

WEED RESEARCH ORGANIZATION

TECHNICAL REPORT No.40

THE ACTIVITY AND PRE-EMERGENCE SELECTIVITY OF SOME RECENTLY DEVELOPED HERBICIDES: RP 20810, OXADIAZON, CHLORNITROFEN, NITROFEN, FLAMPROP-ISOPROPYL

RP 20810 is confidential (Rhone Poulenc)

W G Richardson, M L Dean and C Parker

August 1976

ROTHAMSTED EXP. STATION 10 JUN 1977 DEN HARF

An. QL

Price - £2.75

Agricultural Research Council Weed Research Organization, Begbroke Hill, Yarnton, Oxford, OX5 1PF

- ----

.

ISBN 0 7084 0041 8

SUMMARY

INTRODUCTION

METHODS AND MATERIALS

Page

2

5

5

15

23

31

CONTENTS

RESULTS

RP 20810

Confidential

OXADIAZON

3-(2,4-dichloro-5-isopropoxyphenyl)-5-t-butyl-1,3,4oxadiazolin-2-one

CHLORNITROFEN

4-nitropheny1-2,4,6-trichloropheny1 ether

NITROFEN

2,4-dichloropheny1-4-nitropheny1 ether

FLAMPROP-ISOPROPYL

Isopropy1(-)-2-(N-benzoy1-3-chloro-4-fluoroanilino)
propionate

ACKNOWLEDGEMENTS

REFERENCES

APPENDIX

NOTE

The content of this publication, in whole or in part, may be quoted or reproduced provided the authors and the ARC Weed Research Organization are fully acknowledged. The correct bibliographical reference is:-

48

48

49

RICHARDSON, W.G., DEAN, M.L. and PARKER, C. The activity and pre-emergence selectivity of some recently developed herbicides: RP 20810, oxadiazon, chlornitrofen, nitrofen and flamprop-isopropyl. <u>Technical</u> <u>Report Agricultural Research Council Weed Research Organization</u>, 1976, 40, pp 52. THE ACTIVITY AND PRE-EMERGENCE SELECTIVITY OF SOME RECENTLY DEVELOPED HERBICIDES: RP 20810, OXADIAZON, CHLORNITROFEN, NITROFEN AND FLAMPROP-ISOPROPYL

W.G. Richardson*, M.L. Dean** and C. Parker**

Agricultural Research Council Weed Research Organization Begbroke Hill, Yarnton, Oxford OX5 1PF

SUMMARY

The pre-emergence selectivity of five herbicides was examined on a range of 35 temperate and 21 tropical crop and weed species. Herbicides were applied to the soil surface and persistence in the soil was monitored. The foliar and soil activity of two herbicides was also investigated on six selected species.

The weed control and crop tolerance of oxadiazon and RP 20810, two closely related compounds, was very similar. Oxadiazon was marginally superior against annual grasses, except <u>R. exaltata</u>, while RP 20810 achieved slightly better broad-leaved weed control and was notably more active against <u>Stellaria media</u>. <u>Convolvulus arvensis</u> was susceptible to both herbicides, particularly oxadiazon. Potential selectivities were noted with both herbicides mainly in broad-leaved crops such as brassicas, carrot and large seeded legumes. Groundnut and soyabean tolerance of RP 20810 was outstanding. Potential selective annual grass weed control was found in rice using oxadiazon. Soil persistence of RP 20810 is much

shorter than that of oxadiazon.

The pattern of weed control and crop tolerance with nitrofen and chlornitrofen was similar to that with oxadiazon and RP 20810. Good potential selective control of mainly annual grasses, certain broadleaved weeds and C. arvensis was noted. S. media was resistant to both herbicides. Good tolerance of a range of crops was noted including large seeded legumes, brassicas, carrots and certain tropical cereals. Nitrofen was somewhat more active against both crops and weeds than chlornitrofen. The latter showed good potential selective control of certain tropical annual grasses in rice. Both compounds showed a prolonged persistence in the soil.

Flamprop-isopropyl was found to have some potential for preemergence control of annual grass weeds, including <u>A. fatua in cereals</u>, especially barley, and certain other crops. Control of broad-leaved and perennial weeds was negligible, <u>A. retroflexus</u> being the only susceptible species. A long period of soil persistence was found.

INTRODUCTION

The pre-emergence selectivities of new herbicides are investigated on a large number of pot-grown crop and weed species at WRO. The

- * Herbicide Group
- ** ODM Tropical Weeds Group

objectives are to discover selectivities, crop and weed susceptibilities and to obtain experience of the type of effects produced by each compound. Soil persistence is also monitored and these data, in conjunction with crop susceptibilities, are useful in considering subsequent cropping of treated land. Attention is drawn to the limitations of these investigations; i.e. use of only one crop variety or source of weed species and growth in one particular soil type at only one depth of sowing without intraspecific competition. Consequently the results should only be used as a guide for further work, as plant responses in pot experiments can be very different to those in the

- 2 -

field.

The present report gives pre-emergence selectivity data on five herbicides. Nitrofen and oxadiazon were included as standards for comparison to related compounds. Results of activity experiments are included for RP 20810 and flamprop-isopropyl to provide information on levels of phytotoxicity, type and route of action. These data for chlornitrofen and oxadiazon have already been published (Richardson and Dean, 1973b, 1974).

METHODS AND MATERIALS

The activity experiment was carried out on six selected species as described previously (Richardson and Dean, 1973a). Four annual species were raised from seeds and two perennials from rhizome fragments. Herbicides were applied by four different methods: (i) post-emergence to the foliage only avoiding contact with the soil, (ii) post-emergence to the soil only, as a drench avoiding foliage contact, (iii) pre-emergence to the soil surface, (iv) pre-emergence with thorough incorporation before planting. Species data are summarised in Table 1 and soil and environmental conditions in Table 2.

Table 1. Plant data for activity experiments

Species	Cultivar /source	No. per pot at spraying		Depth of plan-	Post- emergence stage of	Stage of growth at assessment	
		pre-	post-	(cm)	spraying	pre-	post-
Dwarf bean (Phaseolus vulgaris)	The Prince	2-3	2	1.8	2 uni- foliate leaves	1½ tri- foliate leaves	1½-2½ tri- foliate leaves
Kale (Brassica oleracea acephala)	Marrow- stem	10-15	6-8	0.6	1 ¹ / ₂ leaves	2 ¹ / ₂ -3 ¹ / ₂ leaves	3½-4½ leaves
Polygonum amphibium	WRO Clone 1	6	4	1.2	5월 leaves	7-8 leaves	7 <u>1</u> -9 1eaves
Perennial ryegrass (Lolium perenne)	S 23	15-20	10	0.6	1½-2½ 1eaves	3-6 leaves, tillering	5 leaves, tillering

(Table continued overleaf)

Species	Cultivar /source	No. per pot at spraying		Depth of plan-	Post- emergence stage of	Stage of growth at assessment	
		pre-	post-	ting (cm)	growth at spraying	pre-	post-
Avena fatua	Hensing- ton 1969	10	5	1.2	2-2 ¹ / ₂ leaves	3-5 leaves, tillering	7 leaves, tillering
Agropyron repens	WRO Clone 31	6	3-4	1.2	2-3 ¹ / ₂ leaves	3-5 leaves, tillering	$4\frac{1}{2}$ -7 leaves, tillering

- 3 -

. .

Table 2. Soil and environment conditions

Experiment number, type and herbicide(s) included	AE 1 Flamprop- isopropyl	AE 2 RP 20810	Pre-emergence selectivity test RP 20810 Nitrofen Oxadiazon Flamprop Chlornitrofen isopropy		
Date of spraying	21.6.73	6.12.73	30.1.74		
Main assessment completed	20.7.73	24.1.74	5.3.	.74	
Soil moisture at spraying (%)	13.5	12.0	13.	.5	
Organic matter (%)	2.8	2.8	2.	.8	
Clay content (%)	16.0	16.0	16.	0	
pH	7.7	7.7	7.	.7	
John Innes Base fertiliser (g/kg)	4.0	5.0	2.	.5	
DDT (5% dust) (g/kg)	0.5	0.5	0.	5	
Fritted trace elements (g/kg)	0.25	0.25			
Epsom salts (g/kg)	-	1.0	1.	.0	
Temperature (°C)			Temperate.	Tropical	
Mean	18	19	18	22	
Maximum	27	29	30	30	
Minimum	8	9	5	9	
Relative humidity (%)					
Mean	60	60	60	60	
Maximum	90	88	87	86	
Minimum	25	30	30	34	

Techniques for the selectivity experiment differed from the usual practice in that all herbicides were applied to the soil surface following planting, instead of being mixed into the soil before planting. Otherwise procedure was as previously described (Richardson and Dean 1973a). Species were sown as detailed in Appendix I, each being replicated twice for every treatment. Herbicides were applied to the soil surface using a laboratory sprayer operating at a pressure of 2.11 bars (30 lb/in[°]) and moving at constant speed, 30 cm above the soil. Subsequent watering was from overhead. Soil and environmental conditions are summarised in Table 2. During the experiment, normal daylight was

- 4 -

supplemented with a 14 hour photoperiod using warm white fluorescent tubes.

Radish (Raphanus raphanistrum) was included for ease of propagation and may be regarded as a crop or weed. To improve establishment <u>Chenopodium album</u> seeds were kept in 0.1 M potassium nitrate for 24 hours in the light; seeds of Polygonum aviculare were stored moist at 2°C for six weeks; tubers of <u>Cyperus esculentus</u> were stored moist at 4°C for 23 days to break dormancy and freshly harvested bulbils of <u>Oxalis</u> <u>latifolia</u> were stored at 20°C for 4 weeks followed by heating at 45°C for 4 hours.

Results were processed as before (Richardson and Dean, 1973a). Survivors were counted and scored on a 0-7 scale as previously where 0 = dead and 7 = control. It was not possible to computerise the data for Chenopodium album because of damage following application of Cheshunt compound but observations were made and are referred to in the text. O. latifolis, S. migrum and cowpea failed to germinate. Emergence and development of sorghum were erratic but observations of herbicidal effects were made and are referred to in the text. Dwarf bean was raised under tropical conditions to improve growth.

Pairs of histograms are presented for each treatment, the upper representing mean plant survival and the lower, mean vigour score, both calculated as percentages of untreated controls. Each 'x' represents a 5% increment, but in the activity experiment histograms, each 'x' represents a 7% increment. A '+' indicates a value in excess of 100%; R indicates a result based on a replicate only and 'M' represents a missing treatment.

A table of observed selectivities, using the criteria specified, are presented for each compound along with comments to highlight salient points.

Soil persistence was monitored, in conjunction with the pre-emergence selectivity experiment. The technique differed from that previously described due to surface application of the compounds. Treated soil was kept in tins in the glasshouse and susceptible species were periodically sown shallowly, disturbing the soil as little as possible. RP 20810

- 5 -

Code numberRP 20810Chemical nameConfidential

Source

Rhône Poulenc

via May and Baker Ltd Ongar Research Station Fyfield Road Ongar Essex

Trade name

Division Phytosanitaire 25 quai Paul Doumer 92408 Courbevoie France

Information available and suggested uses

Uses suggested by the manufacturer in 1973 are: pre-emergence control of broad-leaved and certain grass weeds in cotton, groundnut, rice, soybean, sunflower, leeks, onions, potatoes and peas at 0.375-0.75 kg/ha; pre- and post-emergence directed sprays in orchards and plantation crops at 0.5-2.0 kg/ha; post-emergence potato haulm destruction at 0.75-1.0 kg/ha and post-emergence control of certain broad-leaved perennial weeds in non-crop situations at 0.5-8.0 kg/ha.

Formulation used 30% w/v a.i. emulsifiable concentrate (VT 2975)

Spray volume for both experiments 413 1/ha (36.8 gal/ac)

Full histogram results are given on pages 9-14 and potential selectivities are summarised in the following table.

RATE (kg a.i./ha)	CROPS: vigour reduced by 15% or less	WEEDS: number or vigour reduced by 70% or more
2.0	groundnut soyabean	Avena fatua Alopecurus myosuroides
		Poa annua Sinapis arvensis
		Galium aparine Stellaria media + species below

0.5	species above + dwarf bean field bean	<u>Tripleurospermum maritimum</u> <u>Oryza punctata</u> + species below
	pea kale swede carrot radish cotton	

(Table continued overleaf)

RATE (kg a.i./ha)	CROPS: vigour reduced by 15% or less	WEEDS: number or vigour reduced by 70% or more
0.125	species above + wheat	<u>Poa trivialis</u> Senecio vulgaris
	chickpea	Polygonum lapathifolium
		Polygonum aviculare
		Rumex obtusitolius

Convolvulus arvensis
Eleusine indica
Echinochloa crus-galli
Rottboellia exaltata
Digitaria sanguinalis
Amaranthus retroflexus

Comments on results

Activity experiment (see page 9)

The activity experiment showed RP 20810 to be highly active both on the foliage and through the soil. The foliar spray caused moderate to severe effects on all species. Post-emergence soil drenches were less effective than the foliar spray on the broad-leaved species but little or no difference was observed in phytotoxicity on grasses between the two methods of application. Pre-emergence treatments generally caused greater damage than post-emergence applications. The surface spray generally resulted in more activity than incorporation, particularly on the smaller seeded species. The type and level of activity is very similar to that of oxadiazon reported previously (Richardson and Dean, 1974a).

Symptoms

The foliar spray caused severe scorch and necrosis of treated leaves. At lower doses new foliage sometimes recovered while at higher rates necrosis or chlorosis preceded death. A characteristic feature of broad-leaved species treated post-emergence was a severe stem collapse and necrosis. Both pre-emergence surface and incorporated treatments caused necrosis of initial foliage of the grasses. At higher rates development was severely reduced and death followed while at lower doses leaf trapping, pale foliage and necrosis were observed. Broad-leaved species were severely stunted, the apical bud often failing to develop normally.

Soil persistence

<u>Poa trivialis</u> was used as the test species to detect residues in the soil. However, disappearance was relatively rapid. Even though doses of 0.125 and 0.5 kg/ha killed plants initially, nine weeks later, plants grew normally in the treated soil. At 2.0 kg/ha plants were killed after nine weeks but were as healthy as controls after eighteen weeks. Thus persistence is much less than that found with oxadiazon.

Selectivity among temperate species

Most annual grass weeds showed some effects at lower doses but 2.0 kg/ha was necessary for control. Poa trivialis was highly sensitive however. All polygonaceous weeds were easily controlled by 0.125 kg/ha. The annual Compositae were also sensitive. In contrast to oxadiazon, RP 20810 showed some activity on Stellaria media, providing complete control at 2.0 kg/ha and more than 50% plant kill at the lower doses. Cruciferous weeds were slightly more resistant to RP 20810 while the response of most perennial species was generally similar to oxadiazon. The composites, Tussilago farfara and Cirsium arvense, were highly resistant. Agropyron repens and Allium vineale recovered from initially severe effects although there was some kill of the latter species at the highest dose. Convolvulus arvensis suffered considerable kill of emergent foliage even at 0.5 kg/ha but survivors made excellent recovery, contrasting with the complete kill obtained with oxadiazon at the same dose.

- 7 -

Good crop tolerance was found in the large seeded legume crops (field bean and pea), showing greater tolerance than to oxadiazon. Carrot was tolerant at 0.5 kg/ha, whereas oxadiazon caused some damage at this dose. The brassicae, (kale, swede and radish) were also tolerant to 0.5 kg/ha, again this resistance being slightly greater than with oxadiazon.

Some variation in response to RP 20810 is apparent with five of the species tested in the activity experiment and in the selectivity test, most notably with kale and dwarf bean. These two species were very susceptible in the activity experiment. This variation could possibly be explained for dwarf bean because it was raised at a higher temperature in the selectivity test when emergence through the treated layer would be much quicker than under the cooler, slower germinating conditions of the activity experiment. However no such explanation could be given for kale. These variations suggest that RO 20810 activity may be influenced by environmental conditions. Its rapid breakdown in the soil may also be reflected in variable plant response. However in the selectivity test RP 20810 has some interesting features, especially when compared to oxadiazon. Although not quite as effective as oxadiazon on annual greas weeds with the exception of Poa trivialis, it was slightly more efficient in controlling polygonaceous and annual composite weeds and much better on Stellaria media. Crop tolerance, too, was marginally better with RP 20810 in carrot, large seeded legume and brassica crops.

Selectivity among tropical species

With the exception of Oryza punctata all the annual weeds were controlled at 0.125 kg/ha. Particularly noteworthy was the kill of <u>Rottboellia exaltata</u> following emergence at this dose. The apparently anomalous result at 0.5 kg/ha was due to the emergence and survival of a single plant. Amaranthus retroflexus was also particularly susceptible and no emergence was recorded at any dose. The perennials <u>Cyperus</u> rotundus and <u>Cyperus esculentus</u> were relatively resistant and eventually recovered from 2.0 kg/ha.

Groundnut and soyabean were outstandingly tolerant of RP 20810 although minor reductions in vigour and necrosis of older foliage were observed at all doses. Cotton showed some tolerance at the higher rates; cotyledons were affected but new foliage developed normally. Maize showed some marginal resistance at 0.5 kg/ha and was recovering well from initial symptoms. Surprisingly, effects appeared more severe at 0.125 kg/ha although plants were recovering.

In groundnut and soyabean the possibility of control of a number of broad-leaved species (indicated by kill of jute, kenaf etc.), in addition to the annual grasses, could be of particular interest. In this respect it looks a little superior to oxadiazon.

- 8 -

ACTIVITY EXPERIMENT

RP 20810

0.1 kg/ha

0.6 kg/ha

3.6 kg/ha

	F	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
DWARF	S	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
BEAN	P	XXXXXXXXXXXXX	XXX	8

- 9 -

		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXX	•
	I	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	8	8
	F	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
	S	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
KALE	P	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXX XXXXXX	8
	I	XXXXXXXXXXXXXXX *	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXX XXXXXXX
	F	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
POL YGONUM	S	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXX XXXX	8
AMPHIBIUM	P	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
	I	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	8
	F	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
PERENNIAL	S	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
RYEGRASS	P	XX XXXXX	8	8
	I	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXX XXX	XXXXX X
	F	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
AVENA	S	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	8
FATUA	P	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	8	8
	I	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	8
	F	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
AGR OP YR ON	S	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
REPENS	P	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
	- 3		VVVVVVVVVVVVVVVV 4	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

XXXXXXXXXXXXX + XXXXXXXXXXXXX

1

XXXXXXXXXXXXXXXXX XXXXXXXXX

XXXX

Key: F = post-emergence, foliar application S = post-emergence, soil drench P = pre-emergence, surface film I = pre-planting, incorporated

		PP 20810		RP 20810		RP 2
SPECIES		0.125 KG/HA		0.50 KG/HA		2.0 K
WHEAT	93	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	93	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	53	XXXXXXXXXXX
(1)	86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	71	XXXXXXXXXXXXXX	29	XXXXXX
BARLEY	102	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	75	xxxxxxxxxxxxxxxx	20	XXXX
(2)	79	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	64	XXXXXXXXXXXX	21	XXXX
OAT	104	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	85	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	46	XXXXXXXXX
(3)	64	XXXXXXXXXXXX	50	XXXXXXXXX	29	XXXXXX
PER RYGR	63	XXXXXXXXXXXXX	44	XXXXXXXXX	0	
(4)	57	XXXXXXXXXXX	57	XXXXXXXXXXX	0	
ONION	45	XXXXXXXXX	5	x	0	
(8)	36	XXXXXXX	21	XXXX	0	
DWF BEAN	83	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	67	XXXXXXXXXXX
(9)	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	64	XXXXXXXXXX
FLD BEAN	111	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	111	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	63	XXXXXXXXXXX
(10)	86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	71	XXXXXXXXXXX
PEA	100	xxxxxxxxxxxxxxxxxx	60	XXXXXXXXXXX	80	XXXXXXXXXXX
(11)	86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	64	XXXXXXXXXXX
W CLOVER	42	XXXXXXXX	32	XXXXXX	0	
(12)	64	XXXXXXXXXXXX	57	XXXXXXXXXXX	0	
RAPE	47	XXXXXXXX	63	XXXXXXXXXXXXX	22	XXXX
(14)	79	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	79	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	57	XXXXXXXXXXX
KALE	78	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	81	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	30	XXXXXX
(15)	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	36	XXXXXXX
SWEDE	85	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	70	XXXXXXXXXXXXX	11	xx
(17)	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	21	XXXX

20810 KG/HA

x

XXXX XXXX

XXXX XXXXX

XXXXXXX XXXX

PR (1) **NER** 3 ENCE SEL ECT H 2 H H FC EX PER IMENT

10

XX

CARROT	102	XXX
(18)	100	xxx
LETTUCE	57	xxx
(20)	64	XXX
SUG BEET	10	xx
(21)	36	XXX
AVE FATU	98	xxx
(26)	64	XXX
ALO MYOS	57	xxx
(27)	43	XXX
POA ANN	77	xxx
(28)	57	XXX
POA TRIV	0	
(29)	0	
SIN ARV	28	XX
(30)	64	XX
RAPH RAP	111	xx
(31)	93	XX
TRIP MAR	33	xx
(33)	50	XX
SEN VULG	10	xx
(34)	29	XX
POL LAPA	15	xx
(35)	21	XX

11

RP 20810

0.125 KG/HA

xxxxxxxxxxxx +	102	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	17	XXX
xxxxxxxxxxxxxxx	86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	43	XXXXXXXXX
XXXXXXXX	39	XXXXXXXX	4	x
XXXXXXXXXX	50	XXXXXXXXXXX	21	XXXX
	40	XXXXXXXX	10	xx
xxxx	64	XXXXXXXXXXXX	21	XXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	75	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	6	x
XXXXXXXXXX	64	XXXXXXXXXXXXX	14	XXX
XXXXXXXX	51	XXXXXXXXX	0	
XXXXXX	43	XXXXXXXXX	0	
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	41	XXXXXXXX	3	x
XXXXXXXX	50	XXXXXXXXXX	21	XXXX
	0		0	
	0		0	
XXXX	39	XXXXXXXX	7	x
XXXXXXXXXXX	64	XXXXXXXXXXXXX	21	XXXX
XXXXXXXXXXXXXXXX +	105	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	53	XXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	93	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	64	XXXXXXXXX
XXXXX	16	XXX	0	
XXXXXXX	29	XXXXXX	0	
	0		0	
xxxx	0		0	
×	0		0	
	-		0	

XXX

RP 20810

0.50 KG/HA

U

RP 20810 2.0 KG/HA

PR E-EMERGENCE SELECTIVITY EXPERIMENT

-

11

1

XXX XXXXXX

SPECIES	15	n.K.	
POL AVIC (36)	503	XXX	
GAL APAR (38)	52 57	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	
STEL MED (40)	46 64	x	
RUM OBTU (44)	7 5 21	x	
AG REPEN (47)	97 100	x	
ALL VIN (49)	100 86	X	
CIRS ARV (50)	83 100	x	
TUS FARF (51)	100 100	x	
CONV ARV (52)	27 57	x	
MAIZE (58)	71 71	XXXX	
RICE (60)	10.88	x	
CHICKPEA (63)	129 100	x	

Every war .

12.00 -21

RP 20810	0	RP 20810	0	RP 208
× 0.125 KG/HA	0	0.50 KG/HA	0	2.0 KG
XXXX	00		00	
xx	00		00	
XXXXXXXXX	55	XXXXXXXXXXX	00	
XXXXXXXXXX	57	XXXXXXXXXXXX	00	
XXXXXXX	0.46	XXXXXXXXX	042	XXXXXXXXXXXXXX
XXXXXXXXXXX	71	XXXXXXXXXXXXXX	21	XXXX
XXXXXXXXXXXX	000	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	STO	XXXX
XXX	300	XXXXXXXX	0	
xxxxxxxxxxxxxxxxx	88	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	88	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	64	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
xxxxxxxxxxxxxxxxx	289	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	42	XXXXXXXX
XXXXXXXXXXXXXXX	86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	50	XXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	133	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	83	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXX	27	XXXXX	5 7	x
XXXXXXXXX	79	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	14	XXX
XXXXXXXXXXXX	279	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	\$ 71	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXX	79	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	57	XXXXXXXXXXX
xxxxxxxxxxxxxxx	110	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	80	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXX	36	XXXXXXX	36	XXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	xxxxxxxxxxxxxxxxxxxxx	86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	64	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	50	XXXXXXXXX

RP 20810 2.0 KG/HA

XXXXXXXXXXXX XXXXXXX

XXXXXXXXXX XXXXXXXXXXXXXX

XXXXXXXXXXXXX XXXXXXXXXXXXX

XXXXXXXX XXXXX

XXXXXXXXXX

xxxxxxxxxx CXXX TO

		RP 20810		RP 20810		F
SPECIES		0.125 KG/HA		0.50 KG/HA		2
GRNDNUT	120	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	90	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	60	XXXXXXX
(64)	86	xxxxxxxxxxxxx R	86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	86	XXXXXXX
SOYABEAN	131	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	131	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	94	XXXXXXX
(65)	86	XXXXXXXXXXXXXXXXXX	86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	86	XXXXXXX
COTTON	92	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	92	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	R 92	XXXXXXX
(66)	86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	R 71	XXXXXXX
JUTE	12	XX	0		0	
(67)	36	XXXXXXX	0		0	
KENAF	20	XXXX	41	XXXXXXXX	0	
(68)	29	XXXXXX	43	XXXXXXXXX	0	
SESAMUM	9	XX	19	XXXX	0	
(70)	36	XXXXXXX	29	XXXXXX	0	
TOMATO	22	XXXX	0		0	
(71)	14	XXX	0		0	
OR PUNCT	62	XXXXXXXXXXXX	81	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	94	XXXXXX
(73)	50	XXXXXXXXXX	29	XXXXXX	29	XXXXXX
ELEU IND	7	x	0		0	
(74)	43	XXXXXXXXX	0		0	
ECH CRUS	30	XXXXXX	4	x	0	
(75)	50	XXXXXXXXXX	7	X	0	
ROTT EXA	0		16	XXX	0	
(76)	0		29	XXXXXX	0	
DIG SANG	17	XXX	0		0	
(77)	43	XXXXXXXXX	0		0	

.

RP 20810

2.0 KG/HA

XXXXXXXX XXXXXXXXXXXXXX

XXXXXXXXXXXXXXXX XXXXXXXXXXXXX

XXXXXXXXXXXXXXXX XXXXXXXXXXX

XXXXXXXXXXXXXXXXX

PR EMERGENCE SELEC **(PER** IMENT

5

AMAR RET	0		0		0	
(78)	. 0		0		0	
CYP ESCU	75	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	84	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	112	XXXXXXXX
(85)	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	64	XXXXXXXXXXXXX	57	XXXXXXXX
CYP ROTH	82	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	120	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	127	XXXXXXXX
(86)	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	71	XXXXXXXXX

RP 20810

0.125 KG/HA

RP 20810

0.50 KG/HA

1	C	2		1	C]
1	ſ	١	2	1	C	
		1		1		

RP 20810

2.0 KG/HA

XXXXXXXXXXXX +

XXXXXXXXXXXX +

E-EMERGENCE SELECTIVITY EXPERIMENT

PH

- 15 -

OXADIAZON

Code number

RP 17623, Vt 2569

Trade name Ronstar

Chemical name

3-(2,4-dichloro-5-isopropoxyphenyl)-5-t-butyl-1,3,4-oxadiazolin-2-one

Structure

(CH₃)₂CH-0 C1____ N answer N and

C1

Source

Rhôhe Poulenc Division Phytosanitaire 25 quai Paul Doumer 92408 Courbevoie France via May and Baker Ltd Ongar Research Station Fyfield Road Ongar Essex

Information available and suggested uses

Introduced in 1969 for selective control of annual grass and broadleaved weeds in potatoes, groundnut, cotton and soyabean at 0.56-1.68 kg/ha, applied pre-crop emergence. Good activity was also reported on <u>Convolvulus arvensis</u> and <u>Calystegia sepium</u> with pre-emergence applications of 2.0 kg/ha. Burgaud <u>et al</u> (1969) reveal two main uses of oxadiazon under temperate conditions: a) selective weed control in certain ornamental and garden crops, b) selective weed control in woody species. The herbicide persists in the soil and shows a useful 'knockdown' post-emergence effect. It is also suggested for total weed control.

Formulation used 25% w/v a.i. emulsifiable concentrate

<u>Spray volume</u> for activity experiment 338 1/ha (30.1 gal/ac) for selectivity experiment 413 1/ha (36.8 gal/ac)

RESULTS

Full histogram results are given on pages 18-22 and potential selectivities are summarised in the following table.

RATE (kg a.i./ha)	CROPS: vigour reduced by 15% or less	WEEDS: number or vigour reduced by 70% or more
2.0	None	None listed as no crop tolerant
0.5	dwarf bean pea soyabean	Avena fatua Alopecurus myosuroides Sinapis arvensis Tripleurospermum maritimum Senecio vulgaris Polygonum lapathifolium Galium aparine Oryza punctata Rottboellia exaltata + species below

(Table continued overleaf)

RATE (kg a.i./ha)	CROPS: vigour reduced by 15% or less	WEEDS: number or vigour reduced by 70% or more
0.125	species above + wheat barley field bean	<u>Poa annua</u> <u>Poa trivialis</u> <u>Polygonum aviculare</u> Rumex obtusifolius
	kale	Convolvulus arvensis Eleusine indica

- 16 -

carrot lettuce sugar beet radish maize rice chickpea groundnut <u>Bchinochloa crus-galli</u> <u>Digitaria sanguinalis</u> Amaranthus retroflexus

Comments on results

Activity experiment

Oxadiazon was included in this test primarily as a standard for comparison with the closely related RP 20810. Activity experiment results were reported in full by Richardson and Dean (1974). These lent support to the manufacturer's claim that uptake is mostly through the emerging shoot, as greater activity followed pre-emergence surface application than incorporation. The foliar spray was also very active but post-emergence soil drenches had little effect.

Symptoms

These were reported in full by Richardson and Dean (1974). Seedlings often failed to emerge after treatment at the high dose preemergence, or they failed to produce leaves. At low doses, leaves which were produced were often trapped and consequently deformed.

Soil persistence

Using white clover as the sensitive test species to detect residues in the soil, a considerable period of soil persistence was found. A dose of 0.125 kg/ha was undetectable 34 weeks after application but at 45 weeks, 0.5 and 2.0 kg/ha were still causing fresh weight reductions of 60 and 93% respectively.

Selectivity among temperate species

Annual grass weeds were very susceptible especially the <u>Poa</u> species. An interesting feature of the annual broad-leaved weed control spectrum was the susceptibility of certain problem weeds. <u>P. aviculare was con-</u> trolled at 0.125 kg/ha and <u>Galium</u> aparine and composite weeds at 0.5 kg/ha. This contrasts with the high resistance of <u>S. media</u>, which is usually easily controlled by most broad-leaved weed herbicides. <u>Convolvulus</u> arvensis was very sensitive but <u>Cirsium</u> arvense and <u>Tussilago farfara</u> were resistant. Agropyron repens recovered from 2.0 kg/ha although this dose had initially reduced vigour by 50%. There was an 80% kill of Allium vineale, but the remaining plants recovered.

- 17 -

Dwarf bean was the most tolerant crop with only a 21% vigour reduction by the highest dose. [This contrasts with post-emergence results when this species and indeed all other crops were quite sensitive (Richardson and Dean, 1974)]. The earlier activity experiment also showed a greater sensitivity of dwarf bean and kale in pre-emergence surface sprays than was found in the current test, as was the case with RP 20810. However it is known that environmental factors, especially light, play an important role in determining the toxicity of oxadiazon (Kawamura, 1975). Also dwarf bean was raised at a higher temperature in the selectivity experiment.

Pea was tolerant to 0.5 kg/ha and field bean was only reduced in vigour by 21%. Nine other species were tolerant to 0.125 kg/ha. White clover was very sensitive, being completely killed at 0.125 kg/ha.

In this experiment oxadiazon verified its potential for control of annual grass and certain broad-leaved weeds in some crops. However the resistance of <u>Stellaria media</u> is a serious defect and its compatibility with other herbicides will have to be considered. It is interesting too, that its type of activity, symptoms and species responses are

very comparable to dinitrophenyl ether herbicides. In contrast however, and perhaps the most interesting feature, is its activity against Convolvulus arvensis.

Selectivity among tropical species

With the exception of <u>Oryza punctata</u> and <u>Rottboellia exaltata</u>, all the annual weeds were controlled at 0.125 kg/ha. <u>Eleusine indica</u> and <u>Amaranthus retroflexus</u> were particularly sensitive. <u>O. punctata</u> and <u>R. exaltata</u> were susceptible at 0.5 kg/ha, the latter being completely killed. Both of these species were severely reduced at 0.125 kg/ha however. The perennials <u>Cyperus rotundus</u> and <u>Cyperus esculentus</u> were relatively resistant. The latter was still severely affected nine weeks after treatment at 2.0 kg/ha but had recovered from lower doses. <u>C.</u> rotundus eventually recovered from all doses.

Soyabean was the only crop tolerant at 0.5 kg/ha and although plant number was lower by 25% this was due to erratic germination and not herbicide activity.

The tolerance of rice and groundnut reported by the manufacturer was confirmed to a limited extent. The possible use of oxadiazon in chickpea would be worth further testing but this compound does not offer any distinct advantage in maize. Cotton, surprisingly, does not appear in the table of potential selectivities, due to the variation in results and only marginal tolerance. However in a previous experiment this crop was tolerant to 3.8 kg/ha incorporated. The manufacturer has reported tolerance at rates up to 1.5 kg/ha in certain areas but phytotoxicity is reported under cold conditions where the crop is slow growing.

SPECIES		0.125 KG/HA		0.50 KG/HA		2.0
WHEAT	107	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	107	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	40	XXXXXXXXX
(1)	86	XXXXXXXXXXXXXXXXXX	57	XXXXXXXXXXX	21	xxxx
BARLEY	109	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	75	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	20	xxxx
(2)	86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	36	XXXXXXX	29	XXXXXX
OAT	104	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	85	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	13	xxx
(3)	57	XXXXXXXXXXX	43	XXXXXXXXX	7	x
PER RYGR	37	XXXXXXX	0		0	
(4)	57	XXXXXXXXXXX	0		0	
ONION	35	XXXXXXX	5	x	0	
(8)	29	XXXXXX	7	x	0	
DWF BEAN	83	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXX
(9)	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	93	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	79	XXXXXXXXX
FLD BEAN	95	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	126	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	95	XXXXXXXX
(10)	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	79	XXXXXXXXXXXXXXXX	57	XXXXXXXXX
PEA	80	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	140	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	20	XXXX
(11)	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	36	XXXXXXX
W CLOVER	0		0		0	
(12)	0		0		0	
RAPE	76	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	38	XXXXXXXX	0	
(14)	71	XXXXXXXXXXXXXX	50	XXXXXXXXXX	0	
KALE	92	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	76	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	41	XXXXXXXX
(15)	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	79	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	43	XXXXXXXX
SWEDE	96	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	52	XXXXXXXXXX	0	
(17)	86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	57	XXXXXXXXXXX	0	

OXADIAZON

OXADIAZON

OXADIAZON KG/HA

xx

XXXXXXXXXXXXX XXXXXXXXX

XXXXXXXXXXXX XXXX

PRE-EMERGENCE SELECTIVITY EXPERIMENT

CARROT	119	x
(18)	93	x
LETTUCE	100	x
(20)	86	x
SUG BEET	73	x
(21)	86	x
AVE FATU	87	x
(26)	57	x
ALO MYOS	45	x
(27)	43	x
POA ANN	3	x
(28)	7	x
POA TRIV	0	
(29)	0	
SIN ARV	67	x
(30)	100	х
RAPH RAP	100	x
(31)	100	x
TRIP MAR	49	x
(33)	43	x
SEN VULG	41	x
(34)	50	х
POL LAPA	44	х
(35)	50	X

OXADIAZON		OXADIAZON		OXADIAZON
0.125 KG/HA		0.50 KG/HA		2.0 KG/HA
xxxxxxxxxxxxx *	. 79	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	40	XXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	71	XXXXXXXXXXXXXXX	50	XXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	35	XXXXXXX	4	x
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	36	XXXXXXX	14	XXX
xxxxxxxxxxxx	30	XXXXXX	7	X
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	36	XXXXXXX	29	XXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	0		0	
XXXXXXXXX	0		0	
XXXXXXXX	0		0	
XXXXXXX	0		0	
	0		0	
	0		Ó	
	0		0	
	0		0	
XXXXXXXXXXXX	16	XXX	2	
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	43	XXXXXXXXX	14	XXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	63	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	21	XXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	71	XXXXXXXXXXXXX	29	XXXXXX
XXXXXXXXX	0		0	
XXXXXXXX	0		0	
XXXXXXX	0		0	
XXXXXXXXX	0		0	
XXXXXXXXX	0		0	
XXXXXXXXX	0		0	

PRE-EMERGENCE SELECTIVITY EXPERIMENT

1 19 .

		OXADIAZON		OXADIAZON		OX.
SPECIES		0.125 KG/HA		0.50 KG/HA		2.
POL AVIC	21	XXXX	8	xx	0	
(36)	43	XXXXXXXXX	29	XXXXXX	0	
GAL APAR	87	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	29	XXXXXX	0	
(38)	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	50	XXXXXXXXXX	0	
STEL MED	96	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	87	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	96	XXXXXXX
(40)	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXX
RUM OBTU	0		0		0	
(44)	0		0		С	
AG REPEN	106	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	88	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	97	XXXXXXX
(47)	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	57	XXXXXXX
ALL VIN	68	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	95	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	21	XXXX
(49)	71	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	71	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	43	XXXXXXX
CIRS ARV	50	XXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	117	XXXXXXX
(50)	79	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXX
TUS FARF	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXX
(51)	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	86	XXXXXXX
CONV ARV	20	XXXX	0		0	
(52)	36	XXXXXXX	0		0	
MAIZE	97	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	106	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	79	XXXXXXX
(58)	86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	50	XXXXXXXXX	36	XXXXXXX
RICE	102	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	88	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	80	XXXXXXX
(60)	93	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	57	XXXXXXXXXX	36	XXXXXXX
CHICKPEA	114	XXXXXXXXXXXXXXXXXXX +	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	43	XXXXXXX
(63)	93	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	79	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	43	XXXXXXX

ADIAZON

.0 KG/HA

XXXXXXXXXXXX XXXXXXXXXXXXXX

XXXXXXXXXXXXX XXXXX

XXX

* XXXXXXXXXXXX * XXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXX XXXXXXXXXX

XXXXXXXXX

XXXXXXXXXX

XXX XXX PRE EMERGENCE SELEC (base P H me ER ENT

20

. .

		OXADIAZON		OXADIAZON		OX
SPECIES		0.125 KG/HA		0.50 KG/HA		2.
GRNDNUT	90	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	90	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	120	XXXXXXX
(64)	93	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	79	XXXXXXXXXXXXXXXX	64	XXXXXXX
SOYABEAN	94	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	75	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	75	XXXXXXX
(65)	86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	93	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	57	XXXXXXX
COTTON	35	XXXXXXX	58	XXXXXXXXXXX	69	XXXXXXX
(66)	71	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	79	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	71	XXXXXXX
JUTE	0		0		0	
(67)	0		0		0	
KENAF	89	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	27	XXXXX	0	
(68)	71	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	57	XXXXXXXXXXX	0	
SESAMUM	9	xx	0		0	
(70)	36	XXXXXXX	0		0	
TOMATO	56	XXXXXXXXXXX	6	x	0	
(71)	57	XXXXXXXXXXX	14	XXX	0	
OR PUNCT	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	75	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	69	XXXXXXX
(73)	36	XXXXXXX	21	XXXX	14	XXX
ELEU IND	0		0		С	
(74)	0		0		0	
ECH CRUS	19	XXXX	0		0	
(75)	29	XXXXXX	0		0	
ROTT EXA	79	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	0		С	
(76)	50	XXXXXXXXXX	0		0	
DIG SANG	17	XXX	0		0	
(77)	14	XXX	0		0	

XADIAZON

.0 KG/HA

* XXXXXXXXXXXXXX * XXXXXXX

XXXXXXXXX XXXXX

XXXXXXXX XXXXXXXX

XXXXXXXX

PR H EMERGENCI 122 S EI m PER IMENT

.

AMAR RET	0
(78)	0
CYP ESCII	04
(85)	93
CVP ROTI	105
(86)	93

OXADIAZON

0.125 KG/HA

	0		0	
	0		0	
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	84	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	94	XXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	71	XXXXXXXXXXXXXXX	57	XXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	112	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	105	XXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	79	XXXXXXX

OXADIAZON

0.50 KG/HA

OXADIAZON

2.0 KG/HA

XXXXXXXXXX +

PRE-EMERGENCE SELECTIVITY EXPERIMEN

22

.

- 23 -

CHLORNITROFEN

Structure

Source

Mitsui Toatsu Chemicals Inc 2-5 Kasumigaseki 3-Chome Chiyada-ku Tokyo Japan

Information available and suggested uses

Manufacturer's literature received in 1972 details use at 2.0 to 3.0 kg/ha as a pre-emergence treatment in upland and paddy rice for the control of the majority of grass and broad-leaved weed species. Use following seeding of burdock and carrot at 2.5 to 3.0 kg/ha or Japanese radish at 2.0 to 2.5 kg/ha is also suggested. Cabbage and Chinese cabbage can be treated at 2.5 to 3.0 kg/ha immediately following transplanting.

Formulation used 19.3% w/v a.i. emulsifiable concentrate

Spray volume for selectivity experiment 413 1/ha (36.8 gal/ac)

RESULTS

Full histogram results are given on pages 26-30 and potential selectivities are summarised in the following table.

RATE (kg a.i./ha)	CROPS: vigour reduced by 15% or less	WEEDS: number or vigour reduced by 70% or more
6.00	dwarf bean field bean rape kale swede carrot radish chickpea cotton	Avena fatua Polygonum lapathifolium + species below
2.00	species above + lettuce sugar beet maize rice soyabean kenaf	Alopecurus myosuroides Polygonum aviculare Convolvulus arvensis Oryza punctata Echinochloa crus-galli Rottboellia exaltata + species below

(Table continued overleaf)

 24	4150
 64	-

RATE (kg a.i./ha)	CROPS: vigour reduced by 15% or less	WEEDS: number or vigour reduced by 70% or more
0.67	species above + wheat barley	<u>Poa annua</u> <u>Poa trivialis</u> <u>Rumex obtusifolius</u>
	oat	Eleusine indica
	groundnut	Digitaria sanguinalis
	tomato	Amaranthus retroflexus

Comments on results

Activity experiment

Activity experiment results were reported previously (Richardson and Dean 1973b) and these showed the type and level of activity to be similar to other nitrophenyl ethers such as nitrofen. A high level of foliar contact activity on broad-leaved species was noted while preemergence surface sprays were highly effective against perennial ryegrass.

Symptoms

These were described previously for post-emergence treatments (Richardson and Dean, 1973b). Pre-emergence treatments showed that annual grasses are severely inhibited, often failing to emerge from the coleoptile at higher doses. At lower rates, where some development of leaves occurred, leaf capture with consequent deformity was often noted. Affected broad-leaved species usually developed to the cotyledon leaf stage, when partial or complete inhibition of the main bud was seen. As with grasses, leaves which do develop are pinched or trapped and often dark green. These symptoms are typical of nitrophenyl ether herbicides.

Soil persistence

A longer period of persistence in the soil was found, compared with nitrofen. Using Poa trivialis as the sensitive test species, rates of 0.67, 2.0 and 6.0 kg/ha were reducing plant fresh weights by 48, 95 and 100% respectively, 45 weeks after treatment.

Selectivity among temperate species

Poa spp. were particularly susceptible and Alopecurus myosuroides was almost controlled at 0.67 kg/ha. Avena fatua was severely reduced at 2.0 kg/ha but 5.0 kg/ha was required for control. Of the broadleaved annual weeds, only members of the Polygonaceae proved susceptible. Stellaria media and crucifers were very resistant as they were to nitrofen. The composites were also resistant to chlornitrofen. Convolvulus arvensis was the only susceptible perennial weed with a 73% kill at 2.0 kg/ha. Thus the weed control spectrum was similar to that of nitrofen but the latter was somewhat more active, especially against Polygonum spp. and A. vineale.

The large seeded legumes, field bean and dwarf bean, were tolerant. Although symptoms were seen on pea at the two lower doses, there was no - 25 -

conventional dose response, and greater tolerance was found at the higher dose. All four brassica crops and carrot showed a high degree of resistance. Lettuce and sugar beet were tolerant at 2.0 kg/ha and the three cereals at 0.67 kg/ha. Crop tolerance was slightly greater than with nitrofen.

Chlornitrofen would appear to have some potential use for control of mainly annual grass weeds pre-emergence in beans, brassicas and carrot. Unfortunately it has certain omissions in its weed control spectrum e.g. S. media, cruciferous and composite weeds, such that compatibility with other herbicides will have to be considered. Com-

parison with the earlier post-emergence selectivity experiment (Richardson and Dean, 1973b) shows that generally, broad-leaved weeds were more susceptible post-emergence, including even <u>S. media</u>, some composites and <u>Galium aparine</u>. Polygonaceous weeds were again susceptible with the exception of <u>P. aviculare</u> which showed considerable resistance, It would seem however that annual grass weeds were more susceptible pre-emergence than post-emergence. With regard to the crops, carrot was highly tolerant to both types of application but others, including beans and brassicas, were more sensitive to the postemergence spray. Bearing these facts in mind it could be worth considering use of chlornitrofen as a contact pre-emergence herbicide in carrot and possibly beans, where emergence is quite slow. The fairly long period of persistence could also then be beneficial for the control of late germinating weeds, while danger to subsequent crops could be avoided by cultivation/incorporation prior to sowing these.

Selectivity among tropical species

Excellent annual weed control was noted at 2.0 kg/ha, all being severely reduced or killed at this dose. Although the majority of <u>Rottboellia exaltata plants were killed at 6.0 kg/ha, two had 'escaped'</u> and could possibly have recovered. Both <u>Cyperus rotundus and C.</u> <u>esculentus</u> recovered from minor symptoms. The response of weeds was similar to that found with nitrofen.

A wide range of crops showed tolerance to chlornitrofen. Chickpea and cotton were particularly outstanding. The legumes were generally fairly resistant. It is unfortunate that no data are available for groundnut at 2.0 kg/ha although the reduced vigour at 0.67 kg/ha suggests that it may well not be tolerant at the higher dose.

The resistance of maize and rice at 2.0 kg/ha was not paralleled with sorghum which only showed tolerance at 0.67 kg/ha. Crop response was generally similar to nitrofen. The pre-emergence weed control spectrum of chlornitrofen resembled that following its post-emergence application (Richardson and Dean, 1973b). However rates required for

control were generally less pre-emergence and crop safety was better in all cases. The range of crops tolerant was also much greater pre-emergence.

A possible advantage of chlornitrofen over nitrofen was the greater apparent selectivity against R. exaltata and O. punctata which can be problem weeds in maize and rice respectively in certain areas. Trials in legumes and cotton would also seem worthwhile.

		0.67 KG/HA		2.00 KG/HA		6.0
WHEAT	107	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	87	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	93	XXXXXXXX
(1)	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	79	XXXXXXXXXXXXXXXX	79	XXXXXXXX
BARLEY	102	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	109	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	102	XXXXXXXX
(2)	86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	79	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	71	XXXXXXXX
OAT	98	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	104	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	98	XXXXXXXX
(3)	86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	64	XXXXXXXXXXXXX	43	XXXXXXXX
PER RYGR	30	XXXXXX	7	x	0	
(4)	36	XXXXXXX	36	XXXXXXX	0	
ONION	75	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	70	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	10	xx
(8)	79	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	36	XXXXXXX	14	XXX
DWF BEAN	83	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXX
(9)	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	93	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXX
FLD BEAN	111	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	79	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	95	XXXXXXXX
(10)	86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	86	XXXXXXXX
PEA	60	XXXXXXXXXXXX	40	XXXXXXXX	100	XXXXXXXX
(11)	64	XXXXXXXXXXXXX	57	XXXXXXXXXXX	79	XXXXXXXX
W CLOVER	77	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	37	XXXXXXX	29	XXXXXX
(12)	71	XXXXXXXXXXXXXX	50	XXXXXXXXX	43	XXXXXXXX
RAPE	95	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	101	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	88	XXXXXXXX
(14)	93	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXX
KALE	97	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	92	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	105	XXXXXXXX
(15)	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXX
SWEDE	115	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	115	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	107	XXXXXXXX
(17)	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	86	XXXXXXXX

CHLORNITROFEN

CHL

OT	> BT	TT	DC	T	TRI	
Ur	(IN	11	ĸ	Jr	EN	

CHLORNITROFEN

00 KG/HA

XXXXXXXXXXXX XXXXXXXXX

XXXXXXXXXXXX + XXXXXXX

XXXXXXXXXXXXX X

XXXXXXXXXXXX XXXXXXXXXXXXX

XXXXXXXXXXXX XXXXXXXXXXX

XXXXXXXXXXXXX XXXXXXXXX

PR EMERGENCE SEL EC 5---frend P-C EXPER IMENT

26

X

XXXXXXXXXXX XXXXXXXXXXXXXX

* XXXXXXXXXXX * XXXXXXXXXXXXXX

*XXXXXXXXXXX + XXXXXXXXXX

		CHLORNITROFEN		CHLORNITROFEN		CHLOR
SPECIES		0.67 KG/HA		2.00 KG/HA		6.00
CARROT	125	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	108	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	96	XXXXXXXXX
(18)	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXX
LETTUCE	83	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	65	XXXXXXXXX
(20)	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	86	XXXXXXXXXXXXXXXXX	79	XXXXXXXXXX
SUG BEET	105	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	73	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	66	XXXXXXXXX
(21)	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	93	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	71	XXXXXXXXXX
AVE FATU	110	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	58	XXXXXXXXXXXX	17	XXX
(26)	43	XXXXXXXXX	50	XXXXXXXXXX	29	XXXXXX
ALO MYOS	45	XXXXXXXXX	13	XXX	6	x
(27)	36	XXXXXXX	14	XXX	14	XXX
POA ANN	3	x	0		0	
(28)	7	x	0		C	
POA TRIV	0		0		0	
(29)	0		0		0	
SIN ARV	103	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	91	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	77	XXXXXXXXX
(30)	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	86	XXXXXXXXXX
RAPH RAP	111	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	111	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXX
(31)	86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	86	XXXXXXXXX
TRIP MAR	69	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	76	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	59	XXXXXXXXX
(33)	57	XXXXXXXXXXX	57	XXXXXXXXXXX	50	XXXXXXXXXX
SEN VULG	134	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	31	XXXXXX	52	XXXXXXXXX
(34)	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	64	XXXXXXXXXXXX	86	XXXXXXXXX
POL LAPA	37	XXXXXXX	51	XXXXXXXXXX	0	
(35)	64	XXXXXXXXXXXXX	43	XXXXXXXXX	0	

NITROFEN

KG/HA

XXXXXXXXXXX XXXXXXXXXXXX

XXXXX XXXXXXXX

XXXXX XXXXXX

XXXXXXX XXXXXXXXX

XXXXXXXXXXXXX XXXXXXXXX

XXXX XX

XX XXXXXXXXX PRE-EMERGENCE SELECTI V IT R EXPER IMENT

POL AVIC	54	>
(36)	64	>
GAL APAR	82	×
(38)	100	×
STEL MED	96	>
(40)	100	>
RIM ORTU	22	,
(44)	43	
	1.5	
AG REPEN	97	>
(47)	100	>
ALL VIN	84	X
(49)	86	>
CIRS ARV	67	,
(50)	79	>
TUS FARF	100	>
(51)	100	3
CONV ADV	73	
(52)	03	
	,,,	-
MAIZE	97	>
(58)	100	>
RICE	110	>
(60)	100	X
CHICKPEA	143	,
(63)	93	>

CHLORNITROFEN		CHLORNITROFEN		CHLO
0.67 KG/HA		2.00 KG/HA		6.
XXXXXXXXXX	0		0	
XXXXXXXXXXXX	0		0	
xxxxxxxxxxxx	67	XXXXXXXXXXXXX	47	XXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	64	XXXXXXX
xxxxxxxxxxxxxxx	94	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	94	XXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	86	XXXXXXX
xxx	0		0	
XXXXXXX	0		0	
xxxxxxxxxxxxxxxx	97	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	106	XXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	89	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	79	XXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	71	XXXXXXX
XXXXXXXXXXXX	83	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	117	XXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	93	XXXXXXX
xxxxxxxxxxxxxxxxxx	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	87	XXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	86	XXXXXXX
xxxxxxxxxxxxx	27	XXXXX	0	
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	50	XXXXXXXXXX	0	
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	106	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	+ 106	XXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	86	XXXXXXXXXXXXXXXXXX	64	XXXXXXX
XXXXXXXXXXXXXXXX +	110	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	+ 110	XXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	57	XXXXXXX
XXXXXXXXXXXXXXXX +	129	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	+ 129	XXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXX

ORNITROFEN

.CO KG/HA

XXX XXXXXXX

XXXXXXXXXXXXX XXXXXXXXXX

XXXXXXXXXXXXX + XXXXXXXXXXXXXXXX

XXXXXXXXXX XXXXXXXX

XXXXXXXXXXXXX + XXXXXXXXXXXXX

XXXXXXXXXXX XXXXXXXXXX

XXXXXXXXXXXXX 4 XXXXXXX

XXXXXXXXXXXX + XXXXX

* XXXXXXXXXXXXX * XXXXXXXXXXXXXX

Click here to continue

PR H EMERGENCE SELECTIVITY EXPER IMENT

- 6