WEED RESEARCH ORGANIZATION

TECHNICAL REPORT №. 49

DISPLAY UNTIL

W G Richardson and C Parker
NP 48 is alloxydim, RH 5205 is ethyl 2-[5-(2-chloro-4-(trifluoromethyl)phenoxy]-2nitrophenoxy]propionate (Rohm \& Haas)

May 1978

Price - $£ 2.50$

Agricultural Research Council Weed Research Organization, Begbroke Hill, Yarnton, Oxford, OX5 1PF

CONTENTS

Page

SUMMARY1
INTRODUCTION1
METHODS AND MATERIALS 1
RESULTS
NP 48 52-(1-allyloxyaminobutylidene)-5,5-dimethyl-4-methoxycarbonyl cyclohexane-1,3-dione (sodium salt)
RH 5205 15
Ethyl-2-\{5-[2-chloro-4-(trifluoromethyl)phenoxy]-2- nitrophenoxy\}propionate
PYRIDATE 24
n-octyl(6 chloro-3-phenylpyridazin-4-yl)oxycarbothioate
ACKNOWIEDGEMENTS 33
REFERENCES 33
Appendix 1 34

NOTE

The content of this publication, in whole or in part, may be quoted or reproduced provided the authors and the ARC Weed Research Organization are fully acknowledged. The correct bibliographical reference is:-

RICHARDSON, W.G. and PARKER, C. The activity and post-emergence selectivity of some recently developed herbicides: NP 48, RH 5205 and pyridate. Technical Report Agricultural Research Council Weed Research Organization, 1978, (49), pp 38.

THE ACTIVITY AND POST-EMERGENCE SELECTIVITY OF SOME RECENTLY DEVELOPED HERBICIDES: NP 48, RH 5205 AND PYRIDATE

W.G. Richardson* and C. Parker**
Agricultural Research Council Weed Research Organization Begbroke Hill, Yarnton, Oxford OX5 1PF

SUMMARY

Three herbicides were examined for their early post-emergence selectivity on 36 temperate and 26 tropical crop and weed species. The route of action of these herbicides was determined on six selected species in a separate test.

NP 48 possosses considerable foliar and soil activity against grass species and can be used pre- or post-emergence. Most grass weeds were controlled post-emergence and most broad-leaved crops were tolerant. Broad-leaved weeds were generally resistant.

RH 5205 possesses a high degree of activity via foliage and soil, mainly on broad-leaved species and can also be used pre- or post-emergence. Several annual broad-leaved weeds were controlled post-emergence while a few crops were tolerant, particularly the cereals, ryegrass and kale.

Pyridate exerts its effect mainly via the foliage in broad-leaved species. Several annual broad-leaved weeds were controlled post-emergence, notably Galium aparine, while cereals, brassicas and certain legume crops were tolerant.

INTRODUCTITON

The pre- and post-emergence selectivities of new herbicides are investigated on a large number of pot-grown crop and weed species at WRO. The objectives are to discover selectivities, crop and weed susceptibilities and to obtain experience of the type of effects produced by each compound. Attention is drawn to the limitations of these investigations; eg use of only one crop variety or source of weed species and growth in one particular soil type at only one depth of sowing without intraspecific competition. Consequently the results should only be used as a guide for further work; plant responses in pot experiments can be very different to those in the field.

The present report gives indications of the post-emergence selectivity of three new herbicides. Results of activity experiments are also included to provide information on levels of phytotoxicity, type and route of action.

METHODS AND MATERIALS

(a) Activity experiments (AE1, AE2)

These were carried out on six selected species as described previously (Richardson and Dean, 1974). Four annual species were raised from seeds and two perennials from rhizome fragments. Herbicides were applied by four different methods:

[^0](i) post-emergence to the foliage only, avoiding contact with the soil,
(ii) post-emergence to the soil only, as a drench avoiding foliage contact, (iii) pre-emergence to the soil surface,
(iv) pre-emergence with thorough incorporation, before planting.

Species data are summarised in Table 1 and soil and environmental conditions for all experiments in Table 2.

Table 1. Plant data for activity experiments (AE)

Species	Cultivar/ source	No. per pot at spraying		Depth of planting (cm)	Postemergence stage of growth at spraying	Stage of growth at assessment	
		pre-	post-			pre-	post-
$\begin{aligned} & \text { Dwarf bean } \\ & \text { (Phaseolus } \\ & \hline \text { vulgaris } \end{aligned}$	The Prince	3	2	1.8	2 uni- foliate leaves	$\begin{aligned} & 1 \frac{1}{2}-2 \text { tri- } \\ & \text { foliate } \\ & \text { leaves } \end{aligned}$	$\begin{aligned} & 2-2 \frac{1}{2} \text { tri- } \\ & \text { foliate } \\ & \text { leaves } \end{aligned}$
Kale $\frac{\text { (Brassica }}{\text { oleracea }} \text { acephala) }$	Maris Kestrel	10	5-6	0.6	$1 \frac{1}{2}-2$ leaves	$\begin{aligned} & 3-4 \\ & \text { leaves } \end{aligned}$	$3 \frac{1}{2}-4 \frac{1}{2}$ leaves
$\frac{\text { Polygonum }}{\text { amphibium }}$	WRO Clone 1	6	3-5	1.2	$3-6$ leaves	$6-8$ leaves	$6-9$ leaves
Perennial ryegrass (Lolium perenne)	S 23	15-20	10	0.6	$\begin{aligned} & 2-3 \\ & \text { leaves } \end{aligned}$	10 leaves, tillering	8-15 leaves, tillering
$\begin{aligned} & \text { Avena } \\ & \text { fatua } \end{aligned}$	Farthinghoe, 1972	12	3-6	1.2	$2 \frac{1}{2}-3$ leaves	42 -9 leaves, tillering	7-9 leaves, tillering
$\frac{\text { Agropyron }}{\text { repens }}$	WRO Clone 31	6	4-5	1.2	$2-3$ leaves	4 $\frac{1}{2}-8$ leaves, tillering	7-10 leaves, tillering

(b) Post-emergence selectivity experiment

The technique for this experiment was as before (Richardson and Parker, 1977). Plants were raised in 9 or 10 cm diameter plastic pots in a soil: peat: sand mixture ($4: 1: 1$ by volume). The soil was taken from a field (Begbroke North) at Begbroke Hill. Planting dates were staggered so that the majority of species had reached the 2-4 leaf stage by the time of spraying. Temperate species were raised in the open and tropical species in the glasshouse. Herbicides were applied using a laboratory sprayer operating iat a pressure of $2.11 \mathrm{~kg} / \mathrm{cm}^{2}\left(30 \mathrm{lb} / \mathrm{in}^{2}\right)$ and moving at constant speed 45 cm above the plants.

Table 2. Soil and environmental conditions

Experiment number, type and herbicide(s) included	$\begin{gathered} \text { AE } 1 \\ \text { NP } 48 \end{gathered}$	AE 2 RH 5205 Pyridate	Post-emergence selectivity test NP 48, RH 5205, Pyridate	
Date of spraying Main assessment completed	$\begin{aligned} & 21.4 \cdot 77 \\ & 26.5 \cdot 77 \end{aligned}$	$\begin{aligned} & 31.8 .77 \\ & 5.10 .77 \end{aligned}$	23 \& 29.6 .77	
Organic matter (\%)	4.1	4.1	4.1	
Clay content (\%)	15.0	15.0	15.0	
pH	7.0	7.0	7.0	
John Innes base fertilizer (g / kg)	5.0	-	2.5	
Osmacote 15.12.15 (g/kg)	-	3.5	-	
DDT (5% dust) (g / kg)	0.5	0.5	0.5	
Fritted trace elements (g / kg)	0.25	0.25	0.25	
Epsom salts (g/kg)	1.0	1.0	1.0	
Temperature (${ }^{\circ} \mathrm{C}$)			Temperate	Tropical
Mean	17	20	12	25
Maximum	25	29	23	35
Minimum	10	13	3	16
Relative humidity (\%)				
Mean				
Maximum	84	80	56	80
Minimum	20	20	18	30

Before spraying, each species was thinned to constant number per pot. Certain plant material was pre-treated to improve establishment:- Chenopodium album seeds were soaked in 0.1 M potassium nitrate solution and then kept in the light for two days prior to planting; Veronica persica seeds were sown in steam sterilized soil and seedlings ($1-\overline{2}$ true leaves) transplanted into the potting medium; seeds of Polygonum aviculare were immersed in concentrated sulphuric acid for 20 minutes and then thoroughly washed before being soaked in an aqueous solution of gibberellic acid ($250 \mathrm{ppm} \mathrm{w} / \mathrm{v}$) for 48 hours; seeds of fenugreek were inoculated with nodule bacteria (Rhizobium meliloti Dang. Rothamsted Catalogue No. 2012); tubers of Cyperus esculentus and Oxalis latifolia were stored moist at $2^{\circ} \mathrm{C}$ for four and five weeks respectively prior to planting, to break dormancy. Perennial species were propagated vegetatively as indicated in Appendix 1.

To protect them from soil-borne pathogens all seeds except Chenopodium album, Polygonum aviculare and the temperate cereals were pretreated with one of the following: thiram, Harvesan organomercury (for Avena fatua) or ethylmercuric phosphate + dieldrin (for sugar beet). Temperate cereal seeds were purchased already treated with a mercurial seed dressing.

Stages of growth (exclusive of cotyledons) at spraying are summarised in Appendix 1. After spraying, the plants were protected from rainfall for 24 hours and then given an overhead watering, by means of a rose at the end of a trigger hose attached to the mains water supply, to wash any residues off the foliage. The pots were then returned to their original position in the glasshouse or the open. Watering throughout the experiment was done from overhead. Additional fertilizer in solution was applied to all species at one week intervals after spraying ($0.5 \% \mathrm{v} / \mathrm{v}$ Vitafeed 301). Insecticide and fungicide solutions were applied to individual species as required.

Radish (Raphanus raphanistrum) was included for ease of propagation and may be regarded as a crop or weed. Soyabean (Glycine max) unfortunately failed to germinate and germination/sprouting of Holcus lanatus, Cirsium arvense and Cyperus esculentus was erratic. With Oxalis latifolia it was not possible to obtain a constant number of plants per pot and, therefore, results were not computerised. Vigour assessments were made, however, and these are referred to in the text, where appropriate. Fenugreek, a newly included species, had fairly healthy shoots but nine weeks after sowing, roots had failed to produce nodules.
(c) Assessment and processing of results

Results were assessed and processed as before (Richardson and Dean, 1974). Stages of growth at the time of assessment are given in Appendix 1. Survivors were counted and scored on a $0-7$ scale as previously, where $0=$ dead and 7 = control.

Histograms are presented for each treatment, the upper of each pair represents mean plant survival and the lower, mean vigour score, both calculated as percentages of untreated controls. Actual percentage figures are displayed to the left of each row of x's (in selectivity test only). The same information is displayed in the histogram, each ' x ' representing a 5% increment, but in the activity experiment each ' x ' represents a 7% increment. A '+' indicates a value in excess of 100%; ' R ' indicates a result based on one replicate only and 'M' represents a missing treatment. A value of $100=$ as untreated control and $0=$ a complete kill.

A table of observed selectivities, using the criteria specified, is presented for each compound along with comments to highlight salient points.

Several species, notably the perennials, were kept for a period of several weeks to observe later effects or the degree of recovery from injury and these final observations are referred to in the text.

Code number
Proposed common name

Chemical name

NP 48
Alloxydim-sodium
Also has been referred to as Carbodimedon and Alloxydimedon-sodium

2-(1-allyloxyaminobutylidene)-5,5-dimethyl-4methoxycarbonyI cyclohexane-1,3-dione (sodium salt)

Nippon Soda Co Ltd Agrochemicals Department 221, Ohtemachi, Chiyoda-ku
Tokyo
Japan

Information available and suggested uses
Suggested post-emergence for control of grass weeds. Broad-leaved weeds are resistant. Dosage for annual weeds, $1.0-2.0 \mathrm{~kg}$ a.i./ha; for perennials $1.5-2.5 \mathrm{~kg}$ a.i./ha, two application times being advisable. Recommended for use in sugar beet, soybean, cotton and rape. Other tolerant crops are peas, peanuts, potato, beans, sunflower, tobacco, vines and various vegetables. Also active pre-emergence but not recommended due to its short persistence in the soil.

Formulation used
Spray volume

Water soluble powder $75 \% \mathrm{w} / \mathrm{w}$ a.i.
345 1/ha for post-emergence selectivity test
$340 \mathrm{l} / \mathrm{ha}$ for activity experiment

RESULTS

Full results are given in the histograms on pages $9-14$ and potential selectivities are summarised in the following table.

RATE (kg a.i./ha)	CROPS: by 15\% or less	WEEDS: number or vigour reduced by 70\% or more
4.0	onion dwarf bean field bean pea rape kale cabbage lettuce fenugreek chickpea cotton tobacco tomato	$\frac{\text { Poa annua }}{\text { Chenopodium album }}$+ species below
1.0	species above white clover carrot parsnip sugar beet radish pigeon pea cow pea groundnut jute kenaf sesamum	$\frac{\text { Poa trivialis }}{\text { Agropyron repens }}$

Comments on results

Activity experiment
Grasses were very sensitive, and broad-leaved species resistant, to all four methods of application. With the grasses there was eventually little difference in the level of activity between any of the soil applications. Incorporation pre-emergence was marginally more active against Agropyron repens than the surface spray. A noteable feature, especially with the foliar sprays, was the ability of A. repens (and A. fatua) to recover quite quickly at the lower doses, even after severe initial effects. Thus Agropyron recovered from $1.0 \mathrm{~kg} / \mathrm{ha}$ eventually, as did Avena from $0.25 \mathrm{~kg} / \mathrm{ha}$. This recovery was also seen with Avena at the lowest dose of the pre-emergence surface spray and with Agropyron after the soil drench.

Symptoms

Grasses were inhibited within a few days of treatment, growth of the newest leaf virtually ceasing. Chlorosis, or albinism, developed at the base of the newest leaf and gradually extended throughout the whole shoot system, necrosis developing later. At the lowest doses, some tillers were produced as though to compensate for the main shoot inactivation. The higher pre-emergence doses usually prevented emergence either from the soil or from the coleoptile. At lower doses the growth of both the shoots and roots were severely retarded,
the latter often being short and swollen. Symptoms on broad-leaved species were generally minor and usually temporary. Thus, peas recovered from a slight initial stunting of growth. Carrots and Spergula arvensis showed a mild chlorosis and/or necrosis. With Chenopodium album, however, the chlorosis and necrosis were sufficient to kill plants eventually at the highest dose. Onions showed a slight chlorosis and necrosis of their leaf tips.

These symptoms are similar in some respects to those caused by the double phenoxy herbicides eg trifop-methyl, notably with regard to root inhibition. More chlorosis was evident with NP 48 however. Although chlorosis and necrosis are typical herbicide symptoms (eg. with ureas and triazines) NP 48 exerted a much greater and more rapid systemic effect.

Post-emergence selectivity among temperate species

An impressive spectrum of grass weed control was obtained, including perennials as well as annuals. Avena fatua and Alopecurus myosuroides were controlled at the lowest dose of $0.25 \mathrm{~kg} / \mathrm{h}$. The two perennials, Agropyron repens and Agrostis gigantea were severely reduced initially by $0.25 \mathrm{~kg} / \mathrm{ha}$ and eventually killed by $1.0 \mathrm{~kg} / \mathrm{ha}$. Poa trivialis was controlled by $1.0 \mathrm{~kg} / \mathrm{ha}$ and severely reduced at $0.25 \mathrm{~kg} / \mathrm{ha}$ but Poa annua proved to be the most resistant of the grass weeds, $4.0 \mathrm{~kg} /$ ha being required for control. All broad-leaved species were highly resistant, except Chenopodium album, which was killed at $4.0 \mathrm{~kg} / \mathrm{ha}$.

All broad-leaved crops tolerated $1.0 \mathrm{~kg} / \mathrm{ha}$ or higher. All the largeseeded legumes (dwarf bean, field bean, pea, fenugreek), most of the brassicas (rape, kale, cabbage), as well as onion and lettuce, tolerated $4.0 \mathrm{~kg} / \mathrm{ha}$. Even those crops which did not satisfy the criteria of tolerance at $4.0 \mathrm{~kg} / \mathrm{ha}$ suffered only minor vigour reductions (21-29\%) and usually recovered fully. Some caution is necessary with certain of the leguminous species however. When shoots of white clover were harvested four weeks after spraying with 1.0 and $4.0 \mathrm{~kg} / \mathrm{ha}$, mean fresh weights were 99 and 63% of control values respectively, showing some reduction at the higher dose. Field bean, harvested at the same time, had shoot fresh weights similar to the controls but minor reductions in dry weight were recorded for shoots, roots and nodules (8 to 29%). Similar effects were found with peas but with somewhat more reduction of the dry weight of roots and nodules (46 and 30%). In a later experiment, peas were treated at the same doses in a similar manner and kept under comparable environmental conditions, until pods had formed. Although dry weights of shoots were not very different from untreated controls, considerable reductions were recorded for root dry weight (41 to 46%), nodule numbers and the fresh weight of nodulated roots. The fresh weight of non-nodulated roots, however was not very much less than in the controls (M P Greaves, unpublished data). Further experiments on peas are being carried out and will be reported later.

From the results of these tests NP 48 would appear to have considerable potential for the control of most annual and perennial grass weeds in most broad-leaved crops, as well as onion. The control of volunteer cereals and grasses (eg perennial ryegrass) is also indicated. Furthermore, selective weed control may be expected pre-emergence (Richardson and Parker, 1978 in press). The similarity between this herbicide and trifop-methyl is quite striking, even though they are chemically unrelated (Richardson and Parker, 1977a and b). The slightly higher resistance of Poa annua as opposed to Poa trivialis and other grass weeds is a feature common to both herbicides. In contrast to trifop-methyl, NP 48 showed a moderate species response difference within the Avena genus. Thus wild oat (A. fatua) was much more susceptible than cultivated oat (Avena sativa) and comparison between NP 48 and chlorfenprop-methyl, the only other herbicide approved for such a purpose, would be worthwhile. It could also be worth looking for intraspecific variation in response among cereal
varieties. The short period of persistence in the soil may give NP 48 certain advantages in some situations such as control of grass weeds in stubble after harvest and before planting of a subsequent crop. (Nippon Soda Data Sheet, 1977; Richardson and Parker, 1978, in press).

Post-emergence selectivity among tropical species
All grass weed species, including Rottboellia were effectively controlled by $1 \mathrm{~kg} / \mathrm{ha}$ whereas all broad-leaved crop and weed species were undamaged at this dose. Chickpea, tomato, tobacco and cotton tolerated the highest dose of $4 \mathrm{~kg} / \mathrm{ha}$ as did the broad-leaved weeds and Cyperus rotundus. There is a wide range of potential uses for this compound for grass control in tropical broad-leaved crops (and onions). In general the pattern of selectivity is similar to that of trifop-methyl but the greater safety on cotton, if confirmed by further work, could be of particular value.

Rice was more tolerant than other cereals, but all were damaged at the lowest dose of $0.25 \mathrm{~kg} / \mathrm{ha}$.

ACTIVITY EXPERIMENT
NP 48

$0.25 \mathrm{~kg} / \mathrm{ha}$

DWARF	S	xxxxxxx R XXXXXXx
BEAN	p	
	I	
	F	
	S	
KALE	p	xXXXXXXXXXXXX XXXXXXXXXXXXXX
	I	xXXXXXXXXXXXXX + XXXXXXXXXXXXXX
	F	xxxxexxxxxxxxx XXXXXXXXXXXXXX
POLYGONUM	S	
AMPHIBIUM	P	- ${ }^{\text {xxxxxxxxxxxxx }}$
	I	
	F	
PERENNIAL RYEGRASS	S	
	P	\bigcirc
	I	$\underset{\mathrm{x}}{\mathrm{x}}$
	F	
$\begin{aligned} & \text { AVENA } \\ & \text { FATUA } \end{aligned}$	S	
	P	din ${ }^{\text {xxxxxx }}$
	I	$\underset{\mathbf{X X X X X}}{\underset{X X X X X X X X X}{X}} \underset{\mathrm{XX}}{\mathrm{X}}$
	F	
AGROP YRON	S	$\begin{aligned} & \operatorname{XxXXXXXXXXXXXX} \\ & \mathcal{X X X X X X X X X X X X} \end{aligned}$
REPENS	P	
	I	$\begin{aligned} & x \times x \times x \times x \\ & x \times x \times x \end{aligned}$

$1.0 \mathrm{~kg} / \mathrm{ha}$

 XXXXXXXXXXXX
xxxxxxxxxxxxxx
xxxxxxxxxxxx
xxyxxyxxyxxyx XXXXXXXXXxxxxx
xxxxxxxxxxxxxx + XXXXXXXXXXXXXX

XXXXXXXXXXXXXX xyxyxxixyxyxux
xxxxxxx

$4.0 \mathrm{~kg} / \mathrm{ha}$

xxxyxxexx xxxxx XXXXXXXXXXX
$\mathrm{xx} \times \mathrm{xx} \times \mathrm{xx} \times \mathrm{x} \times \mathrm{xx} \times \mathrm{x}$
x
XXXXXXXXXXXXXX + XXXXXXXXXXX
 xxyxxexxxxx

xxxxxyxxxxxxyx + XXXXXXXXXXXX

$\underset{\text { xxxxxxxxxxxxxx }}{ }$

$\underset{\text { xxxxxxxxxxxxxx }}{ }$
xyxxyxxyxyxyxy XXXXXXXXXXXXXX
\qquad
xxxxxxxxxxxxxx
xxyxxexx

xxxxxyxxx
 xx

$\mathrm{xxxx}_{\mathrm{xx}} \mathrm{xx}$
○
\circ
$\mathbf{X X X X X X X X X X X X X}$
$\mathbf{X X}$
ㅇ
$\mathrm{XxX}_{\mathrm{xx}}$
8

xyxxxyxxxyxxxx

xxxyxyxyxxyxyx $\mathbf{x x x}$
ㅇ
\circ

Key: $F=$ post-emergence, foliar application
$S=$ post-emergence, soil drench
$\mathrm{P}=$ pre-emergence, surface film
$I=$ pre-planting, incorporated

NP 48

SPECIES

$0.25 \mathrm{~kg} / \mathrm{ha}$

WHEAT	100	mxxxxxxxxxxxxxxxxxxx
(1)	57	xxxxxxxxxxx
BARLEY	75	mxxxxxxxixixixix
(2)	57	
OAT	100	mxxxxxxxxxxxxxxxxxxxx
(3)	71	
PER RYGR	100	mxxxxxxxxxxxxxxxxxxxx
4)	29	xxxxxx
ONION	100	mxxxxxxxxxxxxxxxxxxx
(8)	100	
DWF BEAN	100	
9)	100	mxxxxxxxxxxxxxxxxxxx
FLD BEAN	100	xxxxxxxxxxixxxxxxxxxxi
10)	100	
PEA	100	mxxxxxxxxxxxxxxxxxxxx
(11)	100	mxxxxxxxxxxxxxxxxxxx
W CLOVER	100	mxxxxxxxxxxxxxxxxxxxx
(12)	100	
RAPE	100	
(14)	100	
KALE	100	
(15)	100	
CABBAGE	100	mxxxxxxxxxxxxxxxxxxxx
(16)	100	

0
0
$1.0 \mathrm{~kg} / \mathrm{ha}$
$17 \mathrm{xxx} \quad 0$
XxX
0
0
75 xxxxxxxxxxxxxxx 0
14 xxx

100 सxxxxxxxxxxxxxxxxxxx 100 xxxxxxxxxxxxxxxxxxxx

100 x×xxxxxxxxxxxxxxxxxx
100 xxxxxxxxxxxxxxxxxxxx

100 xxxxxxxxxxxxxxxxxxxx
100 xxxxxxxxxxxxxxxxxxxx

100 xxxxxxxxxxxxxxxxxxxx
$100 \quad \mathrm{xxxxxxxxxx} \mathrm{\times x} \mathrm{\times x} \mathrm{\times x} \mathrm{\times x} \mathrm{\times x}$
$100 \quad \mathrm{xxxxxxxxxxxxxxxxxxxx}$
$4.0 \mathrm{~kg} / \mathrm{ha}$

NP 48

SPECIES		$0.25 \mathrm{~kg} / \mathrm{ha}$
CARROT	100	xxxxxxxxxxxxxxxxxxxxx
(18)	100	mxxxxxxxxxxxxxxxxxxx
PARSNIP	100	mxxxxxxxxxxxxxxxxxxx
(19)	100	mxxxxxxxxxxxxxxxxxxx
LETTUCE	100	mxxxxxxxxxxxxxxxxxxx
(20)	100	mxxxxxxxxxxxxxxxxxxx
SUG BEET	100	xxxxxxxxxxxxxxxxxxxx
(21)	100	mxxxxxxxxxxxxxxxxxxx
FENUGREK	100	mxxxxxxxxxxxxxxxxxxx
(22)	100	mxxxxxxxxxxxxxxxxxxx
AVE FATU	83	xxxxxxxxxxxxxxxxxx
(26)	29	x $x \times x \times x$
ALO MYOS	10	Xx
(27)	14	xxx
POA ANN	100	
(28)	93	mxxxxxxxxxxxxxxxxxx
POA TRIV	90	
(29)	36	xxxxxxx
SIN ARV	100	xxxxxxxxxxxxxxxxxxxxix
(30)	100	xxxxxxxxxxxxxxxxxxxx
RAPH RAP	100	mxxxxxxxxxxxxxxxxxxxxx
(31)	100	xxxxxxxxxxxxxxxxxxxxx
CHRY SEG	100	mxxxxxxxxxxxxxxxxxxx
(32)	100	mxxxxxxxxxxxxxxxxxxxx

$$
1.0 \mathrm{~kg} / \mathrm{ha}
$$

100	xxxxxxxxxxxxxxxxxxxx
100	XXXXXXXXXXXXXXXXXXXX
100	xxxxxxxxxxxxxxxxxxxxx
100	XXXXXXXXXXXXXXXXXXXX
100	Xxxxxxxxxxxxxxxxxxxxx
100	Xxxxxxxxxxxxxxxxxxxx

100	Xxxxxxxxxxxxxxxxxxxxx
79	Xxxxxxxxxxxxxxxx
100	xxxxxxxxxxxxxxxxxxxx
79	XXXXXXXXXXXXXXXX
100	xxxxxxxxxxxxxxxxxxxx
100	XXXXXXXXXXXXXXXXXXXX
100	
71	XXXXXXXXXXXXXX
100	xxxxxxxxxxxxxxxxxxxx
100	XXXXXXXXXXXXXXXXXXXX
0	
0	
0	
0	
0	
0	
0	
0	
100	x ${ }^{\text {dxxxxxxxxxxxxxxxxxxx }}$
100	XXXXXXXXXXXXXXXXXXXX
100	mxxxxxxxxxxxxxxxxxxx
71	XXXXXXXXXXXXXX
100	Xxxxxxxxxxxxxxxxxxxx
79	Xxxxxxxxxxxxxxxx

NP 48

$$
1.0 \mathrm{~kg} / \mathrm{ha}
$$

100		100	mxxxxxxxxxxxxxxxxxxxx
93	xxxxxxxxxxxxxxxxxxxx	79	mxxxxxxxxxxxxxxxxx
100		100	mxxxxxxxxxxxxxxxxxxx
86		86	
100	xxxxxxxxxxxxxxxxxxxx	100	mxxxxxxxxxxxxxxxxxxx
86		86	mxxxxxxxxxxxxxxxx
100	xxxxxxxxxxxxxxxxxxxxx	100	mxxxxxxxxxxxxxxxxxxx
100	x $x \times x \times x$	93	mxxxxxxxxxxxxxxxxxx
100	mxxxxxxxxxxxxxxxxxxxx $x^{\text {max }}$	100	mxxxxxxxxxxxxxxxxxxxx
100		100	
100	mxxxxxxxxxxxxxxxxxxxx	0	
71		0	
100		100	
100		100	
100	mxxxxxxxxxxxxxxxxxxxx	100	
100		79	
100	mxxxxxxxxxxxxxxxxxxxxix	100	
100	mxxxxxxxxxxxxxxxxxxx	100	
100		100	mxxxxxxxxxxxxxxxxxxxx
100		93	
70		0	
29	xxxxxx	0	
0		0	
0		0	

NP 48

SPECIES

$0.25 \mathrm{~kg} / \mathrm{ha}$

$\begin{gathered} \text { MAIZE } \\ (58) \end{gathered}$	$\begin{array}{r} 100 \\ 43 \end{array}$	xxxxxxxxxxxxxxxxxxxx xxxxxxxxx
SORGHUM	100	mxxxxxxxxxxxxxxxxxxix
(59)	64	xxxxxxxxxxxxx
RICE	100	mxxxxxxxxxxxxxxxxxxxix
(60)	79	
PIGEON P	100	
(61)	93	
COWPEA	100	mxxxxxxxxxxxxxxxxxxix
(62)	100	mxxxxxxxxxxxxxxxxxxx
CHICKPEA	100	mxxxxxxxxxxxxxxxxxxxx
(63)	100	xxxxxxxxxxxxxxxxxxxx
GRNDNUT	100	
(64)	100	mxxxxxxxxxxxxxxxxxxx
COTTON	100	
(66)	100	
JUTE	100	
(67)	100	
KENAF	100	
(68)	100	
TOBACCO	100	mxxxxxxxxxxxxxxxxxxxx
(69)	100	
SESAMUM	100	
(70)	100	

$4.0 \mathrm{~kg} / \mathrm{ha}$
$\begin{array}{lll}17 & \text { xxx } & 0 \\ 21 & \text { xxxx } & 0\end{array}$
21 xxxx 0
80 xxxxxxxxxxxxxxxx 0
43 xxxxxxxxx 0
87 xxxxxxxxxxxxxxxxx
29 xxxxxx
xxxxxxxxxxxxxxxxxxxx
100 xxxxxxxxxxxxxxxxxxxx
$100-x x x x x x x x x x x x x x x x x x x$
100
100
100
100
93
100
93

$$
1.0 \mathrm{~kg} / \mathrm{ha}
$$

NP 48

SPECIES		$0.25 \mathrm{~kg} / \mathrm{ha}$
TOMATO	100	mxxxxxxxxxxxxxxxxxxxx
(71)	100	
OR PUNCT	94	
(73)	43	xxxxxxxxx
ELEU IND	100	
(74)	71	
ECH CRUS	80	xxxxxxxxxxxxxxxx
(75)	29	x $x \times x x x$
ROTT EXA	100	
(76)	50	xxxxxxxxxx
DIG SANG	100	mxxxxxxxxxxxxxxxxxxx
(77)	50	xxxxxxxxxx
AMAR RET	100	
(78)	100	xxxxxxxxxxxxxxxxxxxx
PORT OLE	100	
(79)	100	
SOL NIG	100	
(81)	100	
SNOW POL	69	xxxxxxxxxxxxxxx
(83)	43	xxxxxxxxx
CYP ROTU	100	
(86)	100	mxxxxxxxxxxxxxxxxxxx

Code number
Chemical name
Structure

RH 5205
Ethyl-2-\{5-[2-chloro-4-(trifluoromethyl)phenoxy]-2nitrophenoxy\} propionate

Source
Rohm and Haas (UK) Ltd
Lennig House
2 Masons Avenue
Croydon
Surrey CR9 3NB

Information available and suggested uses

Originally suggested for post-emergence control of broad-leaved weeds in cereals at 0.06 kg a.i./ha, but there is at present some doubts about its future development and the manufacturer ought to be consulted.
Formulation used Wettable powder $25 \% \mathrm{w} / \mathrm{w}$ a.i.
Spray volume $\quad \begin{aligned} & 345 \mathrm{I} / \mathrm{ha} \text { for post-emergence selectivity experiment } \\ & 340 \mathrm{l} / \mathrm{ha} \text { for activity experiment }\end{aligned}$ RESULTS

Full results are given in the histograms on pages $18-23$ and potential selectivities are summarised in the following table.

$\begin{gathered} \text { RATE } \\ (\mathrm{kg} \\ \left.\mathrm{a} \cdot \mathrm{i}_{\bullet} / \mathrm{ha}\right) \end{gathered}$	CROPS: vigour reduced by 15% or less	WEEDS: number or vigour reduced by 70% or more
0.8	perennial ryegrass	Chrysanthemum segetumPolygonum lapathifoliumPolygonum aviculare Galium aparine Chenopodium album $\frac{\text { Solanum nigrum }}{\text { + species below }}$
0.2	```species above + barley oat kale rice```	$\frac{\frac{\text { Sinapis arvensis }}{\text { Stellaria media }}}{\frac{\text { Rumex obtusifolius }}{\text { Amaranthus retroflexus }}}$

(Table continued overleaf)

RATE $(\mathrm{kg} \mathrm{a.i} . / \mathrm{ha})$	CROPS: vigour reduced by 15\% or less	WEEDS: number or vigour reduced by 70\% or more
0.05	species above + wheat onion pea cabbage maize	$\frac{\text { Raphanus raphanistrum }}{\text { Tripleurospermum maritimum }}$

Comments on results

Activity experiment

Substantial activity resulted from the foliar spray, particularly on the broad-leaved species. Activity from soil drenches was generally as great as with the foliar spray in the latter species and on grasses it was even greater.

Pre-emergence treatments to kale, perennial ryegrass and dwarf bean were very active. For ryegrass and kale, surface applications were distinctly more active than where the herbicide was incorporated. On the other species, differences between the two application methods were small and inconsistent.

Symptoms

Severe contact scorch damage resulted from the foliar spray, particularly on the broad-leaved species. However, buds of these, and apical meristems of the grasses, were not always affected and plants were able to recover. This was most striking with perennial ryegrass and some other grass species. Soil drenches caused severe browning and necrosis in the vascular regions of stems and leaves, many of the broad-leaved species apparently dying with wilting symptoms, presumably because of the effect on or via the vascular system. Leaf blades of grasses were often very narrow and occasionally leaf trapping was observed.

In the pre-emergence treatments, higher doses often prevented emergence, while at lower doses, growth was retarded with necrosis, mainly of the older leaves.

Post-emergence selectivity among temperate species

All annual broad-leaved weeds were controlled at $0.8 \mathrm{~kg} / \mathrm{ha}$, several of these even at lower doses of 0.2 and $0.05 \mathrm{~kg} / \mathrm{ha}$. Cruciferous weeds, especially Raphanus raphanistrum, and two of the composites, Tripleurospermum maritimum and Senecio vulgaris were sensitive. Grass weeds were relatively resistant.

Perennial ryegrass, the most tolerant crop, was the only one to withstand $0.8 \mathrm{~kg} / \mathrm{ha}$. Results from the activity experiment suggest that this species may well tolerate higher doses, possibly up to $2.0 \mathrm{~kg} / \mathrm{ha}$. The cereals, barley and oat were tolerant to $0.2 \mathrm{~kg} /$ ha while wheat was reduced in vigour only marginally. Among the brassica crops, cabbage and kale showed some degree of tolerance but rape was sensitive. Onion and pea were the only other tolerant crops, the latter being reduced in vigour only marginally at $0.2 \mathrm{~kg} / \mathrm{ha}$. Field bean, parsnip, lettuce and radish were very sensitive.

The results of this test lend some support to the manufacturers' suggestions for controlling some broad-leaved weeds in cereals. Grass weeds were fairly resistant however. Some further testing is required with regard to the control of certain broad-leaved weeds, notably the crucifers Sinapis arvensis and Raphanus raphanistrum, in kale and cabbage. Further pot work has shown that young seedlings of Rumex obtusifolius, but not more mature plants (c. 4-5 leaf stage), can be controlled in perennial ryegrass.

Post-emergence selectivity among tropical species

Grass weeds and Cyperus rotundus were relatively tolerant whereas smallseeded, broad-leaved species were generally sensitive to this compound. Amaranthus was rather less susceptible than Portulaca and some of the crops such as jute and sesamum. Solanum nigrum was relatively tolerant in this test but was larger than most others at the time of spraying. Very young seedlings of most broad-leaved species should prove susceptible to low doses but, as most crops are damaged even at $0.05 \mathrm{~kg} / \mathrm{ha}$, the selectivity of overall post-emergence sprays would be doubtful. Rice was fully tolerant of the lowest dose and small doses of the compound could perhaps be considered in combination with early post-emergence applications of specific sedge and grass-killing herbicides.

If pre-emergence testing confirms good persistent activity, this highly active compound could be of interest as an inter-row directed treatment in annual and perennial row crops, perhaps in combination with one of the new highly selective grass herbicides such as NP 48.

$0.1 \mathrm{~kg} / \mathrm{ha}$

F xxxxxxxxxxxxxx xxxx

DWARF BEAN

AMPHIBIUM

	F	xxxxxxxxxxxxxx xxxxxxxxxxxxxi
PERENNIAL	S	xxyxxxxxxxxxyx xxyxxexxyxxyxx
RYEGRASS	P	Xxxxxxxxxx
	I	
	F	(exxxxxxxx ${ }^{\text {xxxxxxx }}$
AVENA	S	
FATUA	P	xxxxxxxxyxxyxx XXXXXXXXX
	I	
	F	
AGROPYRON	S	xxxxxxxxxxxxxx
REPENS	P	
	I	

$0.5 \mathrm{~kg} / \mathrm{ha}$
$\mathbf{x x}^{\mathbf{x x}} \mathbf{x x x x x x x x x x x}$
 ${ }_{\mathbf{x x}} \mathbf{x x x x x}^{x}$

ㅇ

$\mathrm{xxxxxxx}^{\text {xxx }}$	${ }_{\mathbf{X X X X}}^{\mathbf{x} \times \times \times \mathrm{x}}$
\bigcirc	\bigcirc
${ }_{\text {x }} \mathbf{x} \times$	8

yoxixxexxxxixxxx xxxxxxxxxxx

zexxxxxexxxxxxx XXXXXXXX

 xxxx
Xxxxxxx
$\underset{\operatorname{sxx} \times x \times x \times x \times x \times x x}{ }+$ XXXXXXXXXXX

$\mathbf{x x x x x x x x x x x x x x}$ XXXXXXXXXXXXX	Xxxxxxxxxxxxxx Xxxxxxxxxxxx
xxxxxxxxxxxxxx $\mathbf{X x} \times \mathrm{XXXXXXXXXXX}$	$\underset{\mathbf{x x x x}}{\operatorname{Xxx} \times x \times x \times x x}$
XXXXXXXXXXXX	$\operatorname{xxxxx}_{\text {xxxxxxx }}$

xxxxxxxxxxxxxx
xxxxxxxxxxxxx

$\operatorname{xxxxxxxxxxxxx}$
xxxxxxxxxxxxx

$2.5 \mathrm{~kg} / \mathrm{ha}$

XXXXXXXXXXXXXX
$\mathbf{x x x x x x x x x x x}$
$\mathbf{x x}$

8

$\operatorname{Xxxxxx}_{\times x \times}$

xxxxxxx

ㅇ
8

$x \times x \times x x$ xxxxxix

$x \times x \times x \times x x$
x
xxxxxxxxxxxxxx
xxxxxxx
xxxxexxxexxx
xxxx XXXXXXXXXXX
$\mathbf{x x x x x x x x x ~ x x x x x}$ xxxxxxxxxx
:
xxxxxxx
xxxxxx
xxxxxxxxxxxxxx
xxxxxxxxyxxx
x
xxxxxxxx
$\mathbf{x x x x x x x x}$
xxxxxxxxxxxxxx
$\mathbf{x x x x x x x x x x x x x x ~}$
xxxxxxxx
xxxxxxxxxxxxxx
xxxxxxxx
XXXXXXXXX
$\mathrm{xxxx} x \times x \times x \times x \times x$
$x \times x \times x \times x \times x$

$$
\text { Key: } \begin{aligned}
& F=\text { post-emergence, foliar application } \\
& S=\text { post-emergence, soil drench } \\
& P=\text { premergence, surface film } \\
& I=\text { premplanting, incorporated }
\end{aligned}
$$

RH 5205

SPECIES		$0.05 \mathrm{~kg} / \mathrm{ha}$
WHEAT	100	xxxxxxxxxxxxxxxxxxxx
(1)	86	
BARIEY	100	mxxxxxxxxxxxxxxxxxxxx
(2)	86	
OAT	100	mxxxxxxxxxxxxxxxxxxx
(3)	100	
PER RYGR	100	mxxxxxxxxxxxxxxxxxxx
(4)	100	mxxxxxxxxxxxxxxxxxxx
ONION	100	
(8)	93	
DWF BEAN	100	mxxxxxxxxxxxxxxxxxxx
(9)	57	
FID BEAN	67	xxxxxxxxxxxxx
(10)	43	xxxxxxxxx
PEA	100	mxxxxxxxxxxxxxxxxxxxx
(11)	93	mxxxxxxxxxxxxxxxxxx
W CLOVER	100	xxxxxxxxxxxxxxxxxxxx
(12)	64	
RAPE	100	xxxxxxxxxxxxxxxxxxxxx
(14)	64	mxxxxxxxxxxxxx
KALE	100	dxxxxxxxxxxxxxxxxxxxx
(15)	86	
CABBAGE	100	mxxxxxxxxxxxxxxxxxxxx
(16)	86	xxxxxxxxxxxxxxxxx

$0.2 \mathrm{~kg} / \mathrm{ha}$

100.	mxxxxxxxxxxxxxxxxxxx	100	mxxxxxxxxxxxxxxxxxxx
79	xxxxxxxxxxxxxxxx	71	
100	mxxxxxxxxxxxxxxxxxxx	100	mxxxxxxxxxxxxxxxxxxx
86		86	
100	mxxxxxxxxxxxxxxxxxxx	100	mxxxxxxxxxxxxxxxxxxx
86	zxxxxxxxxxxxxxxxxx	71	mxxxxxxxxxxxxx
100	mxxxxxxxxxxxxxxxxxxxx	100	mxxxxxxxxxxxxxxxxxxxx
86		86	mxxxxxxxxxxxxxxxx
90	mxxxxxxxxxxxxxxxxxix	60	mxxxxxxxxxxx
71		57	xxxxxxxxxxx
100	mxxxxxxxxxxxxxxxxxxx	100	mxxxxxxxxxxxxxxxxxxxx
21	xxxx	29	xxxxxx
0		0	
0		0	
100		100	mxxxxxxxxxxxxxxxxxxxx
79	mxxxxxxxxxxxxxxxx	57	
56	xxxxxxxxxxx	0	
29	xxxxxx	0	
17	xxx	0	
21	xxxx	0	
100	xxxxxxxxxxxxxxxxxxxx	100	mxxxxxxxxxxxxxxxxxxxx
86		50	x $x \times x \times x x x x x$
100	xxxxxxxxxxxixxxxxxxx	100	xxxxxxxxxxxxxxxxxxxxx
71		43	xxxxxxxxx

$0.8 \mathrm{~kg} / \mathrm{ha}$

xxxxxxxxxxxxxxxxxxxx
$\operatorname{xxxxxxxxxxxxxxxxxxxx~}$
xxxxxxxxxxxxxxxxxxxx XXXXXXXXXXXXXX

Xxxxxxxxxxxxxxxxxxxx Kxxxxxxxxxxxxxxx
xxxxxxxxxxxx XXXXXXXXXXX
xxxxxxxxxxxxxxxxxxxx Xxxxxx

XXXXXXXXX

SPECIES $\quad 0.05 \mathrm{~kg} / \mathrm{ha}$

CARROT	100	mxxxxxxxxxxxxxxxxxxx
(18)	57	X $\mathrm{x} \times \mathrm{x} \times \mathrm{x} \times \mathrm{x} \times \mathrm{x} \times \mathrm{x}$
PARSNIP	40	xxxxxxxx
(19)	57	mxxxxxxxxxxx
LETTUCE	8	Xx
(20)	36	xxxxxxx
SUG BEET	100	xxxxxxxxxxxxxxxxxxxxix
(21)	64	
FENUGREK	100	mxxxxxxxxxxxxxxxxxxx
(22)	71	
AVE FATU	100	
(26)	86	mxxxxxxxxxxxxxxxx
ALO MYOS	100	xxxxxxxxxxxxxxxxxxxxx
(27)	100	
POA ANN	100	
(28)	71	
POA TRIV	100	mxxxxxxxxxxxxxxxxxxxx
(29)	86	
SIN ARV	50	xxxxxxxxxx
(30)	57	
RAPH RAP	0	
(31)	0	
CHRY SEG	100	
(32)	50	

100	xxxxxxxxxxxxxxxxxxxxx	50	xxxxxxxxxx
36	xxxxxxx	14	xxx
0		0	
0		0	
0		0	
0		0	
100	mxxxxxxxxxxxxxxxxxxxx	17	xxx
50	x $x^{\text {x }} \times \mathrm{xxxxxx}$	14	xxx
90	mxxxxxxxxxxxxxxxxxix	50	
57		21	xxxx
100	xxxxxxxxxxxxxxxxxxxxxx	100	
79		71	
100	zxxxxxxxxxxxxxxxxxxxxx	100	
86		79	
100	mxxxxxxxxxxxxxxxxxxxxix	92	xxxxxxxxxxxxxixixixic
71		71	
100	mxxxxxxxxxxxxxxxxxxxxi	100	xxxxxxxxxxxxxxxxxxxxxx
86		71	X $\mathrm{XXXXXXXXXXXXXXX}^{\prime}$
0		0	
0		0	
0		0	
0		0	
71	xxxxxxxxxxxxxxx	57	xxxxxxxxxxxx
79		29	xxxxxx

$$
0.2 \mathrm{~kg} / \mathrm{ha}
$$

RH 5205

SPECIES

$\begin{aligned} & \text { TRIP MAR } \\ & (33) \end{aligned}$	0	
SEN VUIG	10	xx
(34)	7	x
POL LAPA	100	mxxxxxxxxxxxxxxxxxxx
(35)	71	
POL AVIC	92	mxxxxxxxxxxxxxxxxx
(36)	64	
GAL APAR	94	mxxxxxxxxxxxxxxxxxxx
(38)	57	
CHEN ALB	83	mxxxxxxxxxxxxxxxxxx
(39)	64	x $x \times x \times x \times x \times x \times x$
STIEL METD	100	
(40)	86	
SPER ARV	0	
(41)	0	
VER PERS	30	xxxxxx
(42)	29	xxxxxx
RUM OBTU	60	
(44)	64	
AG REPEN	100	mxxxxxxxxxxxxxxxxxxix
(47)	100	
AG STOLO	100	
(48)	100	

$0.2 \mathrm{~kg} / \mathrm{ha}$
0
0
0
0
37
57
42
43

75

58
50
25
21
0
0

0
0

40
29
100
86

100
100
xxxxxxx
xxxxxxxxxxx
xxxxxxxx
xxxxxxxxx
xxxxxxxxxxxxxxx
xxxxxxxxx
xxxxxxxxxxxix
xxxxxxxxxx
xxxxx
xxxx
xxxxxx
xxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxx
mxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxx

0
0
0

0

0
O
0
0
0
$0.8 \mathrm{~kg} / \mathrm{ha}$

[^0]: * Herbicide Group
 ** ODM Tropical Weeds Group

