots were kept in the glasshouse until spraying.

For protection of onion from soil-borne pathogens the seeds were dressed with 'Asmercote' (benomyl + thiram). Root fragments of <u>Cirsium arvense</u> were washed in a colloidal copper solution (2 ml litre) prior to planting. As dwarf bean, is susceptible to "damping off" diseases, 6% gum arabic solution was included with a thiram fungicide seed dressing to improve adhesion.

5

A series of treatments was included to investigate possible uses for the safener NA (1,8-naphthalic anhydride). Maize, wheat and barley were treated with NA at 0.5% a.i. w/w of seeds. Before spraying, each species was thinned to constant number per pot.

Herbicides were applied using a laboratory sprayer operating at a pressure of 207 kPa (30 lb/in²) with a Spraying Systems 8002 TeeJet spray nozzle moving at 0.5 m sec², 45 cm above the stationary plants and delivering a volume of 370 l/ha. There were two replicates for each treatment. Stages of growth at spraying and assessment are summarised in Appendix I. After spraying, the plants were protected from rainfall for 24 hours and then watered overhead to wash any residues off the foliage, using a rose at the end of a trigger hose attached to the mains water supply. The pots were then returned to their original position in the open. Watering throughout the experiment was from overhead. Additional fertilizer in solution was applied to all species at one week intervals after spraying (5 ml litre¹ Vitafeed 301). Insecticide and fungicide solutions were applied to individual species as required.

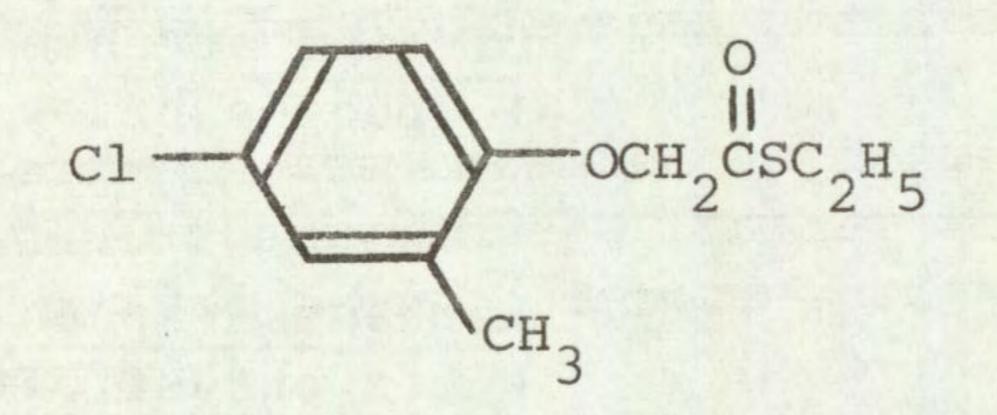
(c) Assessments and processing of results

Results were assessed and processed as before (Richardson and Dean, 1974). Survivors were counted and scored for vigour on a 0-7 scale as previously, where 0 = dead and 7 = as untreated control. Histograms are presented for the results of each treatment, the upper of each pair represents mean plant survival and the lower, mean vigour score, both calculated as percentages of untreated controls. Actual percentage figures are displayed to the left of each row of x's (in selectivity test only). The same information is displayed in the histograms, each 'x' representing a 5% increment, but in the activity experiment each 'x' represents a 7% increment. A '+' indicates a value in excess of 100%. A value of 100 = as untreated control and 0 = a complete kill. 'R' indicates results based on one replicate only.

A table of observed selectivities, using the criteria specified, is presented below for each compound along with comments to highlight salient points. Radish (<u>Raphanus raphanistrum</u>) which was included because it is easy to propagate, may be regarded as a crop or a weed.

Several species, notably the perennials, were kept for extra periods to observe later effects, or the degree of recovery from injury. Results for pea were not included in the histograms because plant growth was variable, but some observations were possible and are referred to in the text where relevant.

MCPA-thioethyl


6

Other common name Phenothiol (Japan)

Code number HOK 7501 Trade name/s Herbit

Chemical name S-ethyl-4-chloro-2-methylphenoxythioacetate

Structure

Source

Hokko Chemical Industry Co Ltd Mitsui Building, No. 2 4-2 Nikonbashi Hongoku-cho Chuo-ku Tokyo 103 Japan

Information available and suggested uses

Post-emergence control of annual and perennial broad-leaved weeds (including Polygonum aviculare and Convolvulus arvensis), in rice, wheat and orchards at 0.4 - 0.8 kg a.i./ha.

Formulation used Emulsifiable concentrate 20% a.i.

Spray volume 370 1/ha

RESULTS

Full results are given in the histograms on pages 9-13 and potential selectivites are summarised in the following table.

RATE CROPS: vigour reduced (kg a.i./ha) by 15% or less WEEDS: number or vigour reduced by 70% or more

wheat+safener (NA)
barley+safener (NA)
maize+safener (NA)
perennial ryegrass

Beta vulgaris Chrysanthemum segetum Senecio vulgaris Polygonum lapathifolium Chenopodium album Viola arvensis Cirsium arvense + species below

1.00 species above + oat

Raphanus raphanistrum Rumex obtusifolius Solanum nigrum + species below

0.33 species above

Sinapis arvensis

Comments on results

3.00

Greatest activity resulted from the foliar spray on broad-leaved species, grasses being completely tolerant to this means of application. The post-emergence soil drench caused only minor effects on dwarf bean, kale and perennial ryegrass, the other three species being unaffected. Activity was found pre-emergence on all species, kale being very sensitive, while lethal effects resulted on Elymus repens at the higher doses. The surface application was generally more effective than when incorporated.

Symptoms on susceptible species

Symptoms were identical to those caused by other phenoxyalkanoic herbicides, e.g. MCPA and 2,4-D. A powerful growth regulatory effect was seen within two days of spraying, epinasty of leaves, petioles and stems being prominent. Scorch and necrosis of tissues developed later, as did swelling and splitting of plant organs. New leaves developing after treatment were usually deformed, often strap-shaped with broad-leaved species, while 'onion leafing' of grasses was sometimes observed. Those plants which succeeded in emerging in pre-emergence treatments, usually exhibited similar symptoms to the post-emergence treatments, but yellowing/chlorosis was also often observed.

Post-emergence selectivity

A wide range of annual broad-leaved weeds were controlled. <u>Sinapis</u> arvensis, the most sensitive, was controlled at 0.33 kg/ha while the other crucifer, <u>Raphanus raphanistrum</u> was controlled at 1.0 kg/ha as well as <u>Rumex</u> obtusifolius and <u>Solanum nigrum</u>. A further six species were susceptible to the high dose, including <u>Beta vulgaris</u>, the two composites, <u>Chrysanthemum</u> segetum and Senecio vulgaris and also Polygonum lapathifolium, <u>Chenopodium</u>

album and Viola arvensis. Although the remaining broad-leaved weeds were not adequately controlled (Matricaria perforata, Galium aparine, Stellaria media, Spergula arvensis and Veronica persica) their vigour was reduced by around 50% at the higher doses. However, the perennial, <u>Cirsium arvense</u>, though not adequately controlled at the main assessment, was eventually killed or controlled at 3.0 kg/ha.

Tolerance was achieved only in graminaceous crops. Wheat, barley, maize and perennial ryegrass were resistant to the high dose while oat was only marginally reduced in vigour. Because tolerance of wheat, barley and maize were so high any safening effect by NA could not be observed. Onion and all broad-leaved crops were sensitive, especially brassicas and legumes.

No obvious advantages in selective annual broad-leaved weed control in gramineae are apparent with MCPA-thioethyl, as compared with existing phenoxyalkanoic herbicides. However, comparative testing on perennial broad-leaved weeds may be worthwhile, in view of the effects found with <u>Cirsium arvense</u>. A disadvantage is in the sulphurous odour that results soon after spraying.

ACTIVITY EXPERIMENT

MCPA-THIOETHYL

0.5 kg/ha 2.0 kg/ha 0.125 kg/ha

F

T

- S
- P
- -----

DWARF BEAN

9

	F	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXX XXXX
	S	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
	P	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XX XXXX
	I	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
	F	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
DNUM	S	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
BIUM	P	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
	I	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
	F	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
	S	XXXXXXXXXXXXXXX	XXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXX

KALE

POLYGO AMPHIB

an un que la state d'au a que que que que

XXXXXXXXXXXXXXXX

PERENNIAL	3	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
RYEGRASS	Р	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
	I	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
	F	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
AVENA	S	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
FATUA	P	XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
	I	xxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxx	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
	F	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
ELYMUS	S	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
REPENS	Р	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXX XXX
	I	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

F = post-emergence, foliar application Key: S = post-emergence, soil drench P = pre-emergence, surface film I = pre-planting, incorporated

33

SPECIES		0.33 kg/ha.		1.00 kg/ha		3.00 kg/ha
WHEAT	100 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
WHEAT+S	$100 \\ 100$	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
BARLEY	$100 \\ 100$	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
BARLEY+S	$100 \\ 100$	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
QAT 5)	100 86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 79	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
PER RYGR	$100 \\ 100$	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
ONION (8)	80 71	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	90 64	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	90 36	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
DWF BEAN		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 43	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	75 29	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
FLD BEAN	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	33 14	XXXXXXX XXX	00	
W CLOVER		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	1 <u>00</u> 57	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	69 29	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
RAPE (14)	40 21	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	0		00	
KALE)	80 29	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	20 14	XXXX XXX	207	XXXX X
CABBAGE	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	80 29	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	80 14	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

MCPA-TE

XXXXX XXXXX

XXXXXX

XXXXX XX

××××× ××

XXXXX XXXXX

ХХХ

POST-EMERGENCE SELECTIVITY TEST

1.1.1.1

CIE D

10

1.4

1

33

SPECIES		0.33 kg/ha		1.00 KY/I
CARROT	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		××××××××××××××××××××××××××××××××××××××
PARSNIP	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		××××××××××××××××××××××××××××××××××××××
LETTUCE	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	80 29	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
SUG BEET	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
RETA YUL	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	××××××××××××××××××××××××××××××××××××××
BROM STE	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	××××××××××××××××××××××××××××××××××××××
AVE FATU	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	××××××××××××××××××××××××××××××××××××××
ALO MYOS	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	xxxxxxxxxxx xxxxxxxxxx
POA ANN	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 100	X X X X X X X X X X X X X X X X X X X
POA TRIV	· 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	x x x x x x x x x x x x x x x x x x x
SIN ARV	60 29	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	90 21	××××××××××××××××××××××××××××××××××××××
RAPH RAF		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	70 21	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
CHRY SEC	5 100	xxxxxxxxxxxxxxxxxx xxxxxxxxxxxxx	100	XXXXXXXXXXXXX XXXXXXXXXXXX
			TOTAL C	
			の時間	

MCPA-TE

4 00 ka/h

ia		3.00 kg/ha
XXX	0	
<xxxxxxx< td=""><td>37</td><td>XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX</td></xxxxxxx<>	37	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXX	0	
XXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXX	40	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	xxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxx
XXXXXXXXX	100	**************************************
XXXXXXXXXX	100	**************************************
XXXXXXXXX XXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXX	00	
XXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

POST EMERGENCE SELECTIVITY TEST

11

. .

100

33

.

.

SPECIES	0.33 kg/ha		1.00 kg/ha		3.00 kg/
MAT PERF 100 (33) 71	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	xxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxx	100	xxxxxxxxxx xxxxxxxx
SEN VULG 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	x
POL LAPA 87 (35) 84	××××××××××××××××××××××××××××××××××××××	100	xxxxxxxxxxxxxxxxxxxx xxxxxxxxxxx	50	XXXXXXXXXX XXXXXXX
GAL APAR 100 (38) 86	xxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxx	100	xxxxxxxxxxxxxxxxxx xxxxxxxxxxxxx	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
CHEN ALB 100 (39) 43	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	90 36	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	00	
STEL MED 100 (40) 71	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	x x x x x x x x x x x x x x x x x x x	100	XXXXXXXXXXXXX XXXXXXXX
SPER ARV 100 (41) 57	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
VER PERS 100 (42) 79	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	xxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxx	100	xxxxxxxxxxx xxxxxxx
VI ARVE 100 (43) 404	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 50	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	40 21	XXXXXXXXX XXXXX
RUM OBTU 87 (44) 43	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	50 29	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	25 7	XXXXX X
EL REPEN 100 (47) 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 100	X X X X X X X X X X X X X X X X X X X	100	XXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXX
CIRS ARV 100 (50) 86	X X X X X X X X X X X X X X X X X X X	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXX XXXXXXXX
MAIZE+S 100 (56) 100	x	100	x x x x x x x x x x x x x x x x x x x	100	x x x x x x x x x x x x x x x x x x x

MCPA-TE

4 MM 100 /h

3.00 kg/ha

XXXXXXXXXX

.

XXXXXXXXXX

XXXXXXXXXX

XXXXXXXXXX

XXXXXXXXXX

XXXXXXXXXX

XXXXXXXXXX XXXXXXXXX XXXXXXXXXX

XXXXXXXXXX XXXXXXXXX

P OST EMERGENCE SELECTI VITY TEST

33

0.33 kg/ha SPECIES (MAIZE)100 SOL NIG 100 XXXXXXXXXX

MCPA-TE

1.00 kg/ha

100 100 0

00

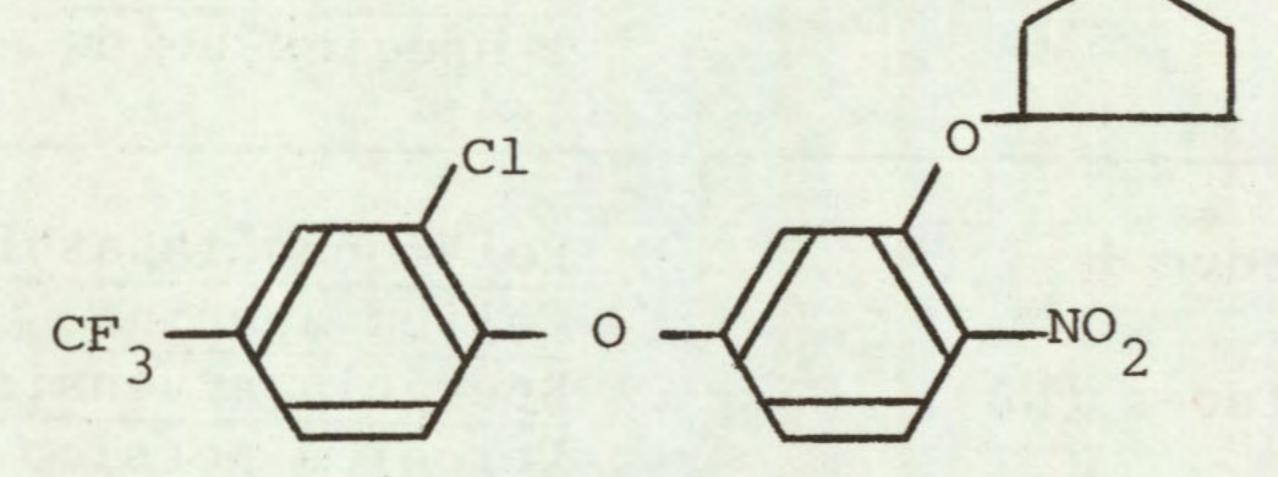
3.00 kg/ha

POST--EMERGENCE SELECTIVITY TEST

w

MT-124

Code number MT-124


Trade name/s-

0

Chemical name

3-[2-nitro-5-(2-chloro-4-trifluoromethylphenoxy) phenoxy] tetrahydrofuran

Structure

Source Mitsui Toatsu Chemicals, Inc. 2-5, Kasumigaseki 3-chome Chiyoda-ku Tokyo 100 Japan

Information available and suggested uses

Pre- and post-emergence control of certain annual and perennial broad-leaved and grass weeds in rice, wheat, soyabean, maize (post-emergence only) and peanut (pre-emergence only) at 0.2 - 1.5 kg a.i./ha.

Formulation used Emulsifiable concentrate, 30% a.i.

Spray volume 370 1/ha.

RESULTS

Full results are given in the histograms on pages 17-21 and potential selectivities are summarised in the following table.

CROPS: vigour reduced WEEDS: RATE reduced by 70% or more by 15% or less (kg a.i./ha)

wheat+safener (NA) 0.80

Sinapis arvensis Raphanus raphanistrum Chrysanthemum segetum Senecio vulgaris Chenopodium album Stellaria media

number or vigour

+ species below

None

species above + 0.20 wheat barley+safener (NA) Polygonum lapathifolium Galium aparine Spergula arvensis Veronica persica Viola arvensis Rumex obtusifolius Solanum nigrum

None listed as no weeds 0.05 controlled

Comments on results

Activity experiment

The foliar spray was generally more active than the soil drench, post-emergence, particularly with the broad-leaved species. High activity also resulted from pre-emergence sprays particularly on the annual species, the surface spray being much more toxic than with incorporation. The two perennials tended to be more resistant than the four annual species. Thus the pattern of activity is typical of diphenyl ethers.

Symptoms on susceptible species

These were also typical of diphenyl ethers. Severe scorch/necrosis, usually as distinct, localized patches, developed within a few hours of spraying, particularly on broad-leaved species. New buds were not always affected however, such that with some species, notably perennials, plants recovered well, suggesting that as with other diphenyl-ethers, translocation is very low. Plants often failed to emerge from pre-emergence treatments at the higher doses. At lower doses they were often deformed, looping and trapping of leaves being a prominent feature with the grasses. Colour changes were seen with most of the soil treatments, such as a lighter green and a shinier appearance of leaves, these often developing distinct localized necrotic patches as in the foliar treatments.

Post-emergence selectivity

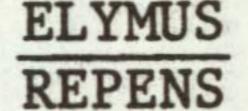
Seven annual broad-leaved weeds were controlled at 0.2 kg/ha, most interesting of which were Galium aparine, Veronica persica and Viola arvensis but also polygonaceous weeds (Polygonum lapathifolium and Rumex obtusifolius), Spergula arvensis and Solanum nigrum. At 0.8 kg/ha a further six were

controlled including both crucifers (Sinapis arvensis and Raphanus raphanistrum), two composites (Chrysanthemum segetum and Senecio vulgaris), Chenopodium album and Stellaria media. The only two annual broad-leaved weeds not adequately controlled (Beta vulgaris and Matricaria perforata) were reduced by around 50% in vigour at the two higher doses, however. The perennial, Cirsium arvense was quite resistant, as were all grass weeds.

Tolerance was limited to only two gramineae, wheat and barley, both, of which withstood 0.2 kg/ha, while vigour reductions of only 29 and 21% were recorded at 0.8 kg/ha. A mild safening effect (15%) of NA was found with wheat. All broad-leaved species and onion were damaged.

16

The potentially wide spectrum of annual broad-leaved weed control in wheat and barley is interesting particularly with regard to current problem weeds such as Galium aparine, Viola arvensis and Veronica persica. The lack of grass weed control is a disadvantage, necessitating mixture studies. However, a recent pre-emergence test has shown at least some grasses to be sensitive e.g. Poa species (Richardson and West, 1984, in preparation), while elsewhere Echinochloa crus-galli, Setaria viridis, Digitaria sanguinalis and Sorghum halepense are sensitive to pre-emergence treatments.


ACTIVITY EXPERIMENT

17

MT-124

		0.1 kg/ha	0.5 kg/ha	2.5 kg/ha
	F	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
DWARF	S	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
BEAN	P	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XX XXX
	I	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXX XXXXXX
	F	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
	S	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
KALE	P	xxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxx	XXXXXXXX XXXXXXXXX	8
	I	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
	F	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
POLYGONUM	S	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
AMPHIBIUM	P	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
	I	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
	F	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
PERENNIAL	S	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
RYEGRASS	P	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXX XXXXXXXX	8
	I	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	xxxxxxxxxxxxxxxx xxxxxxxxxxxxxx	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
	F	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
AVENA	S	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
FATUA	P	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXX XXXXX
	I	xxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxx	xxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxx	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
	F	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
ELYMUS	S	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
REPENS	P	xxxxxxxxxxxxxxxxx+	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

F F F F F F F F F F F F F

XXXXXXXXXXXXXXXX

XXXXXXXXXXXXXX

XXXXXXXXXXXXXXXX

I

XXXXXXXXXXXXXXXX

xxxxxxxxxxxxx+ XXXXXXXXXX

Key: F = post-emergence, foliar application S = post-emergence, soil drench P = pre-emergence, surface film I = pre-planting, incorporated

33

2.2. 2

Are used as a set of the set of the		
SPECIES		0.05 k
WHEAT,	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
WHEAT+S	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
BARLEY	100 86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
BARLEY+S	100 93	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
QAT ₅)	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
PER RYGR	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
ONION (8)	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
QWF BEAN	100	XXXXXXXXXX XXXXXXXXX
FLD BEAN	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
W CLOVER	100 71	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
RAPE (14)	90 71	××××××××××××××××××××××××××××××××××××××
KALE)	100	××××××××××××××××××××××××××××××××××××××
CABBAGE	100 71	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

MT_40%

		111-124		
g/ha		0.20 kg/ha		0.80 kg/
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 71	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 71	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 71	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 71	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	60 50	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 14	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXX XXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	56	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXX XXXXX	100 71	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 57	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 43	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 57	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	20 43	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

ha

XXXXXXXXX XX

XXXXXXXXX XXXXXX

XXXXXXXXX (XXXX)

XXXXXXXX (XX)

XXXXXXXXX X

XXXXXXXXX

XXXXXXXXX

XXXXXXXXX

XXXXXXXXX

XXXXXXXXX

XXXXXXX

POST-EMERGENCE SELECTIVI TY TEST

33

SPECIES		0.05 kg
CARROT (18)	100	************ *****
PARSNIP (19)	100	××××××××××××××××××××××××××××××××××××××
LETTUCE (20)	100	×××××××××××× ×××××××××××
SUG BEET	100	XXXXXXXXXXX XXXXXXXXXXX
BETA VUL	100	××××××××××××××××××××××××××××××××××××××
BROM STE	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
AVE FATU	100	X X X X X X X X X X X X X X X X X X X
ALO MYOS	100	××××××××××××××××××××××××××××××××××××××
POA ANN (28)	100	××××××××××××××××××××××××××××××××××××××
POA TRIV	100	××××××××××××××××××××××××××××××××××××××
SIN ARV	100	××××××××××××××××××××××××××××××××××××××
RAPH RAP	100	××××××××××××××××××××××××××××××××××××××
CHRY SEG	100	X X X X X X X X X X X X X X X X X X X

		MT-124		
1/ha		0.20 kg/ha		0.80 kg/h
(XXXXXXXXXX (XXXXXX	100	X X X X X X X X X X X X X X X X X X X	100	××××××××××××××××××××××××××××××××××××××
<pre>{XXXXXXXXX (XXXXXXXXXX)</pre>	100 71	**************************************	100 50	XXXXXXXXXXXXX XXXXXXXXXXX
<pre>{XXXXXXXXX {XX}</pre>	40 64	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	0	
<pre>xxxxxxxxxx</pre>	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXX XXXXXXXXXXX
<	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXX XXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXX XXXXXXXXXXXXXXX
XXXXXXXXXX XXXXXXX	100 71	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	××××××××××××××××××××××××××××××××××××××
××××××××××××××××××××××××××××××××××××××	100	**************************************	100 71	XXXXXXXXXXXXXX XXXXXXXXXXXXXXX
×××××××××× ×××××××××	100	**************************************	100	XXXXXXXXXXXXX XXXXXXXXXXXXXX
××××××××××××××××××××××××××××××××××××××	100	**************************************	100	XXXXXXXXXXXXX XXXXXXXXXXXXXXX
XXXXXXXXX XXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	60 21	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	80 50	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	10 14	XX XXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 14	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

1

ha

XXXXXXXXX

XXXXXXXXX

XXXXXXXX

XXXXXXXXX

XXXXXXXXXX

XXXXXXXXX

POST-EMERGENCE SELECTIVITY TEST

19

XXXXXXXXX

33

			MT-124		
SPECIES	0.05 kg/ha		0.20 kg/ha		0.80 kg/ha
$MAT_{33}PERF 100(33) 79$	X X X X X X X X X X X X X X X X X X X	100 57	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	50 43	XXXXXXXXXX XXXXXXXXX
SEN VULG 100 (34) 64	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	1 <u>00</u> 57	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	20 14	XXXX XXX
POL LAPA 44 (35) 50	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	12 43	XX XXXXXXXXX	00	
GAL APAR 100 (38) 43	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 14	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
CHEN ALB 100 (39) 71	XXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	70 14	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
STEL MED 100 (40)	X X X X X X X X X X X X X X X X X X X	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	0	
SPER ARV 100 (41) 43	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	10 21	XX XXXX	0	
VER PERS 100 (42) 64	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	50 29	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	00	
VI ARVE 70 (43) 36	XXXXXXXXXXXXX XXXXXXXX	0		8	
RUM OBTU 50 (44) 43	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	00		0	
EL REPEN 100 (47) 86	XXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 71	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
CIRS ARV 100 (50) 79	××××××××××××××××××××××××××××××××××××××	100 71	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
MAIZE+S 100 (56) 86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

XXXXXXXX

× × × × × × × × × ×

XXXXXXXX XXX POST-EMERGENCE SELECTIVITY TEST

33

SPECIES		0.05	kç
MAIZE,	100	×××××××××× ××××××××××	
SOL NIG	87 50	XXXXXXXXX XXXXXXXXXX	

MT-124

0.20 kg/ha

g/ha

XXXXXXXXXX XXXXXX

.

. . .

XXXXXXX

100 00

XXXXXXXXXXXXXXX

. .

100

00

at the second of a part of the

the second se

0.80 kg/ha

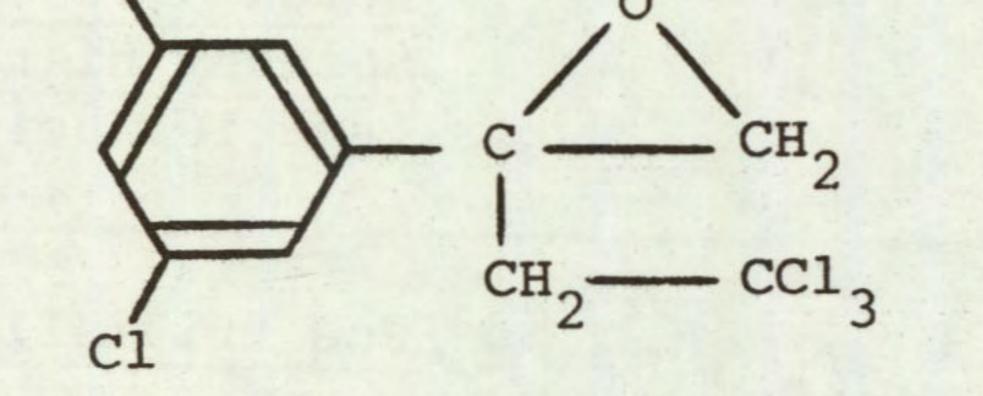
XXXXXXXXXXXXXXXX

> J OST EMERGENCE SELECT

H

. .

N


Tridiphane

the second second

<u>Code number</u> Dowco 356 (M 4212) <u>Trade name/s</u> Tandem (+ atrazine) XRM-4640

Chemical name (+)-2-(3,5-dichlorophenyl)-2-(2,2,2-trichloroethyl) oxirane

Structure

Source Dow Chemical Co Ltd Kings Lynn Norfolk England

Information available and suggested uses

Cl

.

Post-emergence control of annual grass weeds in maize.

Formulation used Emulsifiable concentrate 50% a.i.

Spray volume 370 1/ha.

RESULTS

Full results are given in the histograms on pages 25-29 and potential selectivities are summarised in the following table.

and the second

RATE CROPS: vigour reduced (kg a.i./ha) by less than 15% WEEDS: number or vigour reduced by 70% or more

4.00 barley maizetsafener (NA) Alopecurus myosuroides Poa annua Raphanus raphanistrum Galium aparine Veronica persica Rumex obtusifolis

Solanum nigrum +species below

1.00 species above + barley+safener (NA) kale carrot parsnip radish Poa trivialis

0.25 None listed as no weeds None controlled

Comments on results

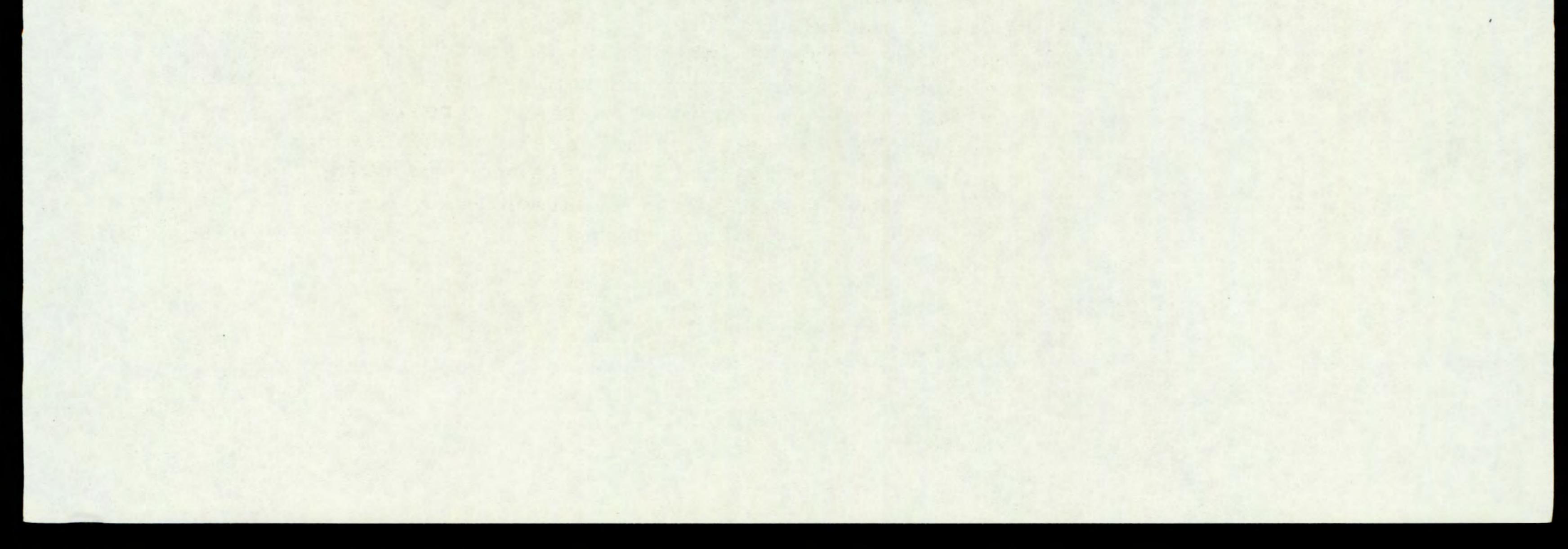
Activity experiment

The foliar spray was active on all species, broad-leaved species being generally more susceptible than grasses. The soil drench, post-emergence was virtually ineffective on broad-leaved species, only kale showing symptoms at the highest dose. However, soil drenches were much more active on grasses than were foliar sprays. Greatest activity resulted from pre-emergence treatments, perennial ryegrass being particularly sensitive. Surface sprays pre-emergence, were more active than incorporated on all species except Elymus repens.

Symptoms on susceptible species

A mild to severe scorch developed on dwarf bean and kale within 24 hours of applying the foliar spray, but these symptoms took longer to develop on <u>Polygonum amphibium</u>. Unifoliate leaves of bean later became darker green in colour while trifoliate buds were inhibited. New leaves of kale were often trapped or stuck together. Some extra tillering was seen on <u>Avena fatua</u>. The soil drenches caused severe to complete inhibition of growth of grasses, leaves becoming darker green in colour before necrosis developed. Die-back before, at or soon after emergence was common in grasses treated with the higher doses pre-emergence while broad-leaved species were severely retarded in growth, often showing leaf deformities. Chlorosis and yellowing of leaves of P. amphibium was observed with incorporated treatments.

Post-emergence selectivity


Poa trivialis was the most sensitive weed, being controlled at 1.0 kg/ha. Other grass weeds, Poa annua, and more interestingly, Alopecurus myosuroides, were controlled at 4.0 kg/ha. Five annual broad-leaved weeds were susceptible at 4.0 kg/ha, most impressively Galium aparine and Veronica persica. Solanum nigrum, Rumex obtusifolius and Raphanus raphanistrum were also controlled at this dose. Composite weeds were very resistant.

24

Barley and maize tolerated 4.0 kg/ha. Kale, radish, carrot and parsnip were the only other tolerant crops (at 1.0 kg/ha). The safener, NA caused

only minor changes in activity (7 to 14%).

The results here are somewhat at variance with the manufacturers information that tridiphane is for post-emergence control of annual grass weeds. The activity test showed greater effects pre-emergence. However sufficient post-emergence activity justified investigation of a wide range of species, when control of broad-leaved species was greater than grass weed control. This apparent anomaly could simply be due to a somewhat different species range between Europe and North America. However, potential control of <u>Alopecurus myosuroides</u>, <u>Galium aparine</u> and <u>Veronica persica</u> in barley may warrant some further testing, provided that the dose at which this can be achieved is economical.

ACTIVITY EXPERIMENT

TRIDIPHANE

0.375 kg/ha

1.5 kg/ha

XXXXXX

6.0 kg/ha

XXXXXXXXXXXXXXXX XXXX

XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXX XXXXXX

DWARF BEAN

KALE

POLYGONUM
AMPHIBIUM

XXXXXXXXXXXXX

XXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXX

XXXXXXXXXXXXXXX

XXXXXXXXXXXXXX

XXXXXXXXXXXXXXX

XXXXXXXXXXXXXX

XXXXXXXXXXXXX

XXXXXXXXXX

XXXXXXXXXXXXXXX XXXXXXXXXXXX

F

S

P

F

S

P

S

P

Ι

F

F

XXXXXXXXXXXXX

XXXXXXXXXXXXXXX XXXXXXXXXXXX

XXXXXXXXXXXXXX

XXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXX

- XXXXXXXXXXXXXXX XXXXXXXXXXXX
- XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXX
- XXXXXXXXXXXXX XXXXXXXXXXXXXX
- XXXXXXXXXXXXXXXXX
- F XXXXXXXXXXXXXXXX XXXXXXXXXXXX
 - XXXXXXXXXXXXXXX XXXXXXXXXXXXXXX
 - XXXXXXXXXXXXXXX XXXXXXXXXXXXX
 - XXXXXXXXXXXXXXX XXXXXXXXXXXXXX

XXXXXXXXXXXXXX XXXXXXXXXX

- XXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX
- XXXXXXXXXXXXXX XXXXXXX
- XXXXXXXXXXXXXXX XXXXXXXXXXXX

XXXXXXXXXXXXXXXX XXXXXXXXX

XXXXXXXXXXXXXXXX XXXXXXXXX

XXXXXXXXXXXXXXXX XXXXXXXXXXX

XXXXXXX XXXXXX

XXXXXXXXXXXXXX

XXXXXXXXXXXXXXXX XXXXXXXXX

XXXXXXXXXXXXXXX XXXXXXXXXXXXXXX

XXXXXX XX

XXXXXXXXXXXXXX XXXXXXXXX

XXXXXXXXXXXXXXX XXXXXXXXX

PERENNIAL RYEGRASS

XXXXXXXXXXXXXXX

XXXXXXXXXXXXXXX

- S XXXXXXXXXXXXXX XXXXXX
- P XXXX
- Ι XXXXXXXXXX XXXXXXXXXX
 - XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXX
- S XXXXXXXXXXXXXX XXXXXXXX
- XXXXXXXXXXXXXXXXXXXX P XXXXXXXXXX
- XXXXXXXXXXXXXXX 1 XXXXXXXXXXXXXXX
- F XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXX
- S XXXXXXXXXXXXXXX XXXXXXXXXXXXXX
- P XXXXXXXXXX XXXXXXXXXXXXXX
- Ι

XXXXXXXXXXXXXX

00

0

0

XXXXXXXXXXXXXX XXXXXX

XXXXXXXXXXXXXX

XXXXXXXXXXXXXXX

XXXXXXXXXXXXXXX

XXXXXXXXXXXXXXX

XXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXX

XXXXXXXXXXXXX

XXXXXXXXXXXXX

XXXXXX

XXXXXXXX

XXX

XXXXXXXXXXXXXXX

00 00

XXXXXXXXXXXXXXXX XXXXX

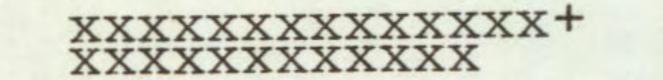
XXXXXXXXXXXXXXX XXXXXXXXXX

XXXXXXXXXXXXXXX XXXX

XXXXXXX XX

XX XXX

XXXXXXXXXXXXXXX XXXXXXXXXX


XXXXXXXXXXXXXXX XXXXXXX

XXXXXXXXXXXXXX XXXXX

ELYMUS REPENS

AVENA

FATUA

XXXXXXXXXXXX XXXXXXXX

XXXXXXXXXX

XXXXXXXXX

XX XXX

F = post-emergence, foliar application Key: S = post-emergence, soil drench P = pre-emergence, surface film I = pre-planting, incorporated

33

SPECIES		0.25 kg/ha
WHEAT	100	××××××××××××××××××××××××××××××××××××××
WHEAT+S	100 100	××××××××××××××××××××××××××××××××××××××
BARLEY	100	x x x x x x x x x x x x x x x x x x x
BARLEY+S	100	X X X X X X X X X X X X X X X X X X X
QAT (5)	100	XXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXX
PER RYGR	100	X X X X X X X X X X X X X X X X X X X
ONION (8)	100 71	X X X X X X X X X X X X X X X X X X X
DWF BEAN	100	X X X X X X X X X X X X X X X X X X X
FLD BEAN	100	××××××××××××××××××××××××××××××××××××××
W CLOVER	100	XXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXX
RAPE (14)	100	X X X X X X X X X X X X X X X X X X X
KALE)	100	X X X X X X X X X X X X X X X X X X X
CABBAGE (16)	100	X X X X X X X X X X X X X X X X X X X

TRIDIPHANE

	1.00 kg/ha		4.00 kg
100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 71	××××××××××××××××××××××××××××××××××××××
100	××××××××××××××××××××××××××××××××××××××	100	×××××××××××× ×××××××××××
100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	××××××××××××××××××××××××××××××××××××××
100	x x x x x x x x x x x x x x x x x x x	100	×××××××××××× ×××××××××××
100	XXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXX	100	XXXXXXXXXXX XXXXXXXXXXX
100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXX XXXXXX
100 57	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	90 57	XXXXXXXXXXX XXXXXXXXXXX
100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXX XXXXXXX
100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	×××××××××××× ×××××××××××
100	X X X X X X X X X X X X X X X X X X X	100	XXXXXXXXXX XXXXXXXXX
100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXX XXXXXXXXXXXXX
100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXX XXXXXXXXXXXXX
100	X X X X X X X X X X X X X X X X X X X	100	XXXXXXXXXXXX XXXXXXXXXXXXXX

4.00 kg/ha

XXXXXXXXXX XXXX

- XXXXXXXXXX
- XXXXXXXXXX XXXXXXX
- XXXXXXXXXX XXXXXX
- XXXXXXXXXX

XXXXXXXXXX

XXXXXXXX

XXXXXXXXXX

XXXXXXXXXX

XXXXXXXXXX

XXXXXXXXXX XXXXXX

XXXXXXXXXX XXXXXX

XXXXXXXXXX XX

POST -EMERGENCE SELEC' TIVITY TEST

33

SPECIES		0.25 kg/ha
CARROT (18)	100	**************************************
PARSNIP (19)	100	**************************************
LETTUCE	100	**************************************
SUG BEET	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
RETA VUL	100	**************************************
BROM STE	100	**************************************
AVE FATU	100	**************************************
ALO MYOS	100	**************************************
POA ANN (28)	100	x x x x x x x x x x x x x x x x x x x
POA TRIV	100	xxxxxxxxxxxxxxxxxxxx xxxxxxxxxx
SIN ARV	100	xxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxx
RAPH RAF	9 100 86	xxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxx
CHRY SE(5 100 100	xxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxx

TRIDIPHANE

1.00 kg/ha

n 25 ka/ha

X

100	xxxxxxxxxx xxxxxxxxxx
100	××××××××××××××××××××××××××××××××××××××
100	××××××××××××××××××××××××××××××××××××××
100	x x x x x x x x x x x x x x x x x x x
100	××××××××××× ×××××××××××
100	x x x x x x x x x x x x x x x x x x x
100	x x x x x x x X X X X X X X X X X X X X
100	××××××××××××××××××××××××××××××××××××××
100	x x x x x x x x x x x x x x x x x x x
60 29	xxxxxxxxxx xxxxxxx
100	XXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXX
100	XXXXXXXXXX XXXXXXXXXX
100	×××××××××× ×××××××××

XXXXXXXXXX XXXXXXXXX

XXXXXXXXXXX XXXXXXXXXXX

XXXXXXXXXXX X

XXXXXXXXXXX XXXXXXX

XXXXXXXXXXX XXXXXXX

XXXXXXXXXXX XXXXXXXXXXX

XXXXXXXXXXXX X

XXXXXXXXXXX

XXXXXXXXXXXX

XXX

XXXXXXXXXXXX XXXXX

XXXXXXXXXXXX XXXXXXXXX

XXXXXXXXXXXX

4.00 kg/ha

100	XXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXX
100	××××××××××××××××××××××××××××××××××××××
100	xxxxxxxxxx xxxxxxxx
100	xxxxxxxxxxx xxxxxxxxxx
100	xxxxxxxxxx xxxxxxxx
100	xxxxxxxxxxx xxxxxxxxxx
100	xxxxxxxxxxx xxxxxxxxx
100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
24	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
40	XXXXXXXXX XXX
100	XXXXXXXXXX XXXXXXXXXX
20 21	XXXX XXXX
100	XXXXXXXXXX XXXXXXXXXX

XXXXXXXXXX XX

XXXXXXXXXX XXX

XXXXXXXXXX

XXXXXXXXXX

XXXXXXXXXX

XXXXXXXXXX XXXXXXX

XXXXXXXXXXX

XXXXXXXXXXX

XXXXXXXXXX

XXXXXXXXXXXX

XXXXXXXXXXX XXXXXXXX

Click here to continue

PO ST EMERGENCE SEI PI TY TEST