WEED RESEARCH ORGANIZATON

TECHNICAL REPORT №. 38

THE ACTIVITY AND PRE-EMERGENCE SELECTIVITY OF SOME RECENTLY DEVELOPED HERBICIDES: METAMITRON; HOE 22870; HOE 23408; RH 2915; RP 20630

HOE 22870 is clofop acid, HOE 23408 is diclofop-methyl, RH 2915 is oxyfluorfen

W G Richardson, M L Dean and C Parker

March 1976

Price - $£ 3.25$

Agricultural Research Council Weed Research Organization, Begbroke Hill, Yarnton, Oxford, OX5 1PF

CONTENTS

Page

SUMMARY 1
INTRODUCTION 1
METHODS AND MATERIALS 2
RESULTS
METAMITRON 5
4-amino-3-methyl-6-phenyl-1,2,4-triazin-5-one
HOE 22870 14
2-(4-(4'-ch1orophenoxy)-phenoxy)-isobuty1 propionate
HOE 23408 232-(4-(2', $4^{\text {' - dich1orophenoxy })- \text { phenoxy }) \text {-methy1propionate }}$
RH 291532
2-ch1oro-1-(3-ethoxy-4-nitrophenoxy;-4-trifluoromethy1benzene
RP 20630 41
3-(2,4-dich1oro-5-prop-2-ynyloxypheny1)-5-t-buty1-1, 3,4 -oxadiazolin-2-one
ACKNOW LEDGEMENTS 51
REFERENCES 51
Appendix 152

NOTE

The content of this publication, in whole or in part, may be quoted or reproduced provided the authors and the ARC Weed Research Organization are fully acknowledged. The correct bibliographical reference is:-

RICHARDSON, W.G., DEAN, M.L. and PARKER, C. The activity and preemergence selectivity of some recently developed herbicides: METAMITRON, HOE 22870, HOE 23408, RH 2915 and RP 20630. Technical Report Agricultural Research Council Weed Research Organization, 1976, (38), pp 55.

THE ACTIVITY AND PRE- EMERGENCE SELECTIVITY OF SOME RECENTLY DEVELOPED HERBICIDES: METAMITRON, HOE 22870, HOE 23408, RH 2915 AND RP 20630

W.G. Richardson*, M.L. Dean** and C. Parker**
Agricultural Research Council Weed Research Organization, Begbroke Hi11, Yarnton, Oxford, OX5 1PF

SUMMAR Y

The pre-emergence selectivities of five new herbicides, applied as soil surface sprays, were tested on a range of 36 temperate and 23 tropical crop and weed species. The persistence of each herbicide in the soil was also determined in conjunction with this test. The foliar and soil activity of each herbicide were examined on six selected species.

Metamitron was found to have great potential for control of nearly all annual broad-leaved and grass weeds, while the tolerance of sugar beet was outstanding. Selective weed control in certain legume crops, such as pea, would also appear to be possible.

HOE 22870 controlled Veronica persica, all tropical and certain temperate annual grass weeds, notably Alopecurus myosuroides, while temperate cereals (wheat, barley and oat) and all broad-leaved crops were tolerant.

HOE 23408 was an effective treatment for certain grass weeds, notably Avena fatua in addition to the tropical annual grasses and Veronica persica. Most broad-leaved crops and temperate cereals were tolerant.

RH 2915 has a very high level of activity and gave good control of several annual grass and broad-leaved weeds, as well as the perennial Allium vineale. Some large seeded temperate and tropical legumes were tolerant.

RP 20630 exhibited a type of activity similar to the dinitrophenyl ether herbicides and also to the chemically similar oxadiazon. However it would appear to be more effective than oxadiazon on annual broadleaved weeds, while the control of annual grass weeds is as good. Convolvulus arvensis also showed some sensitivity. Groundnut was very tolerant but selectivity in other crops would be very marginal.

All five herbicides have a moderate period of persistence in the soil.

INTRODUCTION

The pre-emergence selectivities of new herbicides are investigated on a large number of pot-grown crop and weed species at WRO. The

[^0]objectives are to discover selectivities, crop and weed susceptibilities and to obtain experience of the type of effects produced by each compound. Soil persistence is also measured and these data, in conjunction with crop susceptibilities, are useful in planning subsequent cropping of treated land. Attention is drawn to the limitations of these investigations; i.e. use of only one crop variety or source of weed species and growth in one particular soil type at only one depth of sowing without intraspecific competition. Consequently the results should only be used as a guide for further work, as plant responses in pot experiments can be very different to those in the field.

The present report gives pre-emergence selectivity and persistence data on five new herbicides. Results of activity experiments are included to provide information on levels of phytotoxicity, type and route of action.

METHODS AND MATERIALS

The activity experiment was carried out on six selected species as described previously (Richardson and Dean, 1973). Four annual species were raised from seeds and two perennials from rhizome fragments. Herbicides were applied by four different methods: (i) post-emergence to the foliage only, avoiding contact with the soil, (ii) post-emergence to the soil only, as a drench avoiding foliage contact, (iii) pre-emergence to the soil surface, (iv) pre-emergence with thorough incorporation before planting. Species data are summarised in Table 1 and soil and environmental conditions in Table 2.

Table 1. Plant data for activity experiments

Species	Cultivar/ Source	No. per pot at spraying pre- post-		Depth of planting (cm)	Postemergence stage of growth at spraying	Stage of g assess pre-	rowth at ment post-
Dwarf bean (Phaseolus vulgaris)	The Prince	3	1-2	1.8	2 unifoliate leaves	$\begin{array}{\|l} 1-2 \\ \text { trifoliate } \\ \text { leaves } \end{array}$	$1 \frac{1}{2}-2$ trifoliate leaves
Kale (Brassica oleracea acephala)	Marrowstem	15	5-8	0.6	$1 \frac{1}{2}-2 \frac{1}{2}$ leaves	$2 \frac{1}{2}-4 \frac{1}{2}$ leaves	$\left\lvert\, \begin{aligned} & 3 \frac{1}{2}-4 \frac{1}{2} \\ & \text { leaves } \end{aligned}\right.$
Polygonum amphibium	WRO Clone 1	6	2-4	1.2	$\begin{aligned} & 2 \frac{1}{2}-7 \\ & \text { leaves } \end{aligned}$	$3 \frac{1}{2}-8$ leaves	$6 \frac{1}{2}-11$ leaves
Perennial ryegrass (Lolium perenne)	S 23	20	10	0.6	$\begin{aligned} & 2-3 \\ & \text { leaves } \end{aligned}$	5-6 leaves tillering	6-10 leaves, tillering
$\begin{aligned} & \text { Avena } \\ & \text { fatua } \\ & \hline \end{aligned}$	$\begin{aligned} & 1969 / 5 \\ & 1969 / 6 \\ & \text { Ditch1ey } \\ & 1972 / 3 \end{aligned}$	10	5	1.2	$\begin{aligned} & 2 \frac{1}{2}-3 \\ & \text { leaves } \end{aligned}$	$4-6$ leaves tillering	$4 \frac{1}{2}-7$ leaves tillering
$\begin{aligned} & \text { Agropyron } \\ & \text { repens } \\ & \hline \end{aligned}$	WRO Clone 31	6	3-5	1.2	$\begin{aligned} & 2-3 \frac{1}{2} \\ & \text { leaves } \end{aligned}$	$4 \frac{1}{2}-6$ leaves tillering	6-7 1eaves tillering

Techniques for the selectivity experiment differed from previous practice in that all herbicides were applied to the soil surface following planting. Species were sown as detailed in Appendix 1, each being replicated twice for every treatment. Herbicides were applied to the soil surface using a laboratory sprayer operating at a pressure of 2.11 bars ($30 \mathrm{lb} / \mathrm{in}^{2}$) and moving at constant speed, 30 cm above the soil. Subsequent watering was from overhead. Soil and environmental conditions are summarised in Table 2. During the experiment, normal daylight was supplemented with warm white fluorescent tubes to give a 14 hour photoperiod.

Radish (Raphanus raphanistrum) was included for ease of propagation and may be regarded as a crop or weed. To improve establishment Chenopodium album seeds were kept in C. 1 M potassium nitrate for 48 hours in the light; seeds of Polygonum aviculare were stored moist at $2^{\circ} \mathrm{C}$ for six months; tubers of cyperus esculentus were stored moist at $2^{\circ} \mathrm{C}$ for 2 months to break dormancy. To protect from soil-borne pathogens all seeds except Chenopodium album, Polygonum aviculare and the temperate cereals were pretreated with one of the following: thiram, benomyl (for onion), Harvesan organomercury) for Avena fatua) or ethylmercuric phosphate + dieldrin (for sugar beet). Temperate cereal seeds were purchased already treated with a mercurial seed dressing.

Table 2. Soil and environmental conditions

Experiment number, type and herbicide(s) included	ACTIVITY EXPERIMENT			Pre-emergence Selectivity test Metamitron RH 2915 HOE 22870 RP 20630 HOE 23408	
	Metamitron RH 2915	2 HOE 22870 HOE 23408	$\begin{array}{ll} & 3 \\ \text { RP } & 20630 \end{array}$		
Date of spraying Main assessment completed	26.9.74	14.11.74	7.5 .75	$\begin{aligned} & 16.1 .75 \\ & 2 C .2 .75 \end{aligned}$	
	6.11 .74	19.12.74	6.6 .75		
Organic matter (\%) C1ay content (\%) pH John Innes base fertilizer (g / kg) DDT (5% dust) (g / kg) Fritted trace elements (g / kg) Epsom salts (g/kg)	2.8	4.2	4.2	$\begin{aligned} & 4.2 \\ & 13 \\ & 7.0 \end{aligned}$	
	16	13	13		
	7.7	7.0	7.0		
	5.0	5.0	5.0	1.5	
	0.5	0.5	0.5	0.5	
	0.25	0.25	0.25	0.25	
	1.0	1.0	-	0.5	
Temperature (${ }^{\circ} \mathrm{C}$)				Temperate	Tropical
Mean	17	17	19	18	23
Maximum	23	23	30	24	30
Minimum	10	8	14	13	12
Relative humidity (\%)					
Mean	70	70	60	65	50
Maximum	100	100	90	86	64
Minimum	45	50	26	38	32

Results were processed as before (Richardson and Dean, 1973). Survivors were counted and scored on a $0-7$ scale as previously, where $0=$ dead and $7=$ control. It was not possible to computerise the data for Polygonum aviculare and Senecio vulgaris due to bad germination, while Cyperus esculentus tubers also showed variable sprouting. However observations of herbicidal effects were possible with most treatments and are referred to in the text where appropriate. Oxalis latifolia failed to emerge. Dwarf bean was raised under tropical conditions to improve growth.

Pairs of histograms are presented for each treatment, the upper representing mean plant survival and the lower, mean vigour score, both based on the results expressed as percentages of untreated controls. Each ' x ' represents a 5% increment, but in the activity experiment histogram, each 'x' represents a 7% increment. A '+' indicates a value in excess of 100%. The percentage figures for each treatment are also inserted to the left of each histogram. ' R ' indicates a result based on one replicate only and ' M ' represents a missing treatment.

A table of observed selectivities, using the criteria specified, are presented for each compound along with comments to highlight salient points.

Soil persistence was monitored, in conjunction with the pre-emergence selectivity experiment. The technique differed from previously due to surface application of the compounds. Treated soil was kept in tins in the glasshouse and susceptible species were periodically sown disturbing the soil as little as possible.

METAMITRON

| Code number | BAYER 6676, DRW $1130 \quad$ Trade name Goltix |
| :--- | :--- | :--- | :--- |
| Chemical name | 4-amino- 3 -methyl- 6 -pheny1-1,2,4-triazin-5-one |

Structure

Source | Bayer Agrochemicals Itd |
| :--- |
| Eastern Way |
| Bury St Edmunds |
| Suffolk |

Information available and suggested uses
Preliminary investigations in the UK in 1973 showed safety to four sugar beet cultivars up to $10 \mathrm{~kg} / \mathrm{ha}$ pre- and post-emergence. It controls a broad spectrum of weeds but is less effective against Mercurialis and Polygonum spp. It is recommended at 4 to $5 \mathrm{~kg} / \mathrm{ha}$ pre-drilling, preemergence or post-emergence up to the 1 true leaf stage. If applied when weeds are larger the rate should be $7 \mathrm{~kg} / \mathrm{ha}$. Some pre-emergence work at $2 \mathrm{~kg} / \mathrm{ha}$ has been successful.

Formulation used $70 \% \mathrm{w} / \mathrm{w}$ a.i. wettable powder
Spray volume for activity experiment $3051 /$ ha
for selectivity experiment $4171 / \mathrm{ha}$

RESULTS

Full histogram results are given on pages $8-13$ and potential selectivities are summarised in the following table.

(Table continued overleaf)

RATE (kg ai/ha)	CROPS: Vigour reduced by 15% or less	WEEDS: Number or vigour reduced by 70% or more
1.25	```species above + pea sorghum rice pigeon pea groundnut soyabean cotton```	Alopecurus myosuroides Polygonum 1apathifolium Chenopodium album Stellaria media Veronica persica Holcus lanatus Eleusine indica Tagetes minuta + species below
0.5	```species above + wheat dwarf bean perennial ryegrass field bean* cow pea jute*```	Poa annua Poa trivialis Tripleurospermum maritimum Solanum nigrum Rumex obtusifolius Amaranthus retroflexus

* but note stand reductions

Comments on results

Activity experiments (see page 8)

Good activity was found on all 6 species in the activity test, although a much higher dose was needed than for the chemically-related metribuzin (Richardson and Dean, 1973). Most of the activity occurred as a result of the soil treatments. The surface and incorporated preemergence treatments caused similar degrees of phytotoxicity, although the former were slightly more effective with the smaller seeded and perennial species. The foliar spray was much less active, in contrast to metribuzin (Richardson and Dean, 1973).

Symptoms

Symptoms were similar to those caused by photosynthetic inhibitors such as ureas, triazines and triazinones. A pronounced chlorosis usually precedec die-back as a result of the soil treatments. Germination was not affected. The foliar spray caused some minor scorch and chlorosis, but this dic not bring about any mortality of plants.

Soil persistence

White clover was the most sensitive of all the species in the selectivity test being killed at $C .5 \mathrm{~kg} / \mathrm{ha}$ and it was therefore chosen to monitor persistence of the herbicide in the soil. This same dose was undetectable ten weeks after application. Doses of 1.25 and $6.125 \mathrm{~kg} / \mathrm{ha}$ caused 30 and 57% reductions in shoot fresh weight respectively, after thirty six weeks, but were undetectable after fifty weeks.

Selectivity among temperate species

At $6.125 \mathrm{~kg} / \mathrm{ha}$, all annual and perennial broad-leaved and grass weeds were controlled, with the exception of Convolvulus arvensis. Even at the lowest dose of $0.5 \mathrm{~kg} / \mathrm{ha}$, five weed species were controlled and many severely damaged. Composite species were particularly sensitive, observations on Senecio vulgaris showing it to be even more so than Tripleurospermum maritimum, while Cirsium arvense and Tussilago farfara were the most susceptible of all the perennial species, both eventually dying from the $1.25 \mathrm{~kg} / \mathrm{ha}$ dose. Polygonaceous weeds (P. lapathifolium and P. aviculare) were adequately controlled or even killed by $1.25 \mathrm{~kg} / \mathrm{ha}$, in spite of the manufacturers' suggestions to the contrary, while Rumex obtusifolius was susceptible at the lowest dose. In contrast to metribuzin, members of the Solanaceae (Solanum nigrum and tomato) were very sensitive to metamitron.

Metamitron would appear to have great potential for weed control in sugar beet. The tolerance level and margin of selectivity is very high, more so than with other herbicides used in this crop. (In a subsequent post-emergence selectivity test, sugar beet was unaffected by $8.0 \mathrm{~kg} / \mathrm{ha}$ while excellent weed control was found at this and at lower doses.) A more complete weed control spectrum is apparent than with any other single herbicide used in this crop, and this was achieved with a surface pre-emergence spray, incorporation being unnecessary. The moderate period of persistence in the soil may also mean that late germinating weeds (a problem in sugar beet, especially with Chenopodium album and others) can be controlled, while there would appear to be no danger to a subsequent crop.

Some further investigation on peas would seem worthwhile in view of the control of many problem weeds, notably polygonum species, in this crop. The potential control of Poa species anc Rumex obtusifolius in perennial ryegrass is also of interest and warrants some further experimentation.

Selectivity among tropical species
Selective control of annual broad-leaved weeds and Eleusine indica would appear possible at $1.25 \mathrm{~kg} / \mathrm{ha}$ in a number of crops including sorghum and pigeon pea but other annual grass weeds were much more tolerant and no outstanding possibilities are apparent.

ACTIVITY EXPERIMENT

METAMITRON

$$
\begin{aligned}
\text { Key: } & F=\text { post-emergence, foliar application } \\
& S=\text { post-emergence, soil drench } \\
& P=\text { pre-emergence, surface film } \\
& I=\text { pre-planting, incorporated }
\end{aligned}
$$

SPECIES	METAMITRON		METAM ITRON		
	$0.50 \mathrm{KG} / \mathrm{HA}$			$1.25 \mathrm{KG} / \mathrm{HA}$	
WHEAT	126		118		79
(1)	93		64	XXXXXXXXXXXXX	29
BARLEY	102		89		19
(2)	79		50	mXXXXXXXXXX	14
OAT	93		87		0
(3)	64	mxxxxxxxxxxxx	43	$\mathbf{x X X X X X X X X X}$	0
PER R YGR	97		97	mxxxxx ${ }^{\text {a }}$	0
(4)	86	XXXXXXXXXXXXXXXXX	64		0
ONION	55		41	$\mathbf{x x x x x x x x ~}$	0
(8)	50	$\mathbf{x X X X X X X X X X X}$	14	xxx	0
DWF BEAN	100		100		100
(9)	93		79	$\mathbf{X X X X X X X X X X X X X X X X X X}$	29
FLD BEAN	65		91	xxxxxxxxxxxxxxxxxx	0
(10)	86		64	XXXXXXXXXXXXX	0
PEA	104		104	$\mathbf{x X} \times$	104
(11)	93		86	mXXXXXXXXXXXXXXXX	57
W CLOVER	0		0		0
(12)	0		0		0
RAPE	100		53	xxxxxxxxxxx	0
(14)	57	mexixixixixix	36	xxxxixx	0
KALE	89		80		0
(15)	57	mxxxexxyxx	36	xxxxxxx	0
CARrot	106		77		0
(18)	79		57	XXXXXXXXXXX	0

SPECIES	METAMITRON		METAMITRON			METAMITRON
	$0.50 \mathrm{KG} / \mathrm{HA}$		$1.25 \mathrm{KG} / \mathrm{HA}$			6.125 KG/HA
Lettuce	75	XXXXXXXXXXXXXXXX	4	x	0	
(20)	50	mxXXXXXXXXX	21	$\mathbf{x x x x}$	0	
SUG BEET	97		105		86	
(21)	100		100		86	
AVE fatu	103		91		0	
(26)	71	$\mathbf{x} \mathbf{X X X X X X X X X X X X X X X}$	36	xxxxxxx	0	
ALO MYOS	107		57		6	x
(27)	57	$\mathbf{x X X X X X X X X X X X}$	29	$\mathbf{x x X x X X}$	14	$\mathbf{x x x}$
POA ANN	54	XXXXXXXXXXXX	0		0	
(28)	29	$\mathbf{x x x x x x}$	0		0	
POA TRIV	7	x	0		0	
(29)	14	xxx	0		0	
SIN ARV	170		30	$\mathbf{x x x x x x}$	0	
(30)	79		36	XxXXXXX	0	
RAPH RAP	90		70		0	
(31)	79	$\mathbf{X X X X X X X X X X X X X X X X X}$	50	exxxxxxxxx	0	
TRIP MAR	13	$\mathbf{x x x}$	0		0	
(33)	14	$\mathbf{x x x}$	0		0	
POL LAPA	78		52	$\mathbf{x x x x x x x x x x ~}$	0	
(35)	50	mxxyxxixxex	21	xxxx	0	
GAL APAR	102	XXXXXXXXXXXXXXXXXXXXXX +	89	$\mathbf{x x x x x x x x x x x x x x x x x x x ~}$	55	
(38)	79	$\mathbf{X X X X X X X X X X X X X X X X X X}$	57	xxxxxxxxxxx	14	xxx
CHEN ALB	40	xxxxxxxx	3	x	0	
(39)	43	$\mathbf{x x x x} \mathbf{x} \mathbf{x} \mathbf{x} \mathbf{x}$	7	x	0	

Code number
Chemical name
Structure

Trade name -

Source

Hoechst Chemicals Itd
Hoechst House
Kew Bridge
Brentford
Middlesex
Information available and suggested uses
Suggested for control of a range of annual grass weeds, including Alopecurus myosuroides in brassicae, carrots, winter and spring cereals (wheat, barley and oats), celery, field beans, lettuce, lucerne, onions, peas, potatoes, spinach and sugar beet, at $0.3-1.0 \mathrm{~kg} / \mathrm{ha}$ after crop and weed emergence.

Formulation used $36 \% \mathrm{w} / \mathrm{v}$ a.i. emulsifiable concentrate
Spray volume for activity experiment $3051 /$ ha
for selectivity experiment $4171 / \mathrm{ha}$

RESULTS

Full results are given in the histograms on pages 17-22 and potential selectivities are summarised in the following table.

RATE (kg ai/ha)	CROPS: vigour reduced by 15% or less	WEEDS: number or vigour reduced by 70% or more
5.4	oat dwarf bean field bean pea white clover rape kale carrot lettuce sugar beet pigeon pea cow pea chick pea groundnut soyabean cotton jute kenaf ses am um tomato	```Veronica persica Rottboellia exaltata Amaranthus retroflexus + species below```

RATE $(\mathrm{kg} \mathrm{ai/ha)}$	CROPS: vigour reduced by 15\% or less	WEEDS: number or vigour reduced by 70\% or more
0.9	species above + wheat barley radish	$\frac{$ Alopecurus myosuroides Poa trivialis }{ Oryza punctata }
0.15	Digitaria sanguina1is species above onion maize sorghum rice	$\frac{\text { Echinochloa crus-ga11i }}{\text { Eleusine indica }}$

Comments on results

Activity experiment (see page 17)
Apart from a mild scorch due to the foliar spray, and this only at the highest dose, broad-leaved species were resistant. However all three grass species, particularly perennial ryegrass, were susceptible to all four application methods. In the post-emergence treatments, foliar sprays and soil drenches caused similar degrees of phytotoxicity within each of the grass species. Surface premergence sprays were markedy more active to perennial ryegrass than the incorporated treatments (suggesting the possibility that uptake is greater via the emerging shoots), but Avena fatua and Agropyron repens showed a similar degree of response to both of the pre-emergence application methods.

Symptoms

A severe inhibition of main shoots occurred on grasses as a result of both types of post-emergence treatment, usually accompanied by chlorosis. In addition, some mild scorch symptoms also developed as a result of the foliar spray. Pre-emergence treatments at the higher doses on the grasses resulted in die-back just before or just after leaf tip emergence from the coleoptile. At lower doses, where leaves did develop, they were often retarded, with very narrow leaf blades, inhibited main shoots and an overall dark green colour. However the most characteristic symptom on the grasses, seen mainly with the soil treatments, especially the soil drenches, but also to some extent with the foliar spray, was a powerful inhibition of the roots, particularly the secondary roots. This resulted in the plants being very weakly anchored in the soil and tending to fall over. In the selectivity experiment, Veronica persica died back soon after emergence at the higher doses while plants less severely affected were retarded with crinkled and deformed leaves. Tripleurospermum maritimum was retarded in growth at the high dose, due to poor root development. Although the symptoms described are similar in some respects to those caused by nitrophenyl ethers, a more systemic effect is apparent with HOE 22870.

Soil persistence
Perennial ryegrass was used to detect soil residues, this species initially being reduced by 60% in fresh weight of shoots at $0.15 \mathrm{~kg} / \mathrm{ha}$ and killed at 0.90 and $5.40 \mathrm{~kg} / \mathrm{ha}$. No symptoms were detectable when treatments of $0.15 \mathrm{~kg} / \mathrm{ha}$ were assayed after sixteen weeks. After thirty six weeks, doses of 0.9 C and $5.4 \mathrm{C} \mathrm{kg} / \mathrm{ha}$ were undetectable.

Selectivity among temperate species

In the selectivity experiment, two of the smaller seeded annual grass weeds were susceptible, Alopecurus myosuroides anc Poa trivialis, there being 83 and 100% mortality respectively with a dose of $0.90 \mathrm{~kg} / \mathrm{ha}$. However, Poa annua, Avena fatua and Holcus lanatus were resistant. Veronica persica was the only broad-leaved weed to show susceptibility. A subsequent test has shown that this species can be adequately controlled at a dose of $2.0 \mathrm{~kg} / \mathrm{ha}$.

A11 of the broad-1eaved crops showed good tolerance. The cereals showed considerable resistance, especially oats. Onion and, in particular, perennial ryegrass were susceptible.

HOE 22870 shows promise for the control of A. myosuroides in cereals and broad-leaved crops. Unfortunately other important grass weeds and virtually all broad-leaved weeds are resistant, so that its use as a single compound is limited and its compatibility with other herbicides will need to be studied. It is probably of more use as a post-emergence rather than a pre-emergence herbicide, a current test showing even better control of A. myosuroides post-emergence in cereals and broad-leaved crops. However the residual activity would give it some potential as a contact pre-emergence treatment.

Selectivity among tropical species
Excellent control of the annual grass weeds other than Rottboellia was achieved at $0.9 \mathrm{~kg} / \mathrm{ha}$ or below, and selectivity was good in all the broad-leaved crops. The much higher dose of $5.4 \mathrm{~kg} / \mathrm{ha}$ was required for control of Rottboellia but even this was still well tolerated by most crops. The excellent margin of safety in jute, kenaf, sesamum, cowpea, cotton and tomato is likely to be of particular interest, though other compounds will have to be added for control of broad-leaved weeds.

ACTIVITY EXPERIMENT

HOE 22870

		$0.25 \mathrm{~kg} / \mathrm{ha}$	$1.00 \mathrm{~kg} / \mathrm{ha}$	$4.00 \mathrm{~kg} / \mathrm{ha}$
	F		¢xxxxxxxxxxxxx	xxxxxxxxxxxxxx xxxxxxxexxxx
DWARF	S			xyxxxyexxxyxxxx XXXXXXXXXXXX0x
	P		$\mathbf{x X X X X X X X X X X X X}$ XXXXXXXXXXXXXX	
	I	x $x \times x \times x \times x \times x \times x \times x$ XXXXXXXXXXXXX	$\mathbf{x X X X X X X X X X X X X X}$ $\mathbf{x X x X X X X X X X X X X X}$	$\mathbf{x x x} \times \mathbf{x x} \times \mathbf{x x} \times \mathbf{x x x}$ $\mathbf{x X x X x X X X X X X X X X}$
KALE	F	xoxxyxyxxxxyxux xxyxxixxixixix	$\mathbf{X X X X X X X X X X X X X}$ xxxxxxxxxxxxxx	xxxxxxxxxxxxxx xxxxxxxxxx
	S	x $\mathbf{x X X X X X X X X X X X X}$ xexxxxxxxxxxx	mxxxxxxxxxxxxx xxxxxxxxxxxxxx	$\mathbf{x x x x x x x x x x x x x x}$ XXXXXXXXXXXXXX
	P	Xxxxxxxxxxxxxx + xxxxxxex $x \times x \times x$	xXXXXXXXXXXXX xxxxxxxxxxxxxx	$\mathbf{X X X X X X X X X X X X ~}+$ XXXXXXXXXXX
	I	$\operatorname{xyxxxxxxxxxxxx}^{+}$ xxxxxxxxxxxxxx	XXxXxXxXxXxxx	${ }_{\text {xxxxxxxxxxxxxx }}^{\text {xxxxxxxxxxxxx }}$ +
$\begin{aligned} & \text { POL YGONUM } \\ & \text { AMPHIBIUM } \end{aligned}$	F	xxyxxxxxxxyxxxx xxxxxxxxxxxxxx	xxxxxxxxxxxxxx	xxxxxxxxxxxpxx XXXXXXXXXXX
	S	xxyxxyxxyxxyxx $80 \times 0 \times 8 \times 0 \times 00 \times 80$	Xxxxxxxxxx xxxx xxxxxxxxxxxxxx	XXXXXXXXXXXXXX
	P		$\begin{aligned} & \operatorname{xxxxxxxxxxxx} \\ & \text { xxxxxxxxxxx } \end{aligned}$	¢xxxxxxxxxxxxx
	I	XXXXXXXXXXXXXX XxXxC00xxXX	y xxxxxxxxxxxxx	XXXXXXXXXXXX xxxxxxxxxxxxxx
PERENNIAL RYEGRASS	F		$\begin{aligned} & \operatorname{xxxxxxxxxxxx} \\ & \mathbf{x} \times x \times x \times x \end{aligned}$	$\operatorname{loxxxxxxx~}_{\text {xxxx }}$
	S	XXXXXXXXXXXXXX xxxxxexexxex	$\begin{aligned} & \operatorname{xxxxxx} \\ & \underset{x \times x \times x x}{ } \end{aligned}$	${ }_{\mathbf{x}} \mathbf{x} \mathbf{x}$
	P	xxx $\times 1$	X	\%
	I			${ }_{\mathbf{X}}^{\mathbf{x}} \mathbf{X} \mathbf{x} \mathbf{x}$
$\begin{aligned} & \text { AVENA } \\ & \hline \text { FATUA } \end{aligned}$	F	y xxexxxxxxixxx	XXXXXXXXXXXXXX xxxxxxxxxxxx	xXXXXXXXXXXXXX XXXXXXXXX
	S	xyxxuxxyxxxxxx x00xxxxxxxxxxx		xxxxxxxx xxxxix Xxxxxxxxx
	P	xexxexxxxxxxyx	XXXXXXXXXXXXXX	
	I	$\underset{\operatorname{xxxxxxxxxxxxxx}}{ }+$ xXxXxXXXXXXXXX	$\begin{aligned} & \mathrm{xxxxxxxxxxxx} \\ & \mathbf{x} \times x \times x \times x \times x \times x \end{aligned}$	
$\frac{\text { AGROPYRON }}{\text { REPENS }}$	F	xxxxxxxxxxxxxx xxxxxxxxxxxxxx	$\mathbf{x x x x x x x x x x x x x x}$ Xxxxxxxxxoxxxx	xxxxxxxxxxxxxx xxxxxxxx
	S	xxxxxxxxxxxxxx Xxxxxxxxxxxx	$\mathbf{x X X X X X X X X X X X X X}$ xxxxxxxxxxxx	$\operatorname{mxxxxxxxxxxxxx}_{x \times 0 \times x \times x \times 0 \times x}$ xxxxxxxxxx
	P	xxxxxxxxxxxxxx xxxxxxxxxx		xxxxxxxxoxx xxxxxxxxx
	I	xXXXXXXXXXXXX xXxXxXxxxxxxxx		¢xxxxxxxxxxx

Key: $\begin{aligned} F & =\text { post-emergence, foliar application } \\ & S=\text { post-emergence, soil drench } \\ & P=\text { pre-emergence, surface film } \\ & I=\text { pre-planting, incorporated }\end{aligned}$

		HOE 22870		HOE 22870		HOE 22870	
SPECIES		$0.15 \mathrm{KG} / \mathrm{HA}$		$0.90 \mathrm{KG} / \mathrm{HA}$		$5.40 \mathrm{KG} / \mathrm{HA}$	
STEL MED	84	$\mathbf{~ X X X X X X X X X X X X X X X X X X X}$	90	$\mathbf{X X X X X X X X X X X X X X X X X X X}$	96	XXXXXXXXXXXXXXXXXXX	
（ 40 ）	100	$\mathbf{X X X X X X X X X X X X X X X X X X X X}$	100	$\mathbf{X X X X X X X X X X X X X X X X X X X X}$	100	$\mathbf{~ X}$	
VER PERS	70	XXXXXXXXXXXXXX	70	$\mathbf{X X X X X X X X X X X X X X X}$	0		
（ 42 ）	100	$\mathbf{x x X X X X X X X X X X X X X X X X X X X}$	93	$\mathbf{x x X X X X X X X X X X} \mathbf{X X} \mathbf{X X X X X X}$	0		
SOL NIG	96		117	$\mathbf{~ X}$	104		
（ 43 ）	100	$\mathbf{X X X X X X X X X X X X X X X X X X X X}$	100	$\mathbf{X X X X X X X X X X X X X X X X X X X X}$	93	$\mathbf{X X X X X X X X X X X X X X X X X X X}$	詈
RUM OBTU	112	XXXXXXXXXXXXXXXXXXXX	97		81		恩
（ 44 ）	100	$\mathbf{x X X X X X X X X X X X X X X X X X X X}$	100	$\mathbf{x X X X X X X X X X X X X X X X X X X}$	86	$\mathbf{~ X X X X X X X X X X X X X X X X X}$	0
HOLC LAN	103	XXXXXXXXXXXXXXXXXXXX	97	$\mathbf{X X X X X X X X X} \mathbf{X X X X X} \mathbf{X X X X X}$	44	$\mathbf{X X X X X X X X X X}$	T
（ 45 ）	100	$\mathbf{~ X X X X X X X X X} \mathbf{X X X X X X X} \mathbf{X X X}$	86	$\mathbf{x X X X X X X X X X X X X X X X X}$	36	$\mathbf{x X X X} \mathbf{X X X}$	\sim
AG REPEN	73	$\underline{x X X X X X X X X X X X X X X}$	109	$\mathbf{x x} \mathbf{X X X X X X X X X X X X X X X X X X X}$	91	$\underline{\mathbf{x x x x}}$	ก
（ 47 ）	100	$\mathbf{x X X X X X X X X X X X X X X X X X X}$	100	$\mathbf{~} \mathbf{X X X X X X X X X} \mathbf{X X X} \mathbf{X X X X} \mathbf{X X X X}$	79	$\mathbf{~ X X X X X X X X X X X X X X X}$	$\stackrel{\mathrm{H}}{-}$
ALL VIN	72	XXXXXXXXXXXXXX	93		83	XXXXXXXXXXXXXXXXX	$\underset{4}{ }$
（49）	86		100	$\mathbf{x X X X X X X X X X X X X X X X X X X X}$	86	$\mathbf{X X X X X X X X X X X} \mathbf{X X X X X X}$	밪
CIRS ARV	95	XXXXXXXXXXXXXXXXXXX	109	$\mathbf{~ X X ~ X X X X ~ X X X X X X X X X X X X X X}$	109		勿
（ 50 ）	100	$\mathbf{~ X}$	100	$\mathbf{~ X}$	100	$\mathbf{x X X X X X X X X X X X X X X X X X X X}$	5
TUS FARF	100	XXXXXXXXXXXXXXXXXXXX	100	$\mathbf{x X X X X X X X X X X X} \mathbf{X X X X X X X X}$	87	XXXXXXXXXXXXXXXXX	
（ 51 ）	100	$\mathbf{~ X}$	100	$\mathbf{x X X X X X} \mathbf{X X X X X X X X X X X X X X}$	93	$\mathbf{x x} \mathbf{X X X X X X X X X X X X X X X X}$	
CONV ARV	81	$\mathbf{~ X X X X X X X X X X X X X X X X}$	104	X XX XXXXXXXXXXXXXXXXX	127	$\mathbf{X X X X X X X X X X X X X X X X X X X X}$	
（ 52 ）	100	$\mathbf{X X X X X X X X X X X X X X X X X X X X}$	100	$\mathbf{X X X X X X X X X} \mathbf{X X X} \mathbf{X X X} \mathbf{X X X X X}$	93	$\mathbf{X X X X X X X X X X X X X X X X X X X}$	
MAI ZE	100	XXXXXX ${ }^{\text {P }}$	100		90	$\mathbf{X X X X X X X X X X X X X X X X X X}$	
（ 58 ）	100	$\mathbf{x X X X X X X X X X X X X X X X X X X X}$	79	$\mathbf{X X X X X X X X X X X X X X X X}$	36	$\mathbf{X X X X X X X}$	
SORGHUM	95		95	$\mathbf{x X X X X X X X X X X X} \mathbf{X X X X X X X}$	89	$\mathbf{X X X X X X X X X X X X X X X X X X X}$	
（ 59 ）	93		71	$\mathbf{x X X X X X X X X X X X X X}$	50	$\mathbf{X X X X X X X X X X}$	

SPECIES	HOE 22870		HOE 22870		HOE 22870	
		0.15 KG/HA		0.90 KG/HA		$5.40 \mathrm{KG} / \mathrm{HA}$
ELEU IND	6	x	0		0	
(74)	14	$\mathbf{x x x}$	0		0	
ECH CRUS	30	$\mathbf{x x x x x x}$	0		0	
(75)	50	$\mathbf{x} \mathbf{x} \mathbf{x} \mathbf{x} \mathbf{x} \mathbf{x} \mathbf{x} \mathbf{x} \mathbf{x}$	0		0	
ROT EXAL	115		100	$\mathbf{x x X X X X X X X X X X X X X X X X X X X}$	85	
(76)	100	$\mathbf{X X}$	71		29	x x x ${ }^{\text {x }}$ x
DIG SANG	137		25	$\mathbf{x x x x x}$	0	
(77)	43	mxxxxxxxx	29	$\mathbf{x x} \mathbf{x} \mathbf{x} \mathbf{x} \mathbf{x}$	0	
AMAR RET	64		129		29	$\mathbf{x x} \mathbf{x} \mathbf{x} \mathbf{x}$
(78)	93		100	$\underline{\mathbf{X X X}} \mathbf{X X X X X X X X X X X X X X X X X X X}$	71	$\mathbf{x X X X X X X X X X X X X X X}$
TAG MIN	90		86		51	
(80)	100		93	mXXXXXXXXXXXXXXXXXXX	50	
CYP ROTU	79		95		103	
(86)	100	$\mathbf{x X}$	100		100	$\mathbf{x X X X X X X X X X X X X X X X X X X X}$

Code number
Chemical name

Structure

Source

HOE 23408

2-(4-(2', $4^{\text {' }}$-dich1orophenoxy)-phenoxy)-methylpropionate

Hoechst Chemicals Ltd
Hoechst House
Kew Bricige
Brentford
Middiesex

Information available and suggested uses

Suggested for control of a range of annual grass weeds, including Avena fatua in brassicas, carrots, spring and winter cereals (barley and wheat), celery, field beans, lettuce, lucerne, onions, peas, potatoes, spinach and sugar beet at $0.5-1.5 \mathrm{~kg} / \mathrm{ha}$ post-crop and weed emergence. It is also believed to be effective against Alopecurus myosuroides but not Poa annua.

Formulation used $36 \% \mathrm{w} / \mathrm{v}$ a.i. emulsifiable concentrate
Spray volume for activity experiment $3051 / \mathrm{ha}$
for selectivity experiment $417 \mathrm{I} / \mathrm{ha}$

RESULTS

Full results are given in the histograms on pages 26-31 and potential selectivities are summarised in the following table.

RATE $(\mathrm{kg} \mathrm{ai/ha)}$	CROPS: vigour reduced by 15\% or less	WEEDS: number or vigour reduced by 70\% or more
5.4	wheat dwarf bean field bean pea white clover rape kale carrot lettuce sugar beet radish pigeon pea cow pea chick pea tomato soyabean cotton kenaf	Avena fatua Alopecurus myosuroides

RATE (kg ai/ha)	CROPS: Vigour reduced by 15\% or less	WEEDS: number or vigour reduced by 70\% or more
0.9	species above barley oat onion sesamum	$\frac{\frac{\text { Poa trivialis }}{\text { Holcus lanatus }}}{}$
0.15	Oryza punctata species above maize sorghum groundnut jute	$\frac{\text { Echinochloa crus-galii }}{\text { Digitaria sanguinalis }}$

Comments on results

Activity experiment (see page 26)

The level and type of activity was generally very similar to that found with HOE 22870. However perennial ryegrass and in particular Avena fatua were more sensitive to HOE 23408. Also there was a tendency for more post-emergence foliar than soil drench activity on these two species.

Symptoms

Symptoms produced on susceptible species were also very similar to those caused by HOE 2287C. Considerable scorch ciamage was seen on A. fatua with the foliar spray while some leaves varied in colour from dark green to yellow. Development of the secondary roots was severely inhibited resulting in plants falling over from the base. This latter symptom was also seen in the pre-emergence treatments, while the retarded leaves and shoots again varied in colour from very ciark to pale green.

Soil persistence

Using perennial ryegrass as the sensitive test species a moderate period of persistence in the soil has been found. The dose of $C .15 \mathrm{~kg} / \mathrm{ha}$ was undetectable sixteen weeks after application, After thirty six weeks, $0.90 \mathrm{~kg} / \mathrm{ha}$ no longer caused any symptoms but after fitty weeks $5.4 \mathrm{~kg} / \mathrm{ha}$ reduced shoot fresh weight by 90%.

Selectivity among temperate species
In the selectivity test, as with HOE 22870 , activity was found on certain annual grass weeds. However HOE $2.34 C 8$ was much more active on A. fatua and much less active on Alopecurus myosuroicies. The same difference in response between the Poa species was founc as with HOE 22870 , P. trivialis being more susceptible than P. annua. However the latter species was more sensitive to HOE 23408 than to HOE 22870. Holcus lanatus was also much more sensitive to HOE 234 C , with 74 anc 100% plant mortality at 0.90 and $5.4 \mathrm{~kg} / \mathrm{ha}$ respectively. All perennial and nearly all broad-leaved weeds were resistant. Veronica persica was controlled at $5.40 \mathrm{~kg} / \mathrm{ha}$ while Tripleurospermum maritimum was also reduced at this dose, again corresponding to HOE 2287 C .

All the broad-leaved crops were tolerant. Wheat tolerated 5.40 $\mathrm{kg} / \mathrm{ha}$ while barley and oat were only slightly affected. Perennial ryegrass was sensitive, slightly more so than to HOE 22870. Unfortunately onion showed a very variable response and a further experiment is necessary before any conclusions can be drawn regarding this species.

A1though HOE 23408 has shown some potential in these tests for controlling certain annual grass weeds, notably A. fatua, in most broadleaved crops and cereals, it is likely to be of greater benefit as a post-emergence spray than as a pre-emergence treatment, a subsequent test showing that A. fatua is more sensitive post-emergence. However it has certain features of interest as a pre-emergence treatment and the advantage that incorporation is unnecessary. Also it is noteworthy that it is capable of controlling A. fatua in cultivated oat, pre-emergence, although the margin of selectivity is not great.

Selectivity among tropical species

The activity of this compound on tropical grass species was very similar to that of HOE 22870, but safety on broad-leaved crops was not quite so good. Selectivity against annual grasses was therefore a little narrower but still excellent for all broad-leaved crops other than perhaps jute and groundnut. Rottboellia required a higher dose than other annual grasses but could still be controlled selectively in most of the broad-leaved crops. Broad-leaved weeds and Cyperus rotundus were resistant and other compounds would have to be used to achieve control of a complete weed spectrum.

If field performance is good under varying soil moisture conditions this could be a very safe and useful treatment for crops such as cotton, kenaf, sesamum, cowpea and other legumes.

ACTIVITY EXPERIMENT

HOE 23408

		$0.25 \mathrm{~kg} / \mathrm{ha}$	$1.00 \mathrm{~kg} / \mathrm{ha}$	$4.00 \mathrm{~kg} / \mathrm{ha}$
	F			xxxxxoxxxxxxxxx xxioxxxxxxxxx
DWARF	S			
BEAN	P			XXXXXXXXXXXXXX $\mathrm{xxxx} \times \mathrm{XXxXxx}$
	1		xxxxxxx xxxxxxx xxxxxxxxxxxxx	XXXXXXXXXXXXXX $\mathbf{x \times x \times x \times x \times x \times x \times x}$
KALE	F	xixxyxuxxuxyxxx 20xxxxxxxxexxxx	xxxxxxyxxyxxxx xxxxxxxxxxxx	xxxxxxxxxyoxxxx xxxxxxxxxx
	S	zexxxxxxyxxxxxx Xxxxxxxxxxxxxx	xxyxxyxxxxxxxx XXXXXXXXXXXXXX	$\mathrm{xxxxx} \times x \times x \times x \times x x$ XXXXXXXXXXXXXX
	P	 	xXXXXXXXXXXXXX xxxxxxxxxxxxxx	xxxxxxxxxxxxx xxxxxxxxxxxx
	I	XXXXXXXXXXXXX $\mathbf{X X X X X X X X X X X X X X}$	xXXXXXXXXXXX XXXXXXXXXXX	xXXXXXXXXXXXXX $\mathbf{x x x x x x} \mathbf{x x} \mathbf{x x x}$
$\begin{aligned} & \text { POL YGONUM } \\ & \hline \text { AMPHIBIUM } \end{aligned}$	F	xxxxaxxxxxxxxxx xxxxaxxxxxxxxx	xxxxxxxxxxxxxx xxx xxxxxxxxxxx	xxxxxxxxxxxxxx xxxxxxxxxx
	S	xxxxxxxxxxxx xxx Xxxxxxxxxxxxxx	xxxxxxxxxxxxxx $\times x \times x \times x \times x \times x \mathrm{x}$	xxyxuxxuxxexx XXXXXXXxXxxXxx
	P	xxxxxxxxexxxx	xxxxxxxxxxxxx	xxxxxxxxx xxxxx XXXXXXXXXXXX
	I	xxxxxxxxxxxxxx xxxxxxxxxxxxxx	30xxxxxxxxxxxx $\mathbf{x} \mathbf{x X x X X X X X X X X}$	$\begin{aligned} & \text { xxxxxxxxxxxxxx } \\ & \text { xxxxxxxxxxxxx } \end{aligned}$
PERENNIAL R YEGRASS	F			\bigcirc
	S	x $\times \times \times \times \times \times \times x \times x$ 2xXxXXXXxX	$\operatorname{lxxx}_{\mathrm{x} \times \times \mathrm{x}}$	$\mathrm{XxXX}_{\mathbf{x \times x}}$
	P	${ }_{\text {x }} \mathrm{x}$	-	\bigcirc
	I		${ }_{\text {xxxxxxx }}^{\text {xxxx }}$	\bigcirc
$\begin{aligned} & \text { AVENA } \\ & \text { FATUA } \end{aligned}$	F	xuxxxxxxxxxxxx xxxxxxex		$\operatorname{Xxxxxxxx}_{\text {xxxx }}$
	S	$\mathbf{x x x \times x x x x x x x x x x ~}$ XXXXXXXXXXXX	xxxxxexxxyxxxx xXxxxxx	${ }_{\mathbf{X}}^{\mathbf{x}} \mathbf{}$
	P	XXXXXXXXXXXXXX + XXXXXXXX	$\underset{x \times x \times x x x x x x}{x}$ xxxxxxx	$\operatorname{XxXxX}_{\mathbf{x} \times \mathbf{x}}$
	I	xxxxxyxxxxx $\mathbf{x x} \times \mathbf{x x} \mathbf{x x} \mathbf{x x x}$	$\mathbf{x x} \mathbf{x x} \times \mathbf{x} \times \mathbf{x x} \times \mathbf{x x}$ $\mathbf{x X X X X X X X}$	$\underset{x \times x \times x \times x \times x x x x x}{x \times x y}$
$\frac{\text { AGROPYRON }}{\text { REPENS }}$	F	$\operatorname{xxxxxxxxxxxxxx}$ xXXXXXXXXXXXXX		xxxxxxxxxxxxxx xXXXXXXXXXXXX
	S	$\times \times \times$ x0xXxXXXXXXXXX	$\mathbf{x x X X X} \mathbf{x X X X X X X X X}$ XXXXXXXXXXXX	$\mathbf{x X X X X X X X X X X X X X}$ XXXXXXXXX
	P	xxyxxxuxxuxxx XXXXXXXXXXXX	$\underset{\operatorname{xx} \times x \times x \times x \times x \times x \times x+}{ }$ x $x \times$ XXXXXXXX	
	I	XXXXXXXXXXXXX XXXXXXXXXXXXXX	$\mathbf{x x X x X X X X X X X X X}$ XXXXXXXXXXX	

$$
\text { Key: } \begin{aligned}
F & =\text { post-emergence, foliar application } \\
S & =\text { post-emergence, soil drench } \\
& P=\text { pre-emergence, surface film } \\
& I=\text { pre-planting, incorporated }
\end{aligned}
$$

[^0]: * Herbicide Group
 ** ODM Tropical Weeds Group

