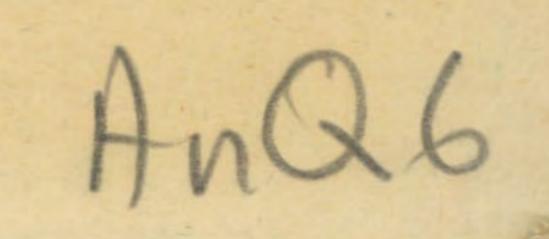


THE ACTIVITY AND PRE-EMERGENCE SELECTIVITY OF SOME RECENTLY DEVELOPED HERBICIDES: METAMITRON; HOE 22870; HOE 23408; RH 2915; RP 20630

HOE 22870 is clofop acid, HOE 23408 is diclofop-methyl, RH 2915 is oxyfluorfen

W G Richardson, M L Dean and C Parker


March 1976

Agricultural Research Council Weed Research Organization, Begbroke Hill, Yarnton, Oxford, OX5 1PF

ISBN 0 7084 0028 0

METHODS AND MATERIALS

INTRODUCTION

SUMMARY

Page

2

5

CONTENTS

RESULTS

METAMITRON

4-amino-3-methy1-6-pheny1-1,2,4-triazin-5-one

HOE 22870

×

4

*

2-(4-(4'-chlorophenoxy)-phenoxy)-isobuty1 propionate

HOE 23408

23

32

41

14

2-(4-(2°,4°-dichlorophenoxy) - phenoxy)-methylpropionate RH 2915

2-chloro-1-(3-ethoxy-4-nitrophenoxy)-4-triflueromethyl benzene

RP 20630

3-(2,4-dichloro-5-prop-2-ynyloxyphenyl)-5-t-butyl-1,3,4 -oxadiazolin-2-one

ACKNOW LEDGEMENTS

REFERENCES

Appendix 1

52

51

The content of this publication, in whole or in part, may be quoted or reproduced provided the authors and the ARC Weed Research Organization are fully acknowledged. The correct bibliographical reference is:-

RICHARDSON, W.G., DEAN, M.L. and PARKER, C. The activity and preemergence selectivity of some recently developed herbicides: METAMITRON, HOE 22870, HOE 23408, RH 2915 and RP 20630. <u>Technical</u> <u>Report Agricultural Research Council Weed Research Organization</u>, 1976, (38), pp 55. THE ACTIVITY AND PRE-EMERGENCE SELECTIVITY OF SOME RECENTLY DEVELOPED HERBICIDES: METAMITRON, HOE 22870, HOE 23408, RH 2915 AND RP 20630

W.G. Richardson*, M.L. Dean** and C. Parker**

Agricultural Research Council Weed Research Organization, Begbroke Hill, Yarnton, Oxford, OX5 1PF

SUMMAR Y

The pre-emergence selectivities of five new herbicides, applied as soil surface sprays, were tested on a range of 36 temperate and 23 tropical crop and weed species. The persistence of each herbicide in the soil was also determined in conjunction with this test. The foliar and soil activity of each herbicide were examined on six selected species.

Metamitron was found to have great potential for control of nearly all annual broad-leaved and grass weeds, while the tolerance of sugar beet was outstanding. Selective weed control in certain legume crops, such as pea, would also appear to be possible.

HOE 22870 controlled Veronica persica, all tropical and certain temperate annual grass weeds, notably Alopecurus myosuroides, while temperate cereals (wheat, barley and oat) and all broad-leaved crops were tolerant.

4

.

HOE 23408 was an effective treatment for certain grass weeds, notably Avena fatua in addition to the tropical annual grasses and Veronica persica. Most broad-leaved crops and temperate cereals were tolerant.

RH 2915 has a very high level of activity and gave good control of several annual grass and broad-leaved weeds, as well as the perennial Allium vineale. Some large seeded temperate and tropical legumes were tolerant.

RP 20630 exhibited a type of activity similar to the dinitrophenyl ether herbicides and also to the chemically similar oxadiazon. However it would appear to be more effective than oxadiazon on annual broadleaved weeds, while the control of annual grass weeds is as good. Convolvulus arvensis also showed some sensitivity. Groundnut was very tolerant but selectivity in other crops would be very marginal.

All five herbicides have a moderate period of persistence in the soil.

INTRODUCTION

The pre-emergence selectivities of new herbicides are investigated on a large number of pot-grown crop and weed species at WRO. The

- Herbicide Group *
- ODM Tropical Weeds Group **

objectives are to discover selectivities, crop and weed susceptibilities and to obtain experience of the type of effects produced by each compound. Soil persistence is also measured and these data, in conjunction with crop susceptibilities, are useful in planning subsequent cropping of treated land. Attention is drawn to the limitations of these investigations; i.e. use of only one crop variety or source of weed species and growth in one particular soil type at only one depth of sowing without intraspecific competition. Consequently the results should only be used as a guide for further work, as plant responses in pot experiments can be very different to those in the field.

- 2 -

The present report gives pre-emergence selectivity and persistence data on five new herbicides. Results of activity experiments are included to provide information on levels of phytotoxicity, type and route of action.

METHODS AND MATERIALS

The activity experiment was carried out on six selected species as described previously (Richardson and Dean, 1973). Four annual species were raised from seeds and two perennials from rhizome fragments. Herbicides were applied by four different methods: (i) post-emergence to the foliage only, avoiding contact with the soil, (ii) post-emergence to the soil only, as a drench avoiding foliage contact, (iii) pre-emergence to the soil surface, (iv) pre-emergence with thorough incorporation before planting. Species data are summarised in Table 1 and soil and environmental conditions in Table 2.

Table 1. Plant data for activity experiments

Species	Cultivar/ Source	. pot spr	per t at aying post-		Post- emergence stage of growth at spraying	Stage of g assess pre-	
Dwarf bean (Phaseolus vulgaris)	The Prince	. 3	1-2	1.8		trifoliate	1 ¹ / ₂ -2 trifoliate leaves
Kale (Brassica oleracea acephala)	Marrow- stem	15	5-8	0.6	$1\frac{1}{2}-2\frac{1}{2}$ leaves		3½-4½ 1eaves
Polygonum amphibium	WRO Clone 1	6	2-4	1.2	$2\frac{1}{2}$ -7 leaves	3 ¹ / ₂ -8 leaves	6 ¹ / ₂ -11 leaves
Perennial ryegrass (Lolium perenne)	S 23	20	10	0.6	2-3 leaves	5-6 leaves tillering	6-10 leaves, tillering
Avena fatua	1969/5 1969/6 Ditchley 1972/3	10	5	1.2	2 ¹ / ₂ -3 leaves	4-6 leaves tillering	4 ¹ / ₂ -7 leaves tillering
Agropyron repens	WRO Clone 31	6	3-5	1.2	$2-3\frac{1}{2}$ leaves	4 ¹ / ₂ -6 leaves tillering	6-7 leaves tillering

-

Techniques for the selectivity experiment differed from previous practice in that all herbicides were applied to the soil surface following planting. Species were sown as detailed in Appendix 1, each being replicated twice for every treatment. Herbicides were applied to the soil surface using a laboratory sprayer operating at a pressure of 2.11 bars (30 lb/in²) and moving at constant speed, 30 cm above the soil. Subsequent watering was from overhead. Soil and environmental conditions are summarised in Table 2. During the experiment, normal daylight was supplemented with warm white fluorescent tubes to give a 14 hour photoperiod.

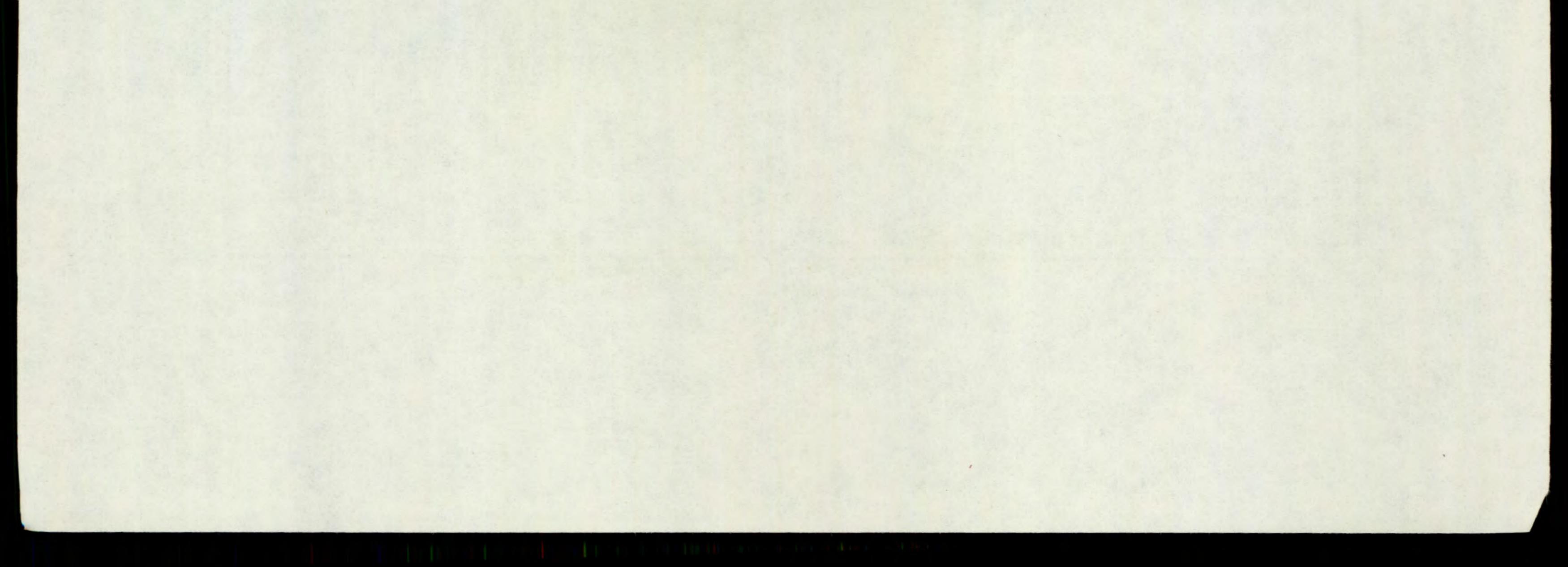
Radish (<u>Raphanus raphanistrum</u>) was included for ease of propagation and may be regarded as a crop or weed. To improve establishment <u>Chenopodium album seeds were kept in C.1 M potassium nitrate for 48 hours</u> in the light; seeds of <u>Polygonum aviculare</u> were stored moist at 2°C for six months; tubers of <u>Cyperus esculentus</u> were stored moist at 2°C for 2 months to break dormancy. To protect from soil-borne pathogens all seeds except <u>Chenopodium album</u>, <u>Polygonum aviculare</u> and the temperate cereals were pretreated with one of the following: thiram, benomyl (for onion), Harvesan organomercury)for <u>Avena fatua</u>) or ethylmercuric phosphate + dieldrin (for sugar beet). Temperate cereal seeds were purchased already treated with a mercurial seed dressing.

- 3 -

Table 2. Soil and environmental conditions

Experiment number, type and herbicide(s) included	1 Metamitron	VITY EXPER 2 HOE 22870 HOE 23408	3 RP 20630	Pre-eme Selectiv: Metamitron HOE 22870 HOE 23408	n RH 2915
Date of spraying Main assessment completed	26.9.74 6.11.74	14.11.74 19.12.74		16.1 2C.2	2.75
Organic matter (%) Clay content (%) pH John Innes base fertilizer (g/kg) DDT (5% dust) (g/kg) Fritted trace elements (g/kg) Epsom salts (g/kg)	2.8 16 7.7 5.0 0.5 0.25 1.0	4.2 13 7.0 5.0 0.5 0.25 1.0	4.2 13 7.0 5.0 0.5 0.25	1: 7 1 0 0	.0
Temperature (°C)				Temperate	Tropical
Mean Maximum Minimum	17 23 10	17 23 8	19 30 14	18 24 13	23 30 12
Relative humidity (%)					
Mean Maximum Minimum	70 100 45	70 100 50	60 90 26	65 86 38	50 64 32

Results were processed as before (Richardson and Dean, 1973). Survivors were counted and scored on a 0-7 scale as previously, where 0 = dead and 7 = control. It was not possible to computerise the data for <u>Polygonum aviculare</u> and <u>Senecio vulgaris</u> due to bad germination, while <u>Cyperus esculentus</u> tubers also showed variable sprouting. However observations of herbicidal effects were possible with most treatments and are referred to in the text where appropriate. <u>Oxalis latifolia</u> failed to emerge. Dwarf bean was raised under tropical conditions to improve growth.


- 4 -

Pairs of histograms are presented for each treatment, the upper

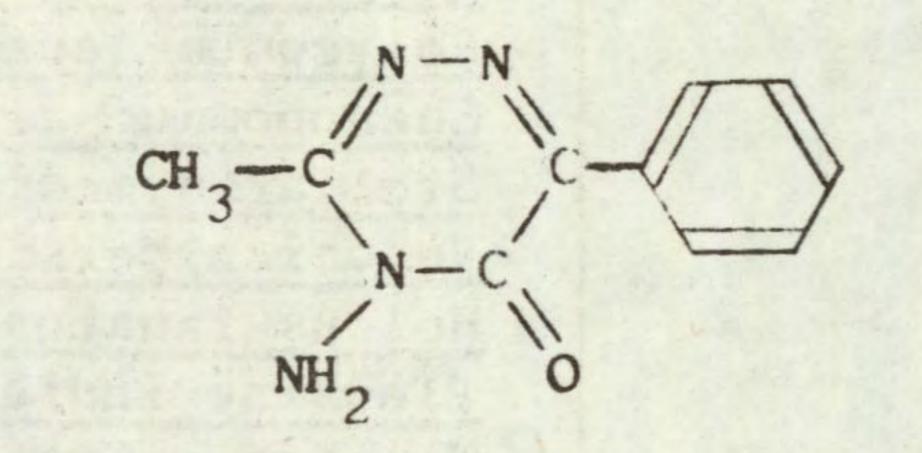
representing mean plant survival and the lower, mean vigour score, both based on the results expressed as percentages of untreated controls. Each 'x' represents a 5% increment, but in the activity experiment histogram, each 'x' represents a 7% increment. A '+' indicates a value in excess of 100%. The percentage figures for each treatment are also inserted to the left of each histogram. 'R' indicates a result based on one replicate only and 'M' represents a missing treatment.

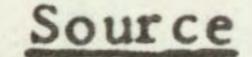
A table of observed selectivities, using the criteria specified, are presented for each compound along with comments to highlight salient points.

Soil persistence was monitored, in conjunction with the pre-emergence selectivity experiment. The technique differed from previously due to surface application of the compounds. Treated soil was kept in tins in the glasshouse and susceptible species were periodically sown disturbing the soil as little as possible.

METAMITRON

- 5 -


Code number


BAYER 6676, DRW 1139 <u>Trade name</u> Goltix

Chemical name

4-amino-3-methy1-6-pheny1-1,2,4-triazin-5-one

Structure

Bayer Agrochemicals Ltd Eastern Way Bury St Edmunds Suffolk

Information available and suggested uses

Preliminary investigations in the UK in 1973 showed safety to four sugar beet cultivars up to 10 kg/ha pre- and post-emergence. It controls a broad spectrum of weeds but is less effective against <u>Mercurialis</u> and <u>Polygonum</u> spp. It is recommended at 4 to 5 kg/ha pre-drilling, preemergence or post-emergence up to the 1 true leaf stage. If applied when weeds are larger the rate should be 7 kg/ha. Some pre-emergence work at 2 kg/ha has been successful.

Formulation used

70% w/w a.i. wettable powder

<u>Spray volume</u> for activity experiment 305 1/ha for selectivity experiment 417 1/ha

and the second states

RESULTS

Full histogram results are given on pages 8-13 and potential selectivities are summarised in the following table.

RATE (kg ai/ha)	CROPS: Vigour reduced by 15% or less	WEEDS: Number or vigour reduced by 70% or more
6.125	sugar beet	<u>Avena fatua</u> Sinapis arvensis
		Raphanus raphanistrum Galium anarine

Agropyron repens Allium vineale Cirsium arvense Tussilago farfara Digitaria sanguinalis + species below

(Table continued overleaf)

A STATE YEAR AND A STATE AND A

RATE (kg ai/ha)	CROPS: Vigour reduced by 15% or less	WEEDS: Number or vigour reduced by 70% or more
1.25	species above + pea sorghum rice pigeon pea groundnut soyabean cotton	Alopecurus myosuroides Polygonum lapathifolium Chenopodium album Stellaria media Veronica persica Holcus lanatus Eleusine indica Tagetes minuta + species below
0.5	species above + wheat dwarf bean perennial ryegrass field bean* cow pea jute*	<u>Poa annua</u> <u>Poa trivialis</u> <u>Tripleurospermum maritimum</u> <u>Solanum nigrum</u> <u>Rumex obtusifolius</u> <u>Amaranthus retroflexus</u>

but note stand reductions. *

Comments on results

Activity experiments (see page 8)

Good activity was found on all 6 species in the activity test, although a much higher dose was needed than for the chemically-related metribuzin (Richardson and Dean, 1973). Most of the activity occurred as a result of the soil treatments. The surface and incorporated preemergence treatments caused similar degrees of phytotoxicity, although the former were slightly more effective with the smaller seeded and perennial species. The foliar spray was much less active, in contrast to metribuzin (Richardson and Dean, 1973).

Symptoms

Symptoms were similar to those caused by photosynthetic inhibitors such as ureas, triazines and triazinones. A pronounced chlorosis usually preceded die-back as a result of the soil treatments. Germination was not affected. The foliar spray caused some minor scorch and chlorosis, but this did not bring about any mortality of plants.

Soil persistence

White clover was the most sensitive of all the species in the selectivity test being killed at C.5 kg/ha and it was therefore chosen to monitor persistence of the herbicide in the soil. This same dose was undetectable ten weeks after application. Doses of 1.25 and 6.125 kg/ha caused 30 and 57% reductions in shoot fresh weight respectively, after thirty six weeks, but were undetectable after fifty weeks.

Selectivity among temperate species

-

4

.

At 6.125 kg/ha, all annual and perennial broad-leaved and grass weeds were controlled, with the exception of <u>Convolvulus arvensis</u>. Even at the lowest dose of 0.5 kg/ha, five weed species were controlled and many severely damaged. Composite species were particularly sensitive, observations on <u>Senecio vulgaris</u> showing it to be even more so than <u>Tripleurospermum maritimum</u>, while <u>Cirsium arvense</u> and <u>Tussilago farfara</u> were the most susceptible of all the perennial species, both eventually dying from the 1.25 kg/ha dose. Polygonaceous weeds (<u>P. lapathifolium</u> and <u>P. aviculare</u>) were adequately controlled or even killed by 1.25 kg/ha, in spite of the manufacturers' suggestions to the contrary, while <u>Rumex</u> <u>obtusifolius</u> was susceptible at the lowest dose. In contrast to metribuzin, members of the Solanaceae (<u>Solanum nigrum</u> and tomato) were very sensitive to metamitron.

- 7 -

Metamitron would appear to have great potential for weed control in sugar beet. The tolerance level and margin of selectivity is very high, more so than with other herbicides used in this crop. (In a subsequent post-emergence selectivity test, sugar beet was unaffected by 8.0 kg/ha while excellent weed control was found at this and at lower doses.) A more complete weed control spectrum is apparent than with any other single herbicide used in this crop, and this was achieved with a surface pre-emergence spray, incorporation being unnecessary. The moderate period of persistence in the soil may also mean that late germinating weeds (a problem in sugar beet, especially with <u>Chenopodium album</u> and others) can be controlled, while there would appear to be no danger to a subsequent crop.

Some further investigation on peas would seem worthwhile in view of the control of many problem weeds, notably <u>Polygonum</u> species, in this crop. The potential control of <u>Poa</u> species and <u>Rumex obtusifolius</u> in perennial ryegrass is also of interest and warrants some further experimentation.

Selectivity among tropical species

Selective control of annual broad-leaved weeds and <u>Eleusine indica</u> would appear possible at 1.25 kg/ha in a number of crops including sorghum and pigeon pea but other annual grass weeds were much more tolerant and no outstanding possibilities are apparent.

ACTIVITY EXPERIMENT

METAMITRON

		0.5 kg/ha	2.0 kg/ha	8.0 kg/ha
	F	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
DWARF	S	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
BEAN	D		VYYYYYYYYY	VVV

8 --

	P	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		XXX XX
	I	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		8
	F	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
	S	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		8
	P	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	+	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		8
	I	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		8
	F	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	+	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	+	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
GONUM	S	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		8
IBIUM	P	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	+	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
	I	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	+	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

KALE

POLYC AMPH

	F	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
PERENNIAL	S	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
RYEGRASS	P	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXX XXXXXXX	8
	I	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXX XXXX
	F	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
AVENA	S	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	8
FATUA	P	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXX XXXXX	8
	I	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XX XX	8
	F	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
AGROP YRON REPENS	S	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
	P	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXX

XXXXXXXXXXXXXXX XXXXXXX I XXXXXXXXXXXXXXXX XXXXXXXXXXXXX XXXXXXXX XXXXXXXXXXXXXX

XXXX

XXXXXXXX XXXX

Key: F = post-emergence, foliar application S = post-emergence, soil drench P = pre-emergence, surface film I = pre-planting, incorporated

WHEAT	126
(1)	93
BARLEY	102
(2)	79
OAT	93
(3)	64
PER RYGR	97
(4)	86
ONION	55
(8)	50
DWF BEAN	100
(9)	93
FLD BEAN	65
(10)	86
PEA	104
(11)	93
W CLOVER	0
(12)	0
RAPE	100
(14)	57
KALE	89
(15)	57
CARROT	106
(18)	79

METAMITRON

.

.

.

0.50 KG/HA

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	118	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	79	XXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	64	XXXXXXXXXXXXX	29	XXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	89	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	19	XXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	50	XXXXXXXXXX	14	XXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	87	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	0	
XXXXXXXXXXXX	43	XXXXXXXXX	0	
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	97	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	0	
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	64	XXXXXXXXXXXX	0	
XXXXXXXXXX	41	XXXXXXXX	0	
XXXXXXXXXX	14	XXX	0	
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	79	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	29	xxxxxx
XXXXXXXXXXXXX	91	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	0	
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	64	XXXXXXXXXXXXX	0	
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	104	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	104	XXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	57	XXXXXXX
	0		0	
	C		0	
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	53	XXXXXXXXXXX	0	
XXXXXXXXXX	36	XXXXXXX	0	
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	80	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	0	
XXXXXXXXXX	36	XXXXXXX	0	
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	77	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	0	
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	57	XXXXXXXXXX	0	

METAMITRON

. .

.

1.25 KG/HA

METAMITRON

6.125 KG/HA

XXXXXXXXXXX

XXXXXXXXXXXXXXXX

XXXXXXXXXXXXXX + XXXXXX

PRI F R EN E PER IMENT

LETTUCE	75
(20)	50
SUG BEET	97
(21)	100
AVE FATU	103
(26)	71
ALO MYOS	107
(27)	57
POA ANN	54
(28)	29
POA TRIV	7
(29)	14
SIN ARV	170
(30)	79
RAPH RAP	90
(31)	79
TRIP MAR	13
(33)	14
POL LAPA	78
(35)	50
GAL APAR	102
(38)	79
CHEN ALB	40
(39)	43

METAMITRON

0.50 KG/HA

xxxxxxxxxxxxxx	4	x	0	
XXXXXXXXXX	21	XXXX	0	
xxxxxxxxxxxxxxxxxx	105	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	86	XXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	86	XXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	91	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	0	
XXXXXXXXXXXXX	36	XXXXXXX	0	
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	57	XXXXXXXXXXX	6	x
XXXXXXXXXXX	29	XXXXXX	14	XXX
XXXXXXXXXXX	0		0	
XXXXXX	0		0	
x	0		0	
XXX	0		0	
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	30	XXXXXX	0	
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	36	XXXXXXX	0	
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	70	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	0	
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	50	XXXXXXXXXX	0	
XXX	0		0	
XXX	0		0	
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	52	XXXXXXXXXX	0	
XXXXXXXXXX	21	XXXX	0	
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	89	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	55	XXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	57	XXXXXXXXXX	14	xxx
XXXXXXXX	3	x	0	
XXXXXXXXX	7	X	0	

METAMITRON

1.25 KG/HA

METAMITRON 6.125 KG/HA

PRE-EMERGENCE SELECTIVITY EXPERIMENT

- 10 -

XXXXXX

ST	EL	MED	44
	40		57
VE	ERI	PERS	48
	42		57
sc	DLN	IG	9
(43)	14
RI	лм с	BTU	10
(44)	21
HC	DLC	LAN	88
(45)	50
AC	G RI	EPEN	100
(47)	86
AI	LI	IN	52
(49)	79
CI	IRS	ARV	109
(50)	86
TI	JS F	ARF	100
(51)	86
co	ONV	ARV	150
(52)	93
M	AIZI	3	100
	58		79
S	ORG	IUM	105
	59		93
	and the second se		

METAMITRON

.

.

0.50 KG/HA

XXXXXXXXX		9	xx	Q	
XXXXXXXXXXX		14	XXX	0	
XXXXXXXXXX		0		0	
XXXXXXXXXXXX		0		0	
XX		0		0	
XXX		. 0			
xx		5	x	0	
XXXX		7	x	0	
*****		18	VVVV	0	
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		21	XXXX XXXX	0	
лллллллл			AAAA		
xxxxxxxxxxxxxxxxxx		100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	73	XXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		57	XXXXXXXXXX	29	XXXXXX
XXXXXXXXXX		62	XXXXXXXXXXXXX	21	XXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		71	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	29	XXXXXXX
xxxxxxxxxxxxxxxxx	+	68	XXXXXXXXXXXXXX	0	
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		36	XXXXXXX	0	
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		87	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	12	xx
xxxxxxxxxxxxxxxx		36	XXXXXXX	7	x
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	+	138	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	46	XXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	64	XXXXXXX
xxxxxxxxxxxxxxxxxxx		90	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	90	XXXXXXX
xxxxxxxxxxxxxx		57	XXXXXXXXXXX	36	XXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	+	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	74	XXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		86		43	XXXXXXXXX
		00			an and a start of the start of

METAMITRON 1.25 KG/HA

.

.

METAMITRON 6.125 KG/HA

CXXXXXXXXX

PRE EMERGENCE SELECTI V IT K EXPER IMENT

11

XXXX XXXXXXXX

XXXXXXXXXXXXX X

XXXXXXXXXX XXXX

RICE	88
(60)	100
PIGEON P	77
(61)	86
COWPEA	103
(62)	100
CHICKPEA	89
(63)	79
GRNDNUT	93
(64)	100
SOYABEAN	112
(65)	93
COTTON	96
(66)	93
JUTE	53
(67)	86
KENAF	104
(68)	64
SESAMUM	78
(70)	64
TOMATO	2.3
(71)	29
OR PUNCI	120
(73)	79

		METAMITRON		ME
METAMITRON		MEIAMIIRON		I.I.
0.50 KG/HA		1.25 KG/HA		6.
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	97	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	93	XXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	50	XXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	97	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	97	XXXXXXX
XXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	64	XXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	111	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	39	xxxxxx
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	64	XXXXXXXXXXXX	14	XXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	81	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	41	XXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	79	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	14	XXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	93	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	103	XXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	93	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	79	XXXXXXX
XXXXXXXXXXXXXXXXXX +	125	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	137	XXXXXXX
xxxxxxxxxxxxxxxxx	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	64	XXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	96	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	75	XXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	36	XXXXXXX
XXXXXXXXXXX	5	x	0	
xxxxxxxxxxxxxxx	36	XXXXXXX	0	
XX XXXXXXXXXXXXXXX +	69	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	0	
XXXXXXXXXXXX	50	XXXXXXXXX	С	
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	26	XXXXX	0	
XXXXXXXXXXXX	57	XXXXXXXXXX	C	
XXXXX	0		0	
XXXXXX	0		0	
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	92	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	102	XXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	71	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	36	XXXXXXX

.

METAMITRON

.125 KG/HA

XXXXXXXXXXXXXX XXXXX

XXXXXXXXXXXXXXX XXXXXXXX

XXX

XXX

XXXXXXXXXXXXXX + XXXXXXXXXXX

XXXXXXXXXXXXXXX + XXXXXXXX

XXXXXXXXXX

PR IT EMER GENCE 5 E -CT < H H EXPER IMENT

12

XXXXXXXXXXXXXXX + XX

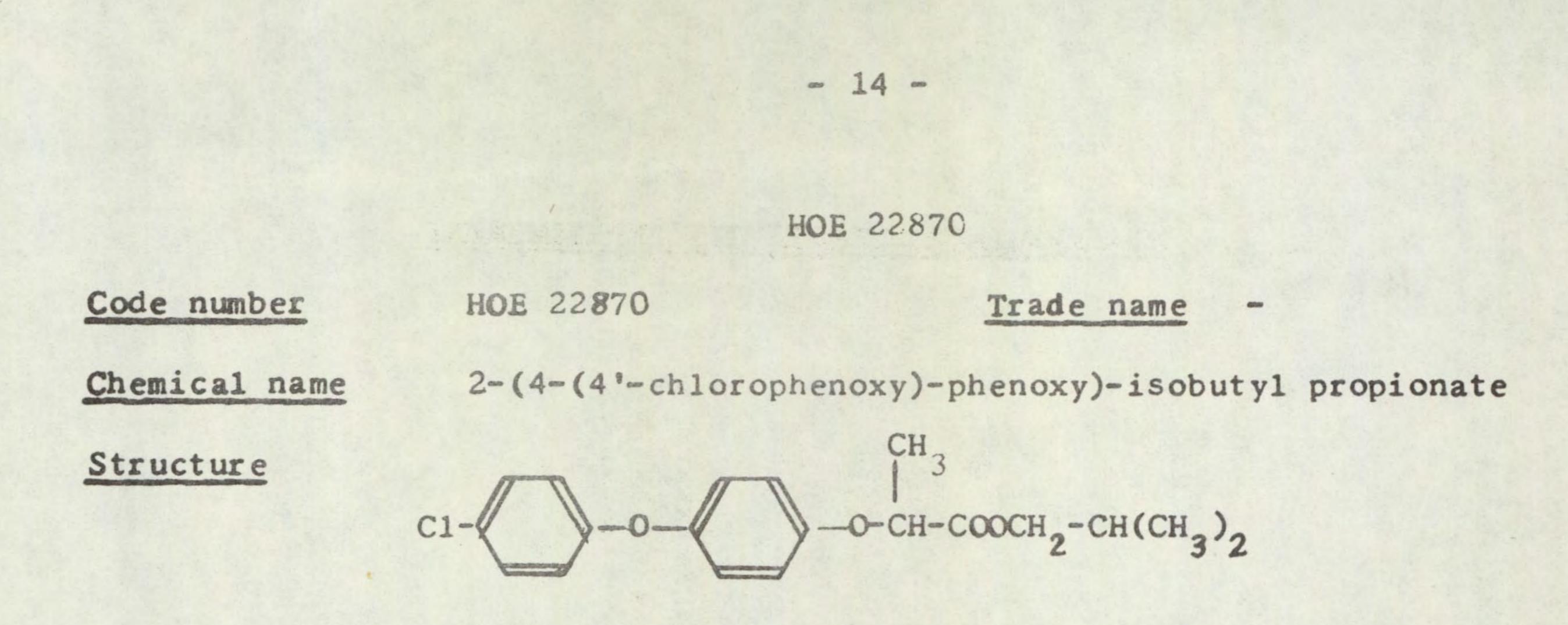
		METAMITRON		METAMITRON		MET
SPECIES		0.50 KG/HA		1.25 KG/HA		6.1
ELEU IND	76	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	31	XXXXXX	0	
(74)	43	XXXXXXXXX	14	XXX	0	
ECH CRUS	94	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	101	XXXXXXXXXXXXXXXXXXXXXX +	74	XXXXXXXX
(75)	86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	71	XXXXXXXXXXXXX	43	XXXXXXXX
ROT EXAL	110	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	105	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	40	XXXXXXXXX
(76)	86	xxxxxxxxxxxxxxx	79	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	36	XXXXXXX
DIG SANG	119	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	150	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	6	x
(77)	86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	64	XXXXXXXXXXXX	21	XXXX
AMAR RET	7	x	0		0	
(78)	21	XXXX	0		C	
TAG MIN	43	XXXXXXXXX	0		0	
(80)	57	XXXXXXXXXX	0		0	
CYP ROTU	95	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	103	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	8.7	XXXXXXXXX
(86)	100	xxxxxxxxxxxxxxxxxxx	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXX

*

.

ETAMITRON

.


.

.125 KG/HA

XXXXXXXXX xxx

X

XXXXXXXXXXX XXXXXXXXXXXXXXXX PRJ EMERGENCE SELEC H H H EXPER IMENT

Source

Hoechst Chemicals Ltd Hoechst House Kew Bridge Brentford Middlesex

Information available and suggested uses


Suggested for control of a range of annual grass weeds, including <u>Alopecurus myosuroides</u> in brassicae, carrots, winter and spring cereals (wheat, barley and oats), celery, field beans, lettuce, lucerne, onions, peas, potatoes, spinach and sugar beet, at 0.3-1.0 kg/ha after crop and weed emergence. -

.

Formulation used 36% w/v a.i. emulsifiable concentrate

Spray volume

for activity experiment 305 1/ha for selectivity experiment 417 1/ha

Full results are given in the histograms on pages 17-22 and potential selectivities are summarised in the following table.

RATE	CROPS: vigour reduced	WEEDS: number or vigour
(kg ai/ha)	by 15% or less	reduced by 70% or more
5.4	oat dwarf bean field bean pea white clover rape kale carrot lettuce sugar beet pigeon pea cow pea chick pea groundnut soyabean cotton jute kenaf sesamum tomato	Veronica persica Rottboellia exaltata Amaranthus retroflexus + species below

(Table continued overleaf)

RATE (kg ai/ha)	CROPS: vigour reduced by 15% or less	WEEDS: number or vigour reduced by 70% or more
0.9	species above + wheat	<u>Alopecurus myosuroides</u> Poa trivialis
	barley	Oryza punctata
	radish	Digitaria sanguinalis
		+ species below

- 15 -

0.15	species above + onion maize sorghum rice	<u>Echinochloa crus-galli</u> <u>Eleusine indica</u>
	rice	

Comments on results

Activity experiment (see page 17)

Apart from a mild scorch due to the foliar spray, and this only at the highest dose, broad-leaved species were resistant. However all three grass species, particularly perennial ryegrass, were susceptible to all four application methods. In the post-emergence treatments, foliar sprays and soil drenches caused similar degrees of phytotoxicity within each of the grass species. Surface pre-emergence sprays were markedly more active to perennial ryegrass than the incorporated treatments (suggesting the possibility that uptake is greater via the emerging shoots), but <u>Avena fatua and Agropyron repens</u> showed a similar degree of response to both of the pre-emergence application methods.

Symptoms

.

A severe inhibition of main shoots occurred on grasses as a result of both types of post-emergence treatment, usually accompanied by chlorosis. In addition, some mild scorch symptoms also developed as a result of the foliar spray. Pre-emergence treatments at the higher doses on the grasses resulted in die-back just before or just after leaf tip emergence from the coleoptile. At lower doses, where leaves did develop, they were often retarded, with very narrow leaf blades, inhibited main shoots and an overall dark green colour. However the most characteristic symptom on the grasses, seen mainly with the soil treatments, especially the soil drenches, but also to some extent with the foliar spray, was a powerful inhibition of the roots, particularly the secondary roots. This resulted in the plants being very weakly anchored in the soil and tending to fall over. In the selectivity experiment, Veronica persica died back soon after emergence at the higher doses while plants less severely affected were retarded with crinkled and deformed leaves. Tripleurospermum maritimum was retarded in growth at the high dose, due to poor root development. Although the symptoms described are similar in some respects to those caused by nitrophenyl ethers, a more systemic effect is apparent with HOE 22870.

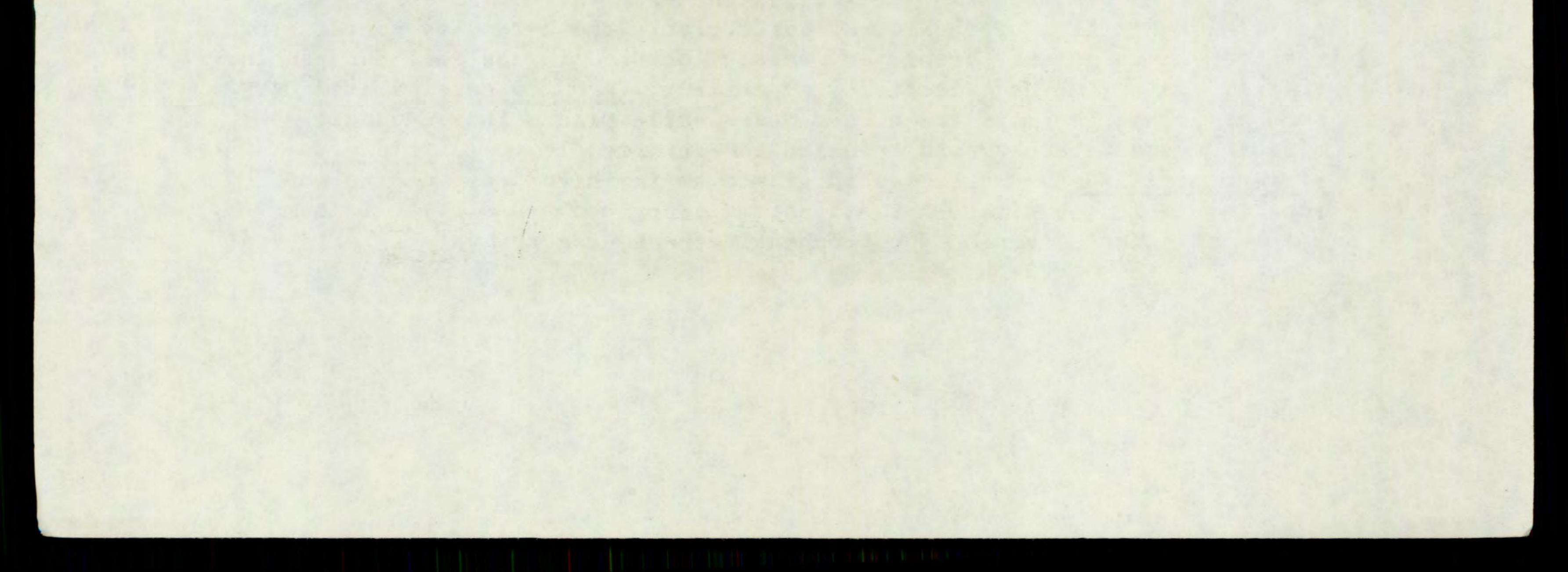
Soil persistence

Perennial ryegrass was used to detect soil residues, this species initially being reduced by 60% in fresh weight of shoots at 0.15 kg/ha and killed at 0.90 and 5.40 kg/ha. No symptoms were detectable when treatments of 0.15 kg/ha were assayed after sixteen weeks. After thirty six weeks, doses of 0.90 and 5.40 kg/ha were undetectable.

- 16 -

Selectivity among temperate species

In the selectivity experiment, two of the smaller seeded annual grass weeds were susceptible, <u>Alopecurus myosuroides</u> and <u>Poa trivialis</u>, there being 83 and 100% mortality respectively with a dose of 0.90 kg/ha. However, <u>Poa annua</u>, <u>Avena fatua</u> and <u>Holcus lanatus</u> were resistant. <u>Veronica persica</u> was the only broad-leaved weed to show susceptibility. A subsequent test has shown that this species can be adequately controlled at a dose of 2.0 kg/ha.


All of the broad-leaved crops showed good tolerance. The cereals showed considerable resistance, especially oats. Onion and, in particular, perennial ryegrass were susceptible.

HOE 22870 shows promise for the control of <u>A. myosuroides</u> in cereals and broad-leaved crops. Unfortunately other important grass weeds and virtually all broad-leaved weeds are resistant, so that its use as a single compound is limited and its compatibility with other herbicides will need to be studied. It is probably of more use as a post-emergence rather than a pre-emergence herbicide, a current test showing even better

control of <u>A. myosuroides</u> post-emergence in cereals and broad-leaved crops. However the residual activity would give it some potential as a contact pre-emergence treatment.

Selectivity among tropical species

Excellent control of the annual grass weeds other than <u>Rottboellia</u> was achieved at 0.9 kg/ha or below, and selectivity was good in all the broad-leaved crops. The much higher dose of 5.4 kg/ha was required for control of <u>Rottboellia</u> but even this was still well tolerated by most crops. The excellent margin of safety in jute, kenaf, sesamum, cowpea, cotton and tomato is likely to be of particular interest, though other compounds will have to be added for control of broad-leaved weeds.

ACTIVITY EXPERIMENT

HOE 22870

			0.25 kg/ha	1.00 kg/ha		4.00 kg/ha
		F	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
	WARF	S	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
B	EAN	P	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
		I	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
		F	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
		S	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
-	ALE	P	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		XXXXXXXXXXXXXXXX +
		I	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	+	XXXXXXXXXXXXXXXX *
		F	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
	OL YGONUM	S	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
4	MPHIBIUM	P	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
		I	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	+ '	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

- 17 -

.

F

I

		XXXXXXXXXX	XXXXXX	XXXX
PERENNIAL	S	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXX
RYEGRASS	P	XXX XXXXX	XX	8
	I	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXX
	F	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
AVENA	S	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
FATUA	P	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXX +	XXXXXXXXXXXXXXXX *
	I	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
	F	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
AGROP YRON	S	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
REPENS	P	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXXX +

XXXXXXXXXXX

XXXXXXXX

Key: F = post-emergence, foliar application S = post-emergence, soil drench P = pre-emergence, surface film I = pre-planting, incorporated

		HOE 22870		HOE 22870		HOE 2
SPECIES		0.15 KG/HA		0.90 KG/HA		5.40
WHEAT	103	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	103	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	111	XXXXXXXXXX
(1)	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	79	XXXXXXXXXXX
BARLEY	102	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	102	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	96	xxxxxxxxx
(2)	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	93	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	57	XXXXXXXXXXX
OAT	93	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	107	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	93	XXXXXXXXXXX
(3)	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	86	XXXXXXXXXXX
PER RYGR	59	XXXXXXXXXXXX	3	x	0	
(4)	71	XXXXXXXXXXXXXX	14	XXX	0	
ONION	68	xxxxxxxxxxxxx	68	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	41	XXXXXXXX
(8)	86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	71	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	43	XXXXXXXXX
DWF BEAN	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXX
((9)	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXX
FLD BEAN	104	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	104	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	91	XXXXXXXXXX
(10)	93	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	93	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	86	XXXXXXXXXX
PEA	78	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	78	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	91	XXXXXXXXXX
(11))	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXX
W CLOVER	113	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	113	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	101	XXXXXXXXXXX
(12)	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	86	XXXXXXXXXX
RAPE	105	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	95	xxxxxxxxxxxxxxxxx	95	XXXXXXXXXX
(14)	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	93	XXXXXXXXXX
KALE	98	xxxxxxxxxxxxxxxxx	103	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	103	XXXXXXXXXXX
(15)	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	86	XXXXXXXXXX
CARROT	92	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	87	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	92	XXXXXXXXXXX
(18)	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	93	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	86	XXXXXXXXX

.

.

22870

KG/HA

XXXXXXXXXXX + XXXXXXXX

XXXXXXXXXXX XXX

XXXXXXXXXXX XXXXXXXXX

XXXXXXXXXXXX XXXXXXXXXXXX

XXXXXXXXXX XXXXXXXXX

XXXXXXXXXX XXXXXXXXXXX

XXXXXXXXXXX + XXXXXXXXX

XXXXXXXXXXX XXXXXXXXXXX

XXXXXXXXXXX + XXXXXXXXX

XXXXXXXXXX XXXXXXXXXX

.

.

PRE-EMERGENCE SEL ECTIVITY EX PER IMENT

LETTUCE	100
(20)	100
SUG BEET	109
(21)	100
AVE FATU	87
(26)	100
ALO MYOS	72
(27)	79
POA ANN	79
(28)	71
POA TRIV	49
(29)	57
SIN ARV	130
(30)	100
RAPH RAP	75
(31)	93
TRIP MAR	68
(33)	100
POL LAPA	143
(35)	100
GAL APAR	102
(38)	100
CHEN ALB	109
(39)	100

100

٠

٠

HOE 22870		HOE 22870		HO
0.15 KG/HA		0.90 KG/HA		5.
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	+ 101	xxxxxxxxxxxxxxxxxx	+ 109	xxxxxxx
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	86	XXXXXXX
XXXXXXXXXXXXXXXXXX	103	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	+ 99	xxxxxxx
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	93	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	64	XXXXXXX
XXXXXXXXXXXXX	17	xxx	0	
XXXXXXXXXXXXXXXX	50	XXXXXXXXXX	0	
XXXXXXXXXXXXXXXXX	85	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	59	xxxxxxx
XXXXXXXXXXXXX	50	XXXXXXXXXX	43	XXXXXXX
XXXXXXXXXX	0		0	
XXXXXXXXXX	0		0	
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	+ 200	xxxxxxxxxxxxxxxxxxx	+ 160	XXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100) xxxxxxxxxxxxxxxxxxxxxxx	100	XXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	80	xxxxxxxxxxxxxxxx	80	XXXXXXX
xxxxxxxxxxxxxxxxx	86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	79	XXXXXXX
XXXXXXXXXXXXXX	98	xxxxxxxxxxxxxxxxxxxx	72	XXXXXXX
xxxxxxxxxxxxxxxxx	100) xxxxxxxxxxxxxxxxxxxxxxxxxxxxx	57	XXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	+ 52	2 XXXXXXXXX	143	XXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	93	3 xxxxxxxxxxxxxxxxxxx	93	XXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	+ 89) xxxxxxxxxxxxxxxxxxxxx	89	XXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100) xxxxxxxxxxxxxxxxxxxxxxxxxxxxx	100	XXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	+ 102	2 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	+ 76	xxxxxxx
xxxxxxxxxxxxxxxxx	100) xxxxxxxxxxxxxxxxxxxxx	100	XXXXXXX

OE 22870

.

1

.40 KG/HA

XXXXXXXXXXXXXX XXXXXXXXXXXXXX

XXXXXXXXXXXXX + XXXXXXXXXXX

XXXXXXXXXXXXXX XXXXXXX

XXXXXXX XXX

XXXXXXXXXXXXXX + XXXXXXXXXXXXXXXXX

XXXXXXXXXX XXXXXXXXXX

XXXXXXXXX XXXXXX

XXXXXXXXXXXXX + XXXXXXXXXXXXXX

XXXXXXXXXXXXX XXXXXXXXXXXXXXXX

XXXXXXXXXX XXXXXXXXXXXXXXXX PR IT EMERGENCE SELEC 5 H VIT Y EXPER IMENT

STEL MED	84
(40)	100
VER PERS	70
(42)	100
SOL NIG	96
(43)	100
RUM OBTU	112
(44)	100
HOLC LAN	103
(45)	100
AG REPEN	73
(47)	100
ALL VIN	72
(49)	86
CIRS ARV	95
(50)	100
TUS FARF	100
(51)	100
CONV ARV	81
(52)	100
MAIZE	100
(58)	100
SORGHUM	95
(59)	93

.

.

HOE 22870		HOE 22870		НО
0.15 KG/HA		0.90 KG/HA		5.
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	90	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	96	XXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXX
XXXXXXXXXXXXX	70	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	0	
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	93	XXXXXXXXXXXXXXXXXXXXX	0	
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	117	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	104	XXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	93	XXXXXXX
XXXXXXXXXXXXXXXXXXXXXX +	97	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	81	XXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	86	XXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	97	xxxxxxxxxxxxxxxxxx	44	xxxxxxx
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	36	XXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	109	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	91	xxxxxx
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXX	79	XXXXXXX
XXXXXXXXXXXXXX	. 93	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	83	XXXXXXX
XXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	86	XXXXXXXX
xxxxxxxxxxxxxxxxx	109	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	109	xxxxxxx
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXX
xxxxxxxxxxxxxxxxxx	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	87	XXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	93	XXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	104	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	127	XXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	93	XXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	90	XXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	79	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	36	XXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	95	XXXXXXXXXXXXXXXXXXXXXXX	89	XXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	71	XXXXXXXXXXXXX	50	XXXXXXX

OE 22870

.40 KG/HA

XXXXXXXXXXXXX XXXXXXXXXXXXX

XXXXXXXXXXXXX + XXXXXXXXXXXXXX

XXXXXXXXXX XXXXXXXXXXX

XXX

XXXXXXXXXXXX XXXXXXXXXX

XXXXXXXXXXX XXXXXXXXXXX

XXXXXXXXXXXXX + XXXXXXXXXXXXXXXX

XXXXXXXXXXX XXXXXXXXXXXXX

XXXXXXXXXXXXX + XXXXXXXXXXXXX

XXXXXXXXXXXX

XXXXXXXXXXXX XXXX

.

PRE EMERGENCE SELECT H VITY EXPER IMENT

RICE	97
(60)	86
PIGEON P	87
(61)	100
COWPEA	95
(62)	100
CHICKPEA	97
(63)	100
GRNDNUT	93
(64)	79
SOYABEAN	100
(65)	100
COTTON	86
(66)	100
JUTE	92
(67)	93
KENAF	98
(68)	100
SESAMUM	104
(70)	100
TOMATO	110
(71)	93
OR PUNCT	51
(73)	71

HOE 22870

3

0.15 KG/HA

.

.

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	22	XXXX	0	
XXXXXXXXXXXXXXXXX	36	XXXXXXX	0	
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	135	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	+ 126	XXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	95	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	111	XXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	93	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	93	XXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	97	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	97	XXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	93	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	93	XXXXXX
XXXXXXXXXXXXXXX	79	XXXXXXXXXXXXXXXX	86	XXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	112	xxxxxxxxxxxxxxxxx	+ 125	XXXXXXX
xxxxxxxxxxxxxxxxxx	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	96	XXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	86	XXXXXXXXXXXXXXXXXX	86	XXXXXXX
xxxxxxxxxxxxxxx	116	xxxxxxxxxxxxxxxxxx	+ 92	XXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	86	XXXXXXXXXXXXXXXXXX	93	XXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	110	xxxxxxxxxxxxxxxxx	+ 92	XXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	86	XXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	+ 98	xxxxxxxxxxxxxxxxxx	104	xxxxxx
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	93	XXXXXX
xxxxxxxxxxxxxxxxx	+ 115	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	+ 104	xxxxxx
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	86	XXXXXX
XXXXXXXXXX	5	x	0	
XXXXXXXXXXXXXX	29	XXXXXX	0	

HOE	2	2	8	7	0
			100	-	1222

0.90 KG/HA

-

3

.

5.40 KG/HA

HOE 22870

XXXXXXXXXXXXXXXXX	+	
XXXXXXXXXXXXXXXXX		
xxxxxxxxxxxx	+	
XXXXXXXXXXXXXX		
xxxxxxxxxxxx		
xxxxxxxxxxxxx	+	
XXXXXXXXXXXXXXXX		
xxxxxxxxxxx		
XXXXXXXXXXX		
xxxxxxxxxxx		
XXXXXXXXXXXXXX		

XXXXXXXXXXXXX XXXXXXXXXXXX

XXXXXXXXXXXXXXXX + XXXXXXXXXXXXXX

XXXXXXXXXXXXXXX + XXXXXXXXXXXX

PRE EMERGENCE SEL EC F EXPER IMENT

ELEU IND	6
(74)	14
ECH CRUS	30
(75)	50
ROT EXAL	115
(76)	100
DIG SANG	137
(77)	43
AMAR RET	64
(78)	93
TAG MIN	90
(80)	100
CYP ROTU	79
(86)	100

*

.

.

.

.

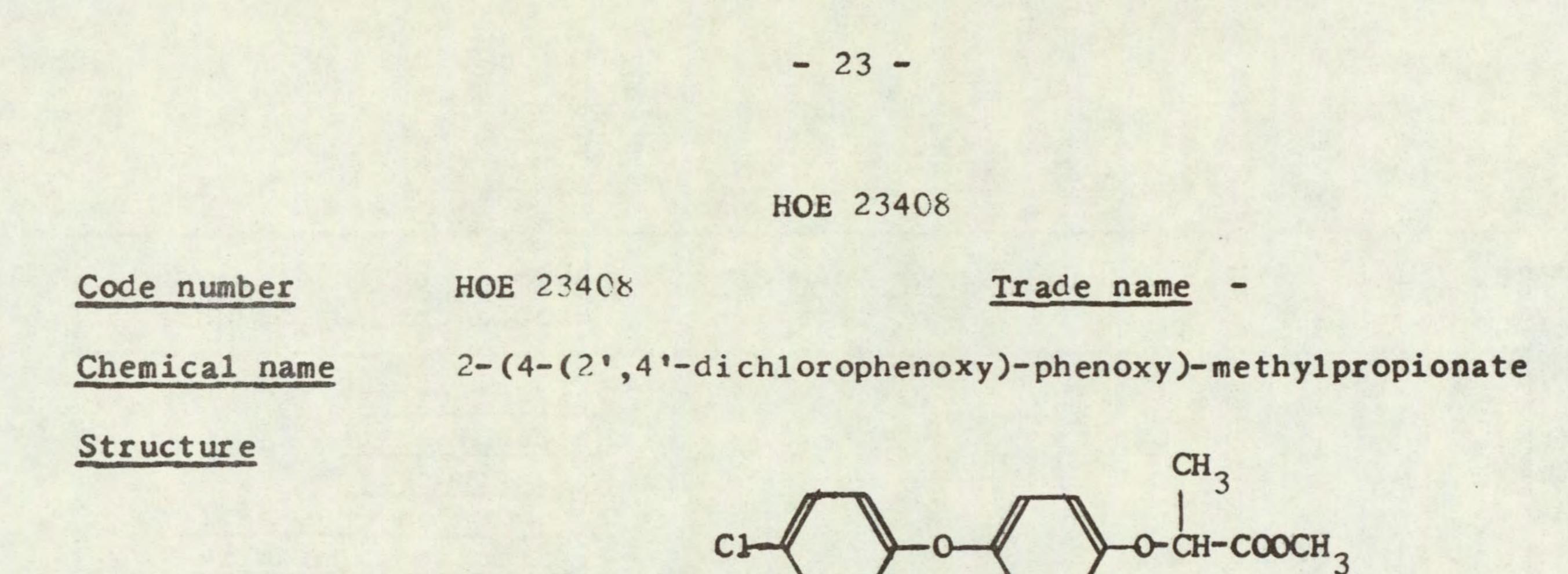
HOE 22870		HOE 22870		HC
0.15 KG/HA		0.90 KG/HA		5
x	0		0	
XXX	0		0	
XXXXXX	0		0	
XXXXXXXXX	0		0	
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	85	XXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	71	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	29	XXXXXX
XXXXXXXXXXXXXXXXXX +	25	XXXXX	0	
XXXXXXXXX	29	XXXXXX	0	
xxxxxxxxxxxx	129	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	29	xxxxxx
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	71	XXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	51	XXXXXX
XXXXXXXXXXXXXXXXXXX	93	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	50	XXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	95	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	103	XXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXX

1

.

.

HOE 22870 5.40 KG/HA


XXXXXXXXXXX

XXXXXXXXX

XXXXX XXXXX

XXXXXXXXXXXXXXX + XXXXXXXXXXXXXXXXXX

PRE EMERGENCE SEI EC H K EX 5 IMENT


Source

Hoechst Chemicals Ltd Hoechst House Kew Bridge Brentford Middlesex

Information available and suggested uses

Suggested for control of a range of annual grass weeds, including <u>Avena fatua</u> in brassicas, carrots, spring and winter cereals (barley and wheat), celery, field beans, lettuce, lucerne, onions, peas, potatoes, spinach and sugar beet at 0.5-1.5 kg/ha post-crop and weed emergence. It is also believed to be effective against <u>Alopecurus myosuroides</u> but not <u>Poa annua</u>.

Formulation used 36% w/v a.i. emulsifiable concentrate

for activity experiment 305 1/ha for selectivity experiment 417 1/ha

RESULTS

.

Full results are given in the histograms on pages 26-31 and potential selectivities are summarised in the following table.

RATE	CROPS: vigour reduced	WEEDS: number or vigour
(kg ai/ha)	by 15% or less	reduced by 70% or more
5.4	wheat dwarf bean field bean pea white clover rape kale carrot lettuce sugar beet radish pigeon pea cow pea chick pea tomato soyabean cotton kenaf	Avena fatua Alopecurus myosuroides Poa annua Veronica persica Rottboellia exaltata + species below

(Table continued overleaf)

- 24 -

RATE	CROPS: Vigour reduced	WEEDS: number or vigour
(kg ai/ha)	by 15% or less	reduced by 70% or more
0.9	species above + barley oat onion sesamum	<u>Poa trivialis</u> <u>Holcus lanatus</u> <u>Oryza punctata</u> <u>Echinochloa crus-galli</u> Digitaria sanguinalis

0.15	species above 4	Eloucine indice
	species above + maize sorghum groundnut jute	<u>Eleusine indica</u>

Comments on results

Activity experiment (see page 26)

The level and type of activity was generally very similar to that found with HOE 22870. However perennial ryegrass and in particular Avena fatua were more sensitive to HOE 23408. Also there was a tendency for more post-emergence foliar than soil drench activity on these two species.

Symptoms

Symptoms produced on susceptible species were also very similar to those caused by HOE 2287C. Considerable scorch damage was seen on A. fatua with the foliar spray while some leaves varied in colour from dark green to yellow. Development of the secondary roots was severely inhibited resulting in plants falling over from the base. This latter symptom was also seen in the pre-emergence treatments, while the retarded leaves and shoots again varied in colour from very dark to pale green.

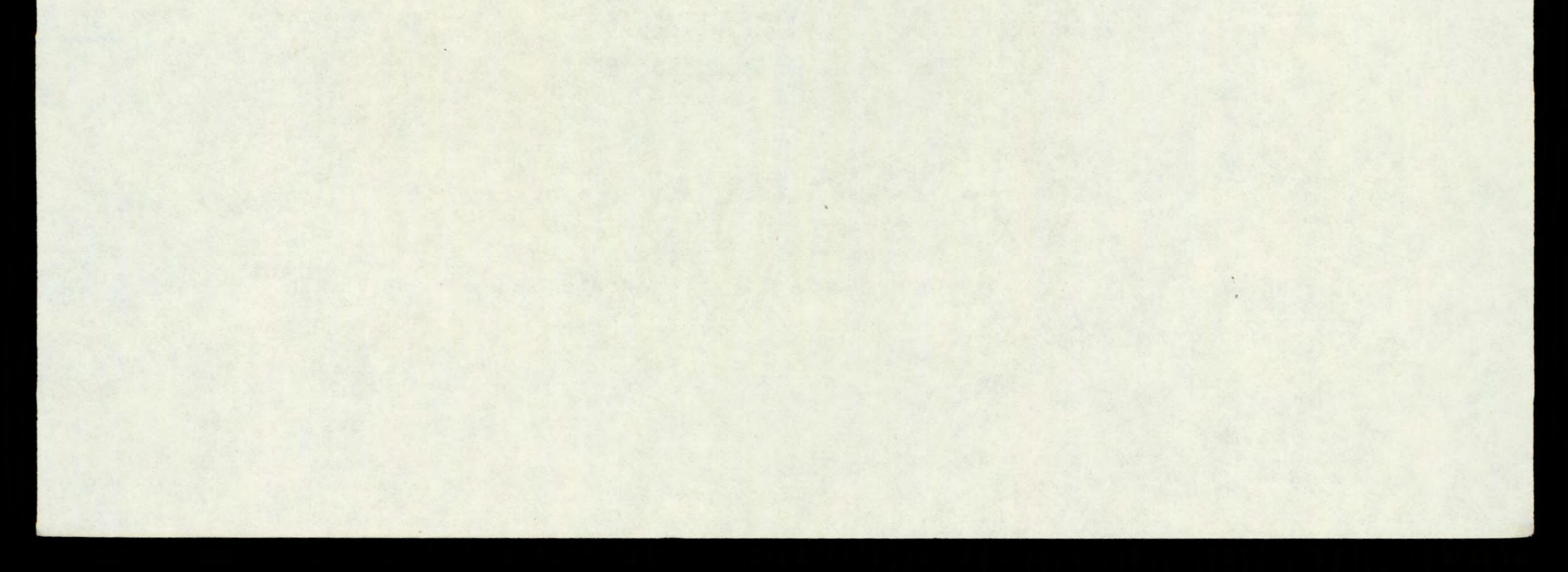
Soil persistence

Using perennial ryegrass as the sensitive test species a moderate period of persistence in the soil has been found. The dose of C.15 kg/ha was undet ectable sixteen weeks after application, After thirty six weeks, 0.90 kg/ha no longer caused any symptoms but after fitty weeks 5.4 kg/ha reduced shoot fresh weight by 90%.

Selectivity among temperate species

In the selectivity test, as with HOE 22870, activity was found on certain annual grass weeds. However HOE 234(8 was much more active on A. fatua and much less active on Alopecurus myosuroides. The same difference in response between the Poa species was found as with HOE 22870, P. trivialis being more susceptible than P. annua. However the latter species was more sensitive to HOE 23408 than to HOE 22870. Holcus lanatus was also much more sensitive to HOE 23408 with 74 and 100% plant mortality at 0.90 and 5.4 kg/ha respectively. All perennial and nearly all broad-leaved weeds were resistant. Veronica persica was controlled at 5.40 kg/ha while Tripleurospermum maritimum was also reduced at this dose, again corresponding to HOE 2287C.

All the broad-leaved crops were tolerant. Wheat tolerated 5.40 kg/ha while barley and oat were only slightly affected. Perennial ryegrass was sensitive, slightly more so than to HOE 22870. Unfortunately onion showed a very variable response and a further experiment is necessary before any conclusions can be drawn regarding this species.


- 25 -

Although HOE 23408 has shown some potential in these tests for controlling certain annual grass weeds, notably <u>A. fatua</u>, in most broadleaved crops and cereals, it is likely to be of greater benefit as a post-emergence spray than as a pre-emergence treatment, a subsequent test showing that <u>A. fatua</u> is more sensitive post-emergence. However it has certain features of interest as a pre-emergence treatment and the advantage that incorporation is unnecessary. Also it is noteworthy that it is capable of controlling <u>A. fatua</u> in cultivated oat, pre-emergence, although the margin of selectivity is not great.

Selectivity among tropical species

The activity of this compound on tropical grass species was very similar to that of HOE 22870, but safety on broad-leaved crops was not quite so good. Selectivity against annual grasses was therefore a little narrower but still excellent for all broad-leaved crops other than perhaps jute and groundnut. <u>Rottboellia</u> required a higher dose than other annual grasses but could still be controlled selectively in most of the broad-leaved crops. Broad-leaved weeds and <u>Cyperus rotundus</u> were resistant and other compounds would have to be used to achieve control of a complete weed spectrum.

If field performance is good under varying soil moisture conditions this could be a very safe and useful treatment for crops such as cotton, kenaf, sesamum, cowpea and other legumes.

ACTIVITY EXPERIMENT

- 2.6 -

HOE 23408

0.25 kg/ha

1.00 kg/ha

4.00 kg/ha

.

F S DWARF REAN

	the he is put				
	BEAN	P	XXXXXXXXXXXXXXX +	XXXXXXXXXXXXXXX +	XXXXXXXXXXXXXX *
		I	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
		F	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
	VATE	S	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
	KALE		XXXXXXXXXXXXXXXXX *	XXXXXXXXXXXXXXX *	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
		I	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
		F	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
	POL YGONUM	S	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
	AMPHIBIUM	P	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
		I	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
		-			

	F	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	8
PERENNIAL RYEGRASS	S	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXX XXXXXX	XXX XXXX
	P	XXX	8	00
	I	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	00
	F	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
AVENA FATUA	S	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXX
	P	XXXXXXXXXXXXXX +	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXX XXXX
	I	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
	F	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
AGROP YRON	S	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
REPENS	P	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXX +	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

XXXXXXXXXXXXX

I

XXXXXXXXXXXX

XXXXXXXXXX

XXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXX + XXXXXXXXXXXX

XXXXXXXXXXXXX XXXXXXX

Key: F = post-emergence, feliar application S = post-emergence, soil drench P = pre-emergence, surface film

I = pre-planting, incorporated

WHEAT	118	2
(1)	100	,
BARLEY	102	,
(2)	100	3
OAT	73	,
(3)	100	,
PER RYGR	31	,
(4)	57	3
ONION	41	;
(8)	64	;
DWF BEAN	100	;
(9)	93	
FLD BEAN	91	
(10)	100	
PEA	104	
(11)	100	
W CLOVER	119	
(12)	100	
RAPE	79	
(14)	100	
KALE	98	
(15)	100	
CARROT	87	
(18)	100	

.

.

HOE 23408		HOE 23408		HOI
0.15 KG/HA		0.90 KG/HA		5.4
XXXXXXXXXXXXXXXXXX +	111	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	118	XXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	86	XXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	102	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	102	XXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	79	XXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	93	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	71	XXXXXXXX
XXXXX	7	x	0	
XXXXXXXXXX	21	XXXX	0	
XXXXXXXX	95	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	41	XXXXXXXX
XXXXXXXXXXXX	93	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	71	XXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	86	XXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	104	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	104	xxxxxxx
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	104	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	104	XXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	95	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	101	XXXXXXX
xxxxxxxxxxxxxxxxxx	86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	86	XXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	89	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	95	xxxxxxx
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	93	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	98	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	103	XXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	102	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	102	xxxxxx
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	93	XXXXXXX

DE 23408

٠

.40 KG/HA

XXXXXXXXXXXXX + XXXXXXXXXXX

XXXXXXXXXXXXX + XXXXXXXXXX

XXXXXXXXXXXXXX XXXXXXXX

XX XXXXXXXX

XXXXXXXXXXXXXX XXXXXXXXXXX

XXXXXXXXXXXXX + XXXXXXXXXXXXXX

XXXXXXXXXXXXX + XXXXXXXXXXXXXX

XXXXXXXXXXXXX + XXXXXXXXXXX

XXXXXXXXXXXXX XXXXXXXXXXXXXXXX

XXXXXXXXXXXXX + XXXXXXXXXXXXXXXX

XXXXXXXXXXXXX * XXXXXXXXXXXXXX

PRE EMERGENCE SEL BCTIV ITY EXPER IMENT

LETTUCE	.100
(20)	100
	States.
SUG BEET	109
(21)	100
	4 5 9
AVE FATU	99
(26)	100
	100
ALO MYOS	100
(27)	100
74	100
POA ANN	88
(28)	71
an the	
POA TRIV	42
(29)	50
	*
SIN ARV	140
(30)	100
RAPH RAP	105
(31)	100
TRIP MAR	91
(33)	100
POL LAPA	117
(35)	93
GAL APAR	89
(38)	100
CHEN ALB	99
(39)	100

*

. .

HOE 23408		HOE 23408		HO
0.15 KG/HA		0.90 KG/HA		5.
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	96	xxxxxxx
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	97	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	105	XXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	86	XXXXXXXXXXXXXXXX	100	XXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	99	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	43	XXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	71	XXXXXXXXXXXXXX	21	XXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	84	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	16	xxx
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	79	XXXXXXXXXXXXXXXX	43	XXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	48	XXXXXXXXXX	U	to date the second
XXXXXXXXXXXXXXXX	64	XXXXXXXXXXXXX	. 0	
XXXXXXXX	7	x	0	
XXXXXXXXX	14	XXX	0	
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	170	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	93	XXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	80	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	xxxxxx
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	86	XXXXXXXXXXXXXXXXX	86	XXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	108	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	55	XXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	50	XXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	91	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	91	xxxxxx
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	93	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	93	XXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	116	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	89	XXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	92	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	89	xxxxxx
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXX

.

IOE 23408

.40 KG/HA

XXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXX

XXXXXXXXXXXXX + XXXXXXXXXXXXXXXX

and a kind a sing of the

A THE OF A PROPERTY

Include the Part of the State

ALL AND AT ANY ALL A

XXX

XXXX

XXXXXXXXXXXXXXX XXXXXXXXXXXXXX

Early a state to a a

XXXXXXXXXXXXXXXXX XXXXXXXXXXXX

XXXXXX XXXXX

XXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXX

XXXXXXXXXXXXX XXXXXXXXXXXXXXXXXX

XXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXX PRE EMERGENCE SELECTIVITY EXPER IMENT

STEL MED	99
(40)	100
VER PERS	118
(42)	100
SOL NIG	65
(43)	100
RUM OBTU	76
(44)	93
HOLC LAN	94
(45)	86
AG REPEN	109
(47)	100
ALL VIN	31
(49)	64
CIRS ARV	68
(50)	100
TUS FARF	100
(51)	93
CONV ARV	138
(52)	100
MAIZE	100
(58)	100
SORGHUM	100
(59)	100

.

.

HOE 23408		HOE 23408		HC
0.15 KG/HA		0.90 KG/HA		5.
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	111	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	67	XXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	93	XXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	91	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	11	xx
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	21	XXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	130	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	104	XXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	86	XXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	81	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	127	XXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	26	XXXXX	0	
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	36	XXXXXXX	0	
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	109	XXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	86	XXXXXXX
XXXXXX	124	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	134	XXXXXX
XXXXXXXXXXXXX	93	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXX
XXXXXXXXXXXXXX	95	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	95	XXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	87	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	75	XXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	92	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	138	xxxxxx
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	93	XXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	60	XXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	71	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	21	XXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	105	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	79	XXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	64	XXXXXXXXXXXX	43	XXXXXX

IOE 23408

.

.40 KG/HA

XXXXXXXX XXXXXXXXXXXXXX

XXXXXXXXXXXXXXXXX + XXXXXXXXXXXX

* XXXXXXXXXXXXXXX * XXXXXXXXXXXXXXXXXX

XXXXXXXXXXXXXX * XXXXXXXXXXXX

XXXXXXXXXXXXX + XXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXX

XXXXXXXXXXX XXXXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXXX + XXXXXXXXXXXXXXXXX

XXXXXXXX

XXXXXXXXXXXX XXXXX

Click here to continue

PRE MERGENCE SELEC IT Y EXPER IMENT

2.9