AGRICULTURAL RESEARCH COUNCIL

WEED RESEARCH ORGANIZATION

THE ACTIVITY AND PRE-EMERGENCE SELECTIVITY OF SOME RECENTLY DEVELOPED HERBICIDES:

TRIFLURALIN ISOPROPALIN ORYZALIN DINITRAMINE BIFENOX PERFLUIDONE

W.G. Richardson and M.L. Dean

November 1974

Price

UK and overseas surface mail - £2.50

Store 1106

CONTENTS

SUMMARY

INTRODUCTION

MATERIALS AND METHODS

Page

2

8

8

17

25

33

41

48

RESULTS

TRIFLURALIN

2,6-dinitro-N,N-dipropy1-4-trifluoromethylaniline

ISOPROPALIN

4-isopropy1-2,6-dinitro-N,N-dipropylaniline

ORYZALIN

3,5-dinitro-N⁴N⁴-dipropylsulphanilamide

DINITRAMINE

N',N'-diethyl-2,6-dinitro-4-trifluoromethyl-m-phenylenediamine

BIFENOX

methyl 5-(2,4-dichlorophenoxy)-2-nitrobenzoate

PERFLUIDONE

1,1,1-trifluoro-N-(4-phenylsulphonyl-o-tolyl)methane sulphonamide

ACKNOWLEDGEMENTS

REFERENCES

-

57

The content of this publication, in whole or in part, may be quoted or reproduced provided the authors and the ARC Weed Research Organization are fully acknowledged. The correct bibliographical reference is:

RICHARDSON, W.G. and DEAN, M.L. The activity and pre-emergence selectivity of some recently developed herbicides: trifluralin, isopropalin, oryzalin, dinitramine, bifenox and perfluidone. <u>Tech. Rep. agric. Res. Coun. Weed</u> <u>Res. Orgn.</u>, 1974, <u>34</u>, pp 58.

MBR 8251 HAS BEEN USED THROUGHOUT THE TEXT OF THIS REPORT BUT

-

SHOULD NOW BE READ AS PERFLUIDONE, THE COMMON NAME RECENTLY

APPROVED BY BSI FOR THIS HERBICIDE

ISBN 0 902290 91 6

THE ACTIVITY AND PRE-EMERGENCE SELECTIVITY OF SOME RECENTLY DEVELOPED HERBICIDES: TRIFLURALIN, ISOPROPALIN, ORYZALIN, DINITRAMINE, BIFENOX AND MBR 8251

W.G. Richardson* and M.L. Dean**

ARC Weed Research Organization, Begbroke Hill, Yarnton, Oxford OX5 1PF

Six recently developed herbicides were tested on six species for their soil and foliar activity and subsequently on a range of 31 temperate and 17 tropical crops and weeds to determine pre-emergence selectivity following soil incorporation. The persistence of biological activity in the soil was also examined.

Trifluralin was included for comparison with three similar herbicides, isopropalin, orymalin and dinitramine. All four compounds controlled annual grasses and certain broad-leaved weeds, notably <u>Convolvulus arvensis</u>, while a range of broad-leaved crops were tolerant. Isopropalin was not as active as trifluralin and the potential selectivities were not outstanding. Crop tolerance to oryzalin was generally lower than with trifluralin except for the large seeded temperate legumes. Few potential selectivities were found with oryzalin and annual grass weed control was not so good as with trifluralin. Dinitramine gave slightly more efficient weed control than trifluralin but crop tolerance was not so great. The shorter period of soil persistence of dinitramine compared to the relatively long period of the

other three compounds, is a potential advantage.

Bifenox had an interesting weed control spectrum which included composites, <u>Convolvulus arvensis</u> and <u>Cyperus esculentus</u>, but the resistance of <u>Stellaria media</u> was a serious disadvantage. Potential selectivities were found in certain leguminous and cereal crops.

Brassica and large seeded leguminous crops were highly tolerant of MBR 8251 while excellent grass and perennial weed control was obtained, including the Cyperaceae and <u>Allium vineale</u>.

INTRODUCTION

The pre-emergence selectivities of new herbicides are investigated by the Herbicide and Tropical Weeds Groups of the Weed Research Organization, on a large number of pot-grown crop and weed species. The objectives are to investigate the susceptibility of weeds and crops and to discover selectivities between them, and to obtain experience of the type of effects produced by each compound. Soil persistence is also monitored and this information, in conjunction with crop susceptibilities, is of value in considering subsequent cropping of treated land. Attention is drawn to the limitations of these investigations such as the use of only one crop variety or source of weed species and growth in one particular soil type at only one depth of sowing without intraspecific competition. Consequently the results should only be used as a guide for further work, as plant responses in pot experiments can be very different to those in the field.

- * Herbicide Group
- ** ODM Tropical Weeds Group

The present report gives pre-emergence selectivity data on five new herbicides plus trifluralin which was included for comparison with isopropalin, oryzalin and dinitramine. Results of activity experiments are also included to provide information on levels of phytotoxicity, types of effect and route of action. The corresponding information for bifenox was published in a previous report (Richardson and Dean, 1973b).

- 2 -

MATERIALS AND METHODS

These were similar to previous trials. The activity experiments (AB)

-

4

were carried out on six selected species, four being raised from seeds and two perennial species from rhizome fragments. Herbicides were applied by four different methods (Richardson and Dean, 1973a). Species data are summarised in Table 1 and soil and environmental conditions in Table 2.

Table 1. Plant data for activity experiments

	Cultivar /Source	No. per at spra	r pot aying post-	Depth of planting (cm)	Stage of growth of post- emergence treatments	Stage of asses pre-	growth at sment post-
Dwarf bean (Phaseolus vulgaris)	The Prince	3	2	1.8	2 unifoliate leaves	1-1½ trifoliate leaves	1 ¹ / ₂ -2 trifoliate leaves
Kale (Brassica oleracea acephala)	Green Marrow- stem	10-15	3-5	0.6	1/2-2 leaves	3½ leaves	3½ leaves
Polygonum amphibium	WRO Clone 1	6	5	1.2	3½-4 leaves	5-6 leaves	6 ¹ / ₂ -7 leaves
Perennial ryegrass (Lolium perenne)	S 23	10-20	10	0.6	1½-2 1eaves	5-7 leaves tillering	6½ leaves tillering
Avena fatua	Boxworth 1967	9	5	1.2	2-2½ leaves	4 ¹ / ₂ -5 leaves tillering	4-7 leaves tillering
Agropyron repens	WRO Clone 31	6	5	1.2	2 1 -3 leaves	32-6 leaves some tillering	5-8 leaves tillering

Techniques for the selectivity experiment were the same as reported by Richardson and Dean (1973a). Soil and environmental conditions are summarised in Table 2 and plant data in Table 3. Radish (Raphanus raphanistrum) was included for ease of propagation and may be regarded as a crop or weed. To improve germination <u>Chenopodium album</u> seeds were rubbed with sand paper; seeds of <u>Chrysanthemum segetum</u> were pricked; tubers of <u>Cyperus esculentus</u> were stored moist at 4°C for 23 days to break dormancy; <u>Rottboellia exaltata</u> seeds were soaked for 48-72 hours in water and those which sank were lightly crushed. Freshly harvested bulbils of <u>Oxalis</u> <u>latifolia</u> were stored at 20°C for 4 weeks followed by heating at 45°C for 4 hours. During the experiment normal daylight was supplemented with a 14 hour photoperiod using warm white fluorescent tubes or mercury vapour lamps.

- 3 -

Table 2. Soil and environmental conditions

Herbicides included	AE 1 trifluralin isopropalin oryzalin dinitramine	AE 2 MBR 8251	Pre-eme selectivity trifluralin isopropalin oryzalin	rgence experiment dinitramine bifenox MBR 8251
Date of spraying	14/5/71	14/4/72	23/2	2/72
Main assessment completed	8/6/71	18/5/72	7/4/72	
Soil moisture at spraying (%) Organic matter (%) Clay content (%) pH John Innes Base fertiliser (g/kg) 5% DDT dust (g/kg) Fritted trace elements (g/kg)	 2.8 16.0 7.7 4.0 0.5	$13.0 \\ 2.8 \\ 16.0 \\ 7.7 \\ 4.0 \\ 0.5 \\ 0.25$	14.0 2.8 16.0 7.7 1.0 0.5	
Temperature $\binom{0}{C}$			Temperate	Tropical
Mean Maximum Minimum Relative humidity (%)	18 28 13	18 27 8	18 30 10	25 31 12
Mean Maximum	65 95	60 90	60 88	65 95

Minimum	34	23	20	52

In all experiments surviving plants were counted and their vigour was scored on a 0-7 scale as defined by Richardson and Dean (1973a). Histograms were prepared from these results and a computer was used to process the selectivity experiment data as before (Richardson and Dean, 1973a). For each treatment a histogram is presented which includes a pair of figures; the upper figure represents mean plant survival and the lower, mean vigour score, both calculated as percentage of untreated controls. The same information is displayed as a histogram where each 'x' represents a 5% increment except in the activity experiment results where each 'X' represents a 7% increment. A '+' indicates a value in excess of 100%; 'R' indicates a result based on one replicate only and 'M' represents a missing treatment.

It was not possible to computerise the results for <u>Senecio vulgaris</u> because of erratic germination. <u>Veronica persica</u> germinated successfully but many plants died back from the cotyledon leaf stage because of a damping-off type of syndrome. Maize and <u>Rottboellia exaltata</u> suffered from mouse damage at emergence but sufficient plants survived for assessment to be possible.

A table of potential selectivities, using the criteria specified, are presented for each compound with comments to highlight salient points.

Soil persistence was monitored, in conjunction with the preemergence selectivity experiment by storing moist treated soil at 23°C and assaying at intervals with a suitable sensitive test species (Richardson and Dean, 1973a).

Table 3. Species, abbreviations, cultivars and stage of growth at assessment for pre-emergence selectivity experiment

Designation and Cultivar No. of (un computer or per plantcomputer pot ing

Stage of growth at assessment (untreated controls,

	serial number	Source	For	(cm)	leaf numbers exclusive of cotyledons)
Temperate species					
Wheat (Triticum aestivum)	WHEAT (1)	Kolibri	8	1.2	4 leaves
Barley (Hordeum vulgare)	BARLEY (2)	Sultan	8	1.2	4 leaves .
Oat (Avena sativa)	OAT (3)	Condor	8	1.2	4 leaves
Perennial ryegrass (Lolium perenne)	PER RYGR (4)	\$23	15	0.6	4½ leaves, tillering

Onion (Allium cepa)	ONION (8)	Ailsa Craig	15	0.6	$1\frac{1}{2}-2\frac{1}{2}$ leaves
Dwarf bean (Phaseolus vulgaris)	DWF BEAN (9)	The Prince	3	1.8	1 ¹ / ₂ trifoliate leaves
Field bean (Vicia faba)	FLD BEAN (10)	Maris Bead	4	1.8	3-4 ¹ / ₂ leaves

Table 3 (continued) **美国教师科科**科学会

Designa-Depth tion and Cultivar of No. computer plantor per serial ing source pot number (cm)

Stage of growth at assessment (untreated controls, leaf numbers exclusive of cotyledons)

- 5 -

-

12.1.1

Construction and an and an

•

Pea (Pisum sativum)	PEA (11)	Dark Skinned Perfection	4	1.8	$5\frac{1}{2}-6\frac{1}{2}$ leaves
White clover (Trifolium repens)	W CLOVER (12)	S100	20	0.6	3 trifoliate leaves
Tomato (Lycopersicon esculentum)	TOMATO (14)	Ailsa Craig	10	0.6	2 ¹ / ₂ leaves
Kale (Brassica oleracea acephala)	KALE (15)	Green Marrowstem	10	0.6	$2\frac{1}{2}-3\frac{1}{2}$ leaves
Swede (Brassica napus)	SWEDE (17)	Lord Derby	10	0.6	$2\frac{1}{2}-3\frac{1}{2}$ leaves
Carrot (Daucus carota)	CARROT (18)	Chantenay Red Core	10	0.6	$3\frac{1}{2}-4$ leaves
Lettuce (Lactuca sativa)	LETTUCE (20)	Borough Wonder	15	0.6	4 leaves
Sugar beet (<u>Beta vulgaris</u>)	SUG BEET (21)	Klein Monogerm	15	1.2	$3\frac{1}{2}$ leaves
Avena fatua	AVE FATU (26)	Boxworth 1967	8	1.2	$3\frac{1}{2}-4$ leaves
<u>Alopecurus</u> myosuroides	ALO MYOS (27)	Rothamsted 1968	30	0.6	5 leaves, tillering
Poa annua	POA ANN (28)	WRO 1966	25	0.2	5 leaves, tillering

STN ADV

<u>Sinapis arvensis</u>	(30)	WRO 1966	15	0.6	4 ¹ / ₂ -5 leaves	
<u>Raphanus</u> <u>raphanistrum</u>	RAPH RAP (31)	Wood's Frame	10	0.6	$2\frac{1}{2}$ -3 leaves	
<u>Chrysanthemum</u> <u>segetum</u>	CHRY SEG (32)	WRO 1971	20	0.3	6½ leaves	
<u>Tripleurospermum</u> <u>maritimum</u>	TRIP MAR (33)	WRO 1967	25	Surface	6½ leaves	

Table 3 (continued)

Villey State of Street of

- 6 -

Depth Designaof No. Cultivar tion and plantper computer or ing pot source serial (cm) number

Stage of growth at assessment (untreated controls, leaf numbers exclusive of cotyledons)

NOT STATE OF A DESCRIPTION OF A DESCRIPT

and r

-

4

-

-

.

-

-

Senecio vulgaris	SEN VULG (34)	WRO 1967	25	0.6	Erratic germination
<u>Polygonum</u> lapathifolium	POL LAPA (35)	WRO 1970	15	0.6	$3\frac{1}{2}-4$ leaves
Galium aparine	GAL APAR (38)	WRO 1970	12	0.6	3-4 whor1s
Chenopodium album	CHEN ALB (39)	WRO 1971	25	0.6	6 leaves
Stellaria media	STEL MED (40)	WRO 1970	20	0.6	8-10 leaves
Veronica persica	VER PERS (42)	WRO 1972	20	0.6	Diseased
Agropyron repens	AG REPEN (47)	WRO Clone 31	67	1.2	4-5 leaves, tillering
Allium vineale	ALL VIN (49)	WRO 1971	6*	1.2	$2-2\frac{1}{2}$ leaves
Cirsium arvense	CIRS ARV (50)	WRO Clone 1	4##	1.2	5-6 leaves
Tussilago farfara	TUS FARF (51)	WRO Clone 1	4*	1.8	$4\frac{1}{2}$ -5.leaves
<u>Convolvulus</u> arvensis	CONV ARV (52)	WRO Clone 1	4##	1.2	6-8 leaves
Tropical species (g	rown under hi	igher of temper	rature reg	(imes)	

Maize (Zea mays)	MAIZE (58)	Inra 200	6	1.8	5-5½ leaves
Sorghum (Sorghum bicolor)	SORGHUM (59)	Fetereita	8	1.2	5½ leaves
Rice (Oryza sativa)	RICE (60)	Kogbandi	10	1.2	3-4 leaves
Groundnut (Arachis hypogea)	GRNDNUT (64)	Natal Common	4	1.8	4 ¹ / ₂ -5 ¹ / ₂ trifo- liate leaves

Table 3 (continued)

- 7 -

Depth Designa-Cultivar of tion and No. plantcomputer per or serial ing pot source (cm) number

Stage of growth at assessment (untreated controls, leaf numbers exclusive of

cotyledons)

Soyabean (<u>Glycine max</u>)	SOYABEAN (65)	Wayne	6	1.2	1 ¹ / ₂ -2 ¹ / ₂ trifo- liate leaves
Cotton (<u>Gossypium hirsutum</u>)	COTTON (66)	26J	6	1.8	$2-2\frac{1}{2}$ leaves
Jute (<u>Corchorus</u> <u>olitorius</u>)	JUTE (67)	Egypt 1971	20	0.6	$3\frac{1}{2}-5$ leaves
Kenaf (<u>Hibiscus</u> <u>cannabinus</u>)	KENAF (68)	Thai Native	10	0.6	2-3 leaves
Sesamum (<u>Sesamum indicum</u>)	SESAMUM (70)	Addis Ababa 1970	10	0.6	2-4 leaves
Eleusine indica	ELEU IND (74)	WRO 1964	15	0.6	$5-6\frac{1}{2}$ leaves
<u>Echinochloa</u> crus-galli	ECH CRUS (75)	WRO 1969	15	0.6	$4\frac{1}{2}$ -5 leaves
<u>Rottboellia</u> <u>exaltata</u>	ROT EXAL (76)	Rhodesia 1971	30	0.6	$4-4\frac{1}{2}$ leaves
<u>Digitaria</u> <u>sanguinalis</u>	DIG SANG (77)	WRO 1968	20	0.6	$3\frac{1}{2}-5$ leaves
<u>Amaranthus</u> <u>retroflexus</u>	AMAR RET (78)	WRO 1968	15	0.3	5-6 leaves
Cyperus esculentus	CYP ESCU (85)	WRO Clone 2 (ex South Africa)	5**	1.8	3 ¹ / ₂ -7 ¹ / ₂ leaves/ shoot
<u>Cyperus rotundus</u>	CYP ROTU (86)	WRO Clone 1 (ex Rhodesia)	5**	1.8	8 ¹ / ₂ -9 ¹ / ₂ leaves/ shoot
Oxalis latifolia	OXAL LAT (87)	WRO Clone 2 (ex Cornwall)	14 bulbs	1.2	1-6 leaves

/ one node rhizome fragments
// 4 cm root fragments

and the second second

4

-

* serial bulbils
** tubers

TRIFLURALIN Trade name Code number L 36352 2,6-dinitro-N,N-dipropy1-4-trifluoromethylaniline Chemical name

- 8 -

Structure

NO2

Treflan

Source

Lilly Research Centre Ltd Er1 Wood Manor Windlesham Surrey

Information available and suggested uses

Manufacturer's literature over many years reports control of annual grass and broad-leaved weeds, following pre-emergence incorporation. The herbicide must be incorporated immediately after application. Tolerant crops include cotton, soyabeans and safflower (both for seed only), commercial gladioli and established ornamentals. Weed control in transplanted brassica crops, dwarf beans, sugar beet and the control of Oxalis spp. has been summarised by Smith and Day (1967). Ford and Massey (1971) have compared the characteristics of trifluralin with some related dinitro-aniline herbicides.

48% w/v a.i. emulsifiable concentrate Formulation used

> for activity experiment 388 1/ha (34.5 gal/ac) for selectivity experiment 352 1/ha (31.3 gal/ac)

RESULTS

Spray volume

Full histogram results are given on pages 12-16 and potential selectivities are summarised in the following Table.

RATE (kg ai/ha)	CROPS: vigour reduced by 15% or less	WEEDS: number or vigour reduced by 70% or more
4.00	carrot	<u>Polygonum lapathifolium</u> <u>Agropyron repens</u> <u>Cirsium arvense</u> <u>Rottboellia exaltata</u> + species below
1.00	species above + kale radish groundnut soyabean cotton	Avena fatua Alopecurus myosuroides Chenopodium album Stellaria media Echinochloa crus-galli Amaranthus retroflexus Oxalis latifolia + species below

(Table continued overleaf)

RATE	CROPS: vigour reduced	WEEDS: number or vigour
(kg ai/ha)	by 15% or less	reduced by 70% or more
0.25	species above + wheat	Poa annua Convolvulus arvensis

barley onion dwarf baan	<u>Digitaria sanguinalis</u>
field bean	
pea white clover tomato swede	
1ettuce maize	
kenaf	
sesamum	

Comments on results

General

Trifluralin was included as a standard for comparison with the chemically related isopropalin, oryzalin and dinitramine. In the activity experiment, phytotoxicity was caused mainly by the soil treatments, especially pre-emergence applications. Greater activity was found following incorporation, particularly with the perennial and large seeded species. In a separate experiment using soil thin-layer chromatography plates, the mobility of trifluralin was low and very similar to isopropalin, oryzalin and dinitramine.

In the selectivity experiment, annual grass weeds were well controlled. Some dicotyledonous species were also susceptible, particularly Convolvulus arvensis and Oxalis latifolia. Several crops were tolerant, most notably carrot.

Symptoms

The activity experiment foliar spray caused only minor contact scorch and necrosis on kale and dwarf bean at the higher doses. This may have been due to the formulation solvent. Post-emergence soil drenches inhibited growth of Avena fatua and perennial ryegrass and their foliage became darker green. Roots of kale were inhibited resulting in a tendency for plants to fall over at soil level. Grasses failed to emerge from the soil or to develop beyond the coleoptile stage at higher pre-emergence doses, while at low rates leaves emerged but were generally stunted and darker green. Susceptible broad-leaved species usually emerged but were severely inhibited with darker green deformed leaves and stunted roots.

Temperate weeds and crops

The small seeded Poa annua was controlled at 0.25 kg/ha and the larger seeded Alopecurus myosuroides and Avena fatua at 1.00 kg/ha. Agropyron

repens was susceptible at 4.00 kg/ha and rhizome fragments replanted in untreated soil failed to develop. There was however eventual recovery from the initial severe effects at 1.00 kg/ha. Only three annual broad-leaved weeds were controlled and the cruciferous weeds were notably resistant. The eventual kill of all root fragments of Convolvulus arvensis, even at 0.25 kg/ha, was most impressive. Tussilago farfara and Allium vineale were resistant but root fragments of Cirsium arvense eventually rotted after treatment with 4.00 kg/ha.

- 10 -

Carrot was outstandingly tolerant at 4.00 kg/ha. Kale and radish were resistant at 1.00 kg/ha and all other broad-leaved crops, with the exception of sugar beet, were tolerant to C.25 kg/ha. Perennial ryegrass was particularly susceptible and the cereals only showed resistance at the lowest dose.

The potential selective control of annual grass weeds in kale and radish was noted. The perennials A. repens and C. arvense were susceptible at rates where carrot was resistant. The sensitivity of C. arvensis at doses tolerated by these and other crops was most impressive.

Tropical weeds and crops

The annual tropical grasses were killed at 1.00 kg/ha with the exception of Rottboellia exaltata which, although severely reduced, was recovering from 4.00 kg/ha. Digitaria sanguinalis and Eleusine indica were controlled at 0.25 kg/ha and did not emerge at 1.00 kg/ha. Amaranthus retroflexus was controlled at 1.00 kg/ha although some plants still produced inflorescences. There was little effect on the perennial Cyperus spp. but Oxalis latifolia had not emerged at 1.00 kg/ha four weeks after planting. Nine weeks after treatment some plants were beginning to grow at this dose, albeit stunted, while at 4.00 kg/ha severely deformed leaves were just emerging. These results on O. latifolia are similar to those reported by Dean and Parker (1971).

Crops were only tolerant up to 1.00 kg/ha where soyabean, cotton and particularly groundnut were resistant. Maize only suffered minor damage at this dose and was recovering at assessment. All crops tested showed some tolerance at 0.25 kg/ha with the exception of sorghum and rice. The former was particularly susceptible.

Potential selective control of certain annual grasses was obtained in maize, kenaf, sesamum, groundnut, soyabean and cotton. The latter three crops were also resistant at rates where A. retroflexus and O. latifolia were controlled.

Soil persistence

The long persistence of trifluralin in the soil was confirmed using perennial ryegrass as a test species. Although 0.25 kg/ha could not be detected 33 weeks after treatment, doses of 1.00 and 4.00 kg/ha were still causing 84 and 98% fresh weight reductions respectively, 54 weeks after application.

Degradation by photodecomposition and volatilization has been reported by Wright and Warren (1965) and by Bardsley et al. (1968). More recently the work of Parr and Smith (1973) has shown that microbiological degradation can take place and that decomposition can occur by different pathways depending on whether soil conditions are aerobic or anaerobic.

Possible uses and further testing

Trifluralin has been extensively field tested and is well established for the selective control of annual grass weeds in certain crops. This trial shows its activity against <u>Convolvulus arvensis</u> which deserves further investigation under European conditions. Other reports have shown a similar result particularly when applied as a sub-surface layer (Agamalian and Kempen, 1971, Agamalian <u>et al.</u>, 1972, Lange <u>et al.</u>, 1972 and Warner, 1973).

- 11 -

Activity against Oxalis latifolia was good, and this may be a potential use for trifluralin in certain crops. Increasing the selectivity in maize, sorghum and rice against annual grass weeds is worth further investigation, possibly using a seed protectant.

ACTIVITY EXPERIMENT

- 12 -

经济学校的 法通知 化学校学校学校学校学校

TRIFLURALIN

0.23 kg/ha	0.90 kg/ha	3.61
(S 0.20 kg/ha)	(S 0.50 kg/ha)	(S 3.2

F S VYYYYYYYYYXXXX XXXXXXXXXXXXXXX XXXXXXXXXXXX

XXXXXXXXXXXXXXX

kg/ha 0 kg/ha)

XXXXXXXXXXXXXXX XXXXXXXXXXXX

a ten and a los a state

DUMUL	
BEAN	

DLIADD

AAA	hand been from the of t	f ba
9797999	VVVVVVVVVVV	v
XXX	A A A A A A A A A	A

- P
- XXXXXXXXXXXXXXX XXXXXXXXXXXXXXX
- F XXXXXXXXXXXXXX XXXXXXXXXXXXXXXX
- S
- P
- XXXXXXXXXXXX XXXXXXXXXXXXXXX

- XXXXXXXXXXXXXX XXXXXXXXXXXXX

XXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXX XXXXXXXXXXXXXXX

XXXXXXXXXXXXXXX XXXXXXXXXX

XXXXXXXXXXXXXXX XXXXXXXXXXXXXXX

XXXXXXXXXXXXXXX XXXXXXXXXXXX

- XXXXXXXXXXXX
- XXXXXXXXXX XXXXXXXXXXXXXX

XXXXXXXXXXXXXXXXX XXXXXXXXXXXXXX

XXXXXXXXXXXXXXX XXXXXXXXXXXXXXX

XXXXXXXXXXXXXX XXXXXX

XXXXXXXXXXXXXXXX XXXXXXXXXXXX

XXXXXXXXXXXXXXX R XXXXXX

> XXXXXXXXXXXXXXX XXXXXXXXXXXX

XXXXXXXXXXXXXXXX XXXXXXXXXXX

XXXXXXXXXXXXXXX + XXXXXX

XXXXXXXXX

XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXX

KALE

POLYGONUM

AMPHIBIUM

P

-

P

Key: F = post-emergence, foliar application S = post-emergence, soil drench P = pre-emergence, surface film I = pre-planting, incorporated

WHEAT (1)	91 100
BARLE (2	Y)	96 100
OAT (3)	110 79
PER R (4	YGR)	4
ONION (8)	94 93
DWF B	EAN)	100
FLD B (10	EAN)	100
PEA (11)	90 100
W CLO (12	VER)	115
TOMAT (14	0)	98 93
KALE (15)	118
SWEDE (17)	131

.

TRIFLU	JRALIN
0.25	KG/HA

TRIFLURALIN		TRIFLURALIN		TRIF
0.25 KG/HA		1.00 KG/HA		4.00
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	72	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	0	
XXXXXXXXXXXXXXXXXX	50	XXXXXXXXXX	0	
XXXXXXXXXXXXXXXXXXX	96	XXXXXXXXXXXXXXXXXX	89	XXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	71	XXXXXXXXXXXXXX	43	XXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	22	XXXX	0	
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	50	XXXXXXXXX	0	
x	0		0	
XXX	0		0	
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	9	xx	0	
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	14	XXX	0	
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	83	XXXXXXXX
XXXXXXXXXXXXXXXXXXXX	79	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	36	XXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	75	XXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	64	XXXXXXXXXXXXX	36	XXXXXXX
XXXXXXXXXXXXXXXXXXX	120	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	90	XXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	71	XXXXXXXXXXXXXX	36	XXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	90	XXXXXXXXXXXXXXXXX	29	XXXXXX
XXXXXXXXXXXXXXXXXXXX	57	XXXXXXXXXXX	14	XXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	81	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	98	XXXXXXXX
XXXXXXXXXXXXXXXXXXX	64	XXXXXXXXXXXXX	43	XXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	118	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	93	XXXXXXXXXXXXXXXXXX	43	XXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	37	XXXXXX	112	XXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	57	XXXXXXXXXXXX	43	XXXXXXXXX

PLURALIN O KG/HA

XXXXXXXXXX

XXXXXXXXX

XXXXXXX

XXXXXXXXXX

XXXXXXXXXXXX

XXXXXXXXXXXX

+ XXXXXXXXXXXXXXXX

2

PRE EMERGENCE SELECT IN EXPERIMENT

CARROT	100
(18)	100
LETTUCE	105
(20)	100
SUG BEET	68
(21)	71
AVE FATU	109
(26)	51
ALO MYOS	54
(21)	30
POA ANN	0
(28)	0
SIN ARV	120
(30)	100
RAPH RAP	107
(31)	100
CHRY SEG	53
(32)	93
TRIP MAR	84
(33)	100
POL LAPA	129
(35)	100
GAL APAR	100
(38)	11

.

.

TRIFLURALIN		TRIFLURALIN		TRI
0.25 KG/HA		1.00 KG/HA		4.
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	112 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	+ 94 100	XXXXXXXX
YYYYYYYYYYXXXXXXXX +	112	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	+ 71	XXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	57	XXXXXXXXXXXX	29	XXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	60	XXXXXXXXXXXX	52	XXXXXXX
XXXXXXXXXXXXX	36	XXXXXXX	29	XXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	14	XXX	0	
XXXXXXXXXXX	14	XXX	0	
XXXXXXXXXXXX	0		0	
XXXXXX	0		0	
	0		0	
	0		0	
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	114	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	+ 90	XXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	21	XXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	102	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	+ 96	XXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	93	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	51	XXXXXXX
XXXXXXXXXXX	102	XXXXXXXXXXXXXXXXXXXX	+ 48	XXXXXXX
XXXXXXXXXXXXXXXXX	93	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	50	
XXXXXXXXXXXXXXXXX	89	XXXXXXXXXXXXXXXXXXX	110	XXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	79	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	43	XXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	106	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	+ 106	XXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	50	XXXXXXXXXX	29	XXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	107	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	+ 79	XXXXXXX
XXXXXXXXXXXXXXXXX	57	XXXXXXXXXXX	36) XXXXXX

1

FLURALIN .00 KG/HA

.

XXXXXXXXXXXXX XXXXXXXXXXXXXX

XXXXXXX

XXXX

XXXXXXXXXXXX XXXXX

XXXXXXXXXXXXX XXXXX

XXXX XXX

* XXXXXXXXXXXXXXXXX XXX

* XXXXXXXXXXXXXXXXXXXX

XXXXXXXXXXX

PRI 1m EMERGENCE SELEC TI and the second IT R EXPERIMENT

14

40. 4

CHEN	ALB	89
(39)	50
STEL	MED	61
(40)	50
AG RE	EPEN	69
(47)	86
ATT	TAT	400
ALL V	TN	100
(49	,	100
CIRS	ARV	218
(50)	100
TUS F	ARF	100
(51)	100
CONV	ARV	0
(52)	0
MAIZE	2	112
(58).	100
SOPCE	TTM	70
1 50	J	57
1 22	/	21
RICE		82
(60)	64
GRNDN	UT	131
(61)	100
SOYAH	EAN	79
(65)	93

٠

.

TRIFLURALIN		TRIFLURALIN		TRIF
0.25 KG/HA		1.00 KG/HA		4.0
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	11	XX	11	XX
XXXXXXXXX	29	XXXXXX	14	XXX
XXXXXXXXXXXX	8	XX	0	
XXXXXXXXXX	7	X	0	
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	94	XXXXXXXXXXXXXXXXXXX	0	
XXXXXXXXXXXXXXXXXX	43	XXXXXXXXX	0	
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	71	XXXXXXXXXXXXXX	57	XXXXXXXXX
* XXXXXXXXXXXXXXXXXXXX	82	XXXXXXXXXXXXXXXXX	0	
XXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	0	
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	71	XXXXXXXX
	0		0	
	0		0	
****	84	XXXXXXXXXXXXXXXXX	56	XXXXXXXXX
XXXXXXXXXXXXXXXXXXX	79	XXXXXXXXXXXXXXX	50	XXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	0		0	
XXXXXXXXXX	0		0	
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	47	XXXXXXXXX	0	
XXXXXXXXXXXXX	29	XXXXXX	0	
* XXXXXXXXXXXXXXXXXXXXXX	131	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	75	XXXXXXXXX
XXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXX	50	XXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	97	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	97	XXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	86	XXXXXXXXXXXXXXXXXXX	57	XXXXXXXXX

FLURALIN DO KG/HA

XXXXXXXXXXXX XXX

XXXXXXXXXXXX XXXXXX

XXX XX

PR H EMERGENC SELECTI H H EXPER hand MENT

1000

15

XXXXXXX XX

*

XXXXXXXXXXX XXX

0(OTTON 66)	110 100
J	UTE 67)	119 79
k (ENAF 68)	98 100
92 (ESAMUM 70)	137 93
E (IEU IND 74)	000
E (CH CRUS 75)	60 43
F (20T EXAL 76)	87 64
I (IG SANG 77)	11 14
4	MAR RET 78)	85 50
((YP ESCU 85)	90 100
	TYP ROTU 86)	114
	DXAL LAT 87)	67 57

TRIFLURALIN		TRIFLURALIN		TRIFLURALIN
0.25 KG/HA		1.00 KG/HA		4.00 KG/HA
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	90 86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	90 57	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	81 29	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	00	
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	104 71	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	82 43	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	150 43	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	00	
	0		00	
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	00		00	
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	57 50	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	15 36	XXX XXXXXXXX
XX XXX	00		00	
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	65 29	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	00	
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	110 86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	40 86	XXXXXXXX XXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	105 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	65 93	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	0		0	

RIFLURALIN

PRE-EMERGENCE SELECTIVITY EXPERIMENT 16 -

ISOPROPALIN

- 17 -

<u>Code number</u> EL-179 <u>Trade name</u> Paarlan

Chemical name

4-isopropy1-2,6-dinitro-N,N-dipropy1aniline

Structure

Source

٠

Lilly Research Centre Ltd Erl Wood Manor Windlesham Surrey

Information available and suggested uses

In 1970 the manufacturer reported pre-emergence control of certain annual grasses and a few broad-leaved weeds following incorporation. The weed control and crop tolerance spectrum is similar to that of trifluralin but a greater degree of selectivity is claimed for isopropalin in alfalfa, beans, peppers, tomatoes, peas, potatoes and transplanted tobacco.

Formulation used 72% w/v a.i. emulsifiable concentrate

Spray volume

for activity experiment 388 1/ha (34.5 gal/ac) for selectivity experiment 352 1/ha (31.3 gal/ac)

RESULTS

Full histogram results are given on pages 20-24 and potential selectivities are summarised in the following Table.

RATE (kg ai/ha)	CROPS: vigour reduced by 15% or less	WEEDS: number or vigour reduced by 70% or more
4.00	dwarf bean field bean pea kale carrot radish maize groundnut soyabean cotton	Avena fatua Alopecurus myosuroides Stellaria media Echinochloa crus-galli Amaranthus retroflexus Oxalis latifolia + species below
1.00	species above + wheat barley oat white clover lettuce kenaf	<u>Poa annua</u> <u>Convolvulus arvensis</u> <u>Eleusine indica</u> <u>Digitaria sanguinalis</u>

(Table continued overleaf)

RATE	CROPS: vigour reduced	WEEDS: number or vigour
(kg ai/ha)	by 15% or less	reduced by 70% or more
0.25	None listed as no weeds controlled	None

- 18 -

General

The activity experiment results showed that the type of action was similar to that of trifluralin. The foliar spray caused only minor symptoms on kale and dwarf bean. Most activity occurred with the soil treatments, pre-emergence applications being more active than post-emergence soil drenches. Incorporation generally resulted in greater activity than surface application.

In the selectivity experiment annual grass weeds proved to be particularly susceptible although some annual and perennial broad-leaved species were also controlled, notably <u>Convolvulus arvensis</u> and <u>Oxalis latifolia</u>. Maize, certain temperate and tropical legumes and a number of other crops were resistant and several selectivities were found. Both the trials reported here showed that isopropalin was much less phytotoxic than

trifluralin.

Symptoms

Symptoms on susceptible species were generally very similar to those caused by trifluralin. Severe inhibition of grasses occurred soon after germination. The foliage of grasses and broad-leaved species was darker green and root systems were inhibited.

Temperate weeds and crops

<u>Poa annua</u> was controlled at 1.00 kg/ha while <u>Alopecurus myosuroides</u> and <u>Avena fatua</u> were susceptible at 4.00 kg/ha. <u>Stellaria media</u> was the only annual broad-leaved weed to be controlled. <u>Convolvulus arvensis</u> was completely killed at 4.00 kg/ha and 80% of the plants died at 1.00 kg/ha. All other perennial weeds were resistant.

Radish, carrot and all the large seeded leguminous crops were tolerant at 4.00 kg/ha. White clover, lettuce and the cereals, were resistant at 1.00 kg/ha.

Potential selectivities were found in the large seeded legume crops, carrot and certain brassica crops at rates where <u>S. media</u>, <u>C. arvensis</u> and the annual grasses were controlled. At 1.00 kg/ha <u>C. arvensis</u> and <u>P. annua</u> were susceptible, while white clover, lettuce and the cereals were resistant.

Tropical weeds and crops

Digitaria sanguinalis and Eleusine indica were the most susceptible weeds being controlled at 1.00 kg/ha. At 4.00 kg/ha there was no emergence of these weeds and <u>Echinochloa crus-galli</u> was killed. <u>Rottboellia</u> <u>exaltata</u> was particularly resistant however. <u>Amaranthus retroflexus</u> was controlled at 4.00 kg/ha though some survivors were likely to recover. <u>Oxalis latifolia</u> was also controlled at this dose, but nine weeks after treatment leaves were beginning to develop from all bulbs. No effects were observed on the <u>Cyperus</u> spp. tested.

- 19 -

Groundnut, soyabean, maize and cotton were all tolerant at 4.00 kg/ha but were slightly retarded compared with the untreated controls. At 1.00 kg/ha kenaf was resistant while rice, sesamum and sorghum, showed some degree

of recovery at assessment.

O. latifolia and <u>A. retroflexus</u> were controlled at 4.00 kg/ha where maize, cotton, groundnut and soyabean were tolerant. Potential selective control of some of the annual grasses was achieved in these crops and in kenaf at 1.00 kg/ha.

Soil persistence

Using perennial ryegrass as the sensitive test species, 4.00 kg/ha of isopropalin was causing an 82% fresh weight reduction 54 weeks after application. At this time 1.00 kg/ha was barely detectable. 0.25 kg/ha was not detected in the initial assay set up at the time of spraying.

Possible uses and further testing

The activity of isopropalin against the species tested showed a similar pattern to trifluralin but was not so great; 4.00 kg/ha of isopropalin were

equivalent to trifluralin at 1.00 kg/ha.

Under temperate conditions good selective control of annual grass weeds can be expected in several broad-leaved crops, particularly the legumes. The poor control of broad-leaved weeds is a disadvantage, even though <u>C. arvensis</u> was susceptible. Although the activity of isopropalin was much less than that of trifluralin, the selectivity margin was similar.

The effects of isopropalin on <u>O. latifolia</u> were not so severe or as persistent as trifluralin. The selectivity margins were generally similar for both compounds in the tropical situation and any advantage gained using isopropalin could well be outweighed by the greater dose required.

ACTIVITY EXPERIMENT.

- 20 -

ISOPROPALIN

0.23 kg/ha (S 0.20 kg/ha)

F

XXXXXXXXXXXXXXX XXXXXXXXXXXXXX

S

DWARF

(S 0.80 kg/ha)

0.90 kg/ha

XXXXXXXXXXXXXXX XXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXXXX XXXXXXXXXXXXX

3.61 kg/ha

 $(S_{3.20 \text{ kg/ha}})$

XXXXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXX XXXXXXXXXXXXXXX

F

S

P

P

S

P

AVENA

FATUA

AGROPYRON

REPENS

STREET, STREET

XXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXX

XXXXXXXXXXXX XXXXXXXXXXXXX

XXXXXXXXXXXXXXXX

F

S XXXXXXXXXXXXXXX XXXXXXXXXXXXXX

> XXXXXXXXXXXXX

XXXXXXXXXXXXXX XXXXXXXXXXXXX

F XXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX

- XXXXXXXXXXXXXX XXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXX XXXXXXXXXXXX

XXXXXXXXXXXX XXXXXXXXXXXX

XXXXXXXXXXX XXXXXX

XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX

XXXXXXXXXX XXXXXXXXXXX

XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXX XXXXXXXXXX

XXXXX XXXXXXXXX

âx

XXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXX

XXXXXXXXXXX XXXXXXXXXX

XXXXXXXXX XXXXXX

XXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXX +

Key: F = post-emergence, foliar application S = post-emergence, soil drench P = pre-emergence, surface film I = pre-planting, incorporated

WHEAT (1)	85
BARLE (2	Y)	96
OAT (3)	110
PER R (4	YGR)	93 93
ONION (8)	94 93
DWF E	EAN)	100
FLD E (10	EAN	100
PEA (11)	45
W CLC (12) VER	99
TOMAT (14	0)	92 100
KALE (15)	109
SWEDE (17	;	94 86

ISOPROPALIN		ISOPROPALIN			IS
0.25 KG/HA		1.00 KG/HA			4
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	98	XXXXXXXXXXXXXXXXXXXXXX		85	XXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXX		71	XXXXXX
XXXXXXXXXXXXXXXXXXX	96	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		89	XXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		71	XXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	110	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	+	51	XXXXXX
XXXXXXXXXXXXXXXXXXX	86	XXXXXXXXXXXXXXXXXX		57	XXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	25	XXXXX		0	
XXXXXXXXXXXXXXXXX	43	XXXXXXXXX		0	
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	77	XXXXXXXXXXXXXXX		51	XXXXX
XXXXXXXXXXXXXXXXXX	79	XXXXXXXXXXXXXXX		29	XXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		100	XXXXXX
XXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		100	XXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXX		87	XXXXXX
XXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		86	XXXXXX
XXXXXXXX	105	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	+	105	XXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	86	XXXXXXXXXXXXXXXX		86	XXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	132	XXXXXXXXXXXXXXXXXXX	+	66	XXXXX
XXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		43	XXXXX
XXXXXXXXXXXXXXXXXX	75	XXXXXXXXXXXXXXXX		81	XXXXX
XXXXXXXXXXXXXXXXXXXXX	79	XXXXXXXXXXXXXXX		64	XXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	136	XXXXXXXXXXXXXXXXXXXXXXXX	+	118	XXXXX
XXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		93	XXXXX
XXXXXXXXXXXXXXXXXXXX	122	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	+	37	XXXXX
XXXXXXXXXXXXXXXXXXX	79	XXXXXXXXXXXXXXXXX		57	XXXXX

1000

SOPROPALIN 4.00 KG/HA

XXXXXXXXXXXX XXXXXXXXX

XXXXXXXXXXXXX XXXXXXXXX

XXXXX XXXXXX

XXXXX

XXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXX

XXXXXXXXXXXX XXXXXXXXXXXXX

* XXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXX

XXXXXXXX XXXX

XXXXXXXXXXX XXXXXXXXX

txxxxxxxxxxxxxxxxxxxxxxxx XXXXXXXXXXXXXXX

XX XXXXXX PRE EMERGENCE S tri EC 1 may ~ EXPERIMENT

SPECIES 1 Calin

CARROT (18)	94
LETTUCE (20)	109
SUG BEET (21)	100
AVE FATU	95
(26)	100
ALO MYOS (27)	84
POA ANN	125
(28)	86
SIN ARV	108
(30)	100
RAPH RAP	96
(31)	100
CHRY SEG (32)	102
TRIP MAR	95
(33)	100
POL LAPA	94
(35)	100
GAL APAR (38)	107

ISOPROPALIN			ISOPROPALIN		ISOP
0.25 KG/HA			1.00 KG/HA		4.0
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		94	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	81	XXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	+	97	XXXXXXXXXXXXXXXXX	90	XXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		93	XXXXXXXXXXXXXXXXXX	43	XXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		96	XXXXXXXXXXXXXXXXXXX	72	XXXXXXXX
XXXXXXXXXXXXXXXXXXX		57	XXXXXXXXXXXX	36	XXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		95	XXXXXXXXXXXXXXXXXXX	20	XXXX
XXXXXXXXXXXXXXXXXXXXX		79	XXXXXXXXXXXXXX	50	XXXXXXXX
XXXXXXXXXXXXXXXXX		66	XXXXXXXXXXXXX	0	
XXXXXXXXXXXXXXXXXXX		57	XXXXXXXXXXX	0	
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	+	0		0	
XXXXXXXXXXXXXXX		0		0	
XXXXXXXXXXXXXXXXXXX	+	42	XXXXXXXX	96	XXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	86	XXXXXXXX
XXXXXXXXXXXXXXXXXXX		91	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	102	XXXXXXXX
XXXXXXXXXXXXXXXXXXXX		100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	93	XXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	+	77	XXXXXXXXXXXXXXXX	44	XXXXXXXX
XXXXXXXXXXXXXXXXXXXXXX		93	XXXXXXXXXXXXXXXXXXX	57	XXXXXXXX
XXXXXXXXXXXXXXXXXXXX		92	XXXXXXXXXXXXXXXXXX	92	XXXXXXXX
XXXXXXXXXXXXXXXXXX		100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	93	XXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		106	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	. 82	XXXXXXXX
XXXXXXXXXXXXXXXXXXX		100	XXXXXXXXXXXXXXXXXXXXX	57	XXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	+	93	XXXXXXXXXXXXXXXXXXX	114	XXXXXXXX
XXXXXXXXXXXXXXXXXXX		100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	64	XXXXXXXX

.

PROPALIN

DO KG/HA

A. T. A. XXXXXXXX XXXXXXXXXXXXX

XXXXXXXXXX 14 14

XXXXXXX

CXX

XXXXXXXXXXXX XXXXXXXXX

CXXXXXXXXXXXX + XXXXXXXXXXX

XXX

A COMPANY OF THE

XXXXXXXXXX XXXXXXXXXXXX

XXXXXXXX XXX

+ XXXXXXXXXXXX + XXXXX

PRE-EMERGENCE SELEC TI VIT pres. EXPERIMENT

24

.

		ISOPROPALIN		ISOPROPALIN		ISOF
SPECIES		0.25 KG/HA		1.00 KG/HA		4.0
CHEN ALB (39)	117 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	61 50	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	72 43	XXXXXXXXX
STEL MED (40)	80 93	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	68 57	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	23 29	XXXXXX XXXXXX
AG REPEN (47)	103 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	94 79	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	94 57	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
ALL VIN (49)	100 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	92 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 100	XXXXXXXXXX
CIRS ARV (50)	109 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	109 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	82 100	XXXXXXXX
TUS FARF (51)	100 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
CONV ARV (52)	91 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	26 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	000	
MAIZE (58)	103 93	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	84 86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	112 86	XXXXXXXXX
SORGHUM (59)	98 93	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	91 79	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	35 50	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
RICE (60)	94 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	94 79	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	76 50	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
GRNDNUT (64)	131 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	112 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	94 93	XXXXXXXXXX
SOYAHEAN (65)	88 93	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	106 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	88 86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

.

PROPALIN OO KG/HA

XXXXXXX X

XXXXXXXXXXXX XXX

XXXXXXXXXXXX XXXXXXXXXXXX

XXXXXXXX XXXXXXXXXXXX

XXXXXXXXXXXXX XXXXXXXXXXXX

XXXXXXXXXX

XX

XXXXXXX XX

XXXXXXXXXXX XXXXXXXXXXXX

XXXXXXXXXXX XXXXXXXXX

PRE-EMERGENCE SELECTIV VIT EXPERIMENT

1

23

COTTON	100
(66)	100
JUTE	107
(67)	93
(68)	109 100
SESAMUM	50
(70)	100
ELEU IND	56
(74)	79
ECH CRUS	116
(75)	93
ROT EXAL	109
(76)	93
DIG SANG	71
(77)	86
AMAR RET	143
(78)	100
CYP ESCU	110
(85)	100
CYP ROTU	114
(86)	100
OXAL LAT	73
(87)	100

ISOPROPALIN		ISOPROPALIN		ISO
0.25 KG/HA		1.00 KG/HA		4.
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	110	* XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	110	XXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXX	86	XXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	122	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	41	XXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	71	XXXXXXXXXXXXX	43	XXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	82	XXXXXXXXXXXXXXX	109	XXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXX	71	XXXXXXX
XXXXXXXXXX	137	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	125	XXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	79	XXXXXXXXXXXXXX	57	XXXXXXX
XXXXXXXXXX	4	x	0	
XXXXXXXXXXXXXX	21	XXXX	0	
XXXXXXXXXXXXXXXXXXXXXXXX	103	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	0	
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	57	XXXXXXXXXXX	0	
XXXXXXXXXXXXXXXXXXXXXXXXXXX	62	XXXXXXXXXXXX	92	XXXXXXX
XXXXXXXXXXXXXXXXXX	71	XXXXXXXXXXXXXX	50	XXXXXXX
XXXXXXXXXXXXXX	7	X	0	
XXXXXXXXXXXXXXXX	29	XXXXXX	0	
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	117	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	13	XXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	50	XXXXXXXXXX	36	XXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	80	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	80	XXXXXXX
XXXXXXXXXXXXXXXXXXXX	93	XXXXXXXXXXXXXXXXXXX	100	XXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	105	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	105	XXXXXXXX
XXXXXXXXXXXXXXXXXX	93	XXXXXXXXXXXXXXXXXX	93	XXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	47	XXXXXXXXXX	0	
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	50	XXXXXXXXXXX	0	

OPROPALIN

.00 KG/HA

* XXXXXXXXXXXXXXX XXXXXXXXXX

1 XX

+ XXXXXXXXXXXXXXX + XXXXXXX

+ XXXXXXXXXXXXXXXX XXXX

XXXXXXXXXXX XXX

PRE EMERGENCE SELEC TI F M ma EXPERIMENT

24

S per

XXXXXXXXX

XXXXXXXXXXXXX

* XXXXXXXXXXXXXXXXXX XXXXXXXXXXXX

ORYZALIN

Lilly Research Centre Ltd Erl Wood Manor Windlesham Surrey

Information available and suggested uses

Manufacturer's information published in 1968 reports selective control of annual grass weeds at the 1-2 leaf stage in transplanted rice. Control of aquatic broad-leaved species and some annual sedges (e.g. <u>Cyperus</u> spp., <u>Scirpus</u> spp., <u>Fimbristylis</u> spp.) has been obtained. Improved control of grasses, sedges and broad-leaved weeds was reported with the addition of 2,4-D, MCPA or with a follow-up treatment with these products. The tolerance of transplanted rice to oryzalin is altered by rate, water depth at spraying and time after planting. Further research on surface application to directseeded rice is suggested.

Formulation used 75% w/w a.i. wettable powder

<u>Spray volume</u> for activity experiment 388 1/ha (34.5 gal/ac) for selectivity experiment 352 1/ha (31.3 gal/ac)

RESULTS

Full histogram results are given on pages 28-32 and potential selectivities are summarised in the following Table.

RATE (kg ai/ha)	CROPS: vigour reduced by 15% or less	WEEDS: number or vigour reduced by 70% or more
4.00	None	None listed as no crops tolerant
1.00	dwarf bean field bean pea radish	Polygonum lapathifolium Chenopodium album Stellaria media Convolvulus arvensis Eleusine indica Digitaria sanguinalis Oxalis latifolia + species below

(Table continued overleaf)

-	26	-
---	----	---

RATE	CROPS: vigour reduced	WEEDS: number or vigour
(kg ai/ha)	by 15% or less	reduced by 70% or more
0.25	species above * onion white clover kale swede carrot maize groundnut soyabean cotton	Echinochloa crus-galli

Comments on results

General

The activity experiment results for oryzalin were similar to those of trifluralin and isopropalin. Most activity was found in the soil treatments, particularly with pre-emergence applications. Incorporation increased activity compared to the surface spray in this test, especially with <u>Avena</u> fatua, <u>Agropyron repens</u> and <u>Polygonum amphibium</u>.

Control of temperate annual grasses in the selectivity test was not so good as with trifluralin, but the susceptibility of other weed species was similar. Although the pattern of crop tolerance was similar to that with trifluralin, fewer crops showed useful resistance following treatment with oryzalin. A number of potential selectivities were noted however.

Symptoms

These were generally similar to those found with the other dinitroaniline herbicides and although plant emergence was better, root systems were severely inhibited. Certain species were severely stunted with either dark green or chlorotic leaves. Necrosis developed slowly even in stunted plants. Many species suffered no greater damage following increased application rates, a characteristic of other herbicides causing root inhibition e.g. fenac and credazine.

Temperate weeds and crops

The same annual broad-leaved weeds were controlled as with trifluralin i.e. Stellaria media, Chenopodium album and Polygonum lapathifolium although the latter was much more sensitive to oryzalin. The composite weeds <u>Chrysanthemum segetum and Tripleurospermum maritimum were controlled at</u> 4.00 kg/ha and were severely reduced at 1.00 kg/ha thus showing an increased sensitivity to oryzalin compared with the other dinitro-aniline herbicides tested. Cruciferous weeds were particularly resistant. <u>Convolvulus arvensis</u> was the most susceptible perennial weed, being controlled at 1.00 kg/ha, while plant number was severely reduced at 0.25 kg/ha. <u>Cirsium arvense</u> and <u>Agropyron repens</u> were both susceptible at 4.00 kg/ha. <u>A. repens</u> was - 27 -

eventually killed at only 1.00 kg/ha. Annual grasses were only controlled at 4.00 kg/ha but reductions of 36% and 57-64% were caused at 0.25 and - 1.00 kg/ha respectively.

No crops tolerated 4.00 kg/ha. Radish and the large seeded legumes were resistant at 1.00 kg/ha and several small seeded crops were tolerant at 0.25 kg/ha.

Potential selective control of four broad-leaved weeds, including <u>C. arvensis</u> was found in dwarf bean, pea, field bean and radish at 1.00 kg/ha. Eventually <u>A. repens</u> was also selectively killed at this dose.

Tropical weeds and crops

Echinochloa crus-galli was controlled at only 0.25 kg/ha. All other annual grasses, with the exception of <u>Rottboellia exaltata</u>, were controlled at 1.00 kg/ha. <u>Amaranthus retroflexus</u>, although seriously reduced at 1.00 kg/ha, was only controlled at 4.00 kg/ha. However <u>Oxalis latifolia</u> was somewhat more sensitive, and was well controlled at only 1.00 kg/ha. There was no emergence initially at 4.00 kg/ha but nine weeks after treatment plants had emerged and recovery was evident at both these doses. <u>Cyperus esculentus</u> was somewhat more sensitive than <u>Cyperus rotundus</u> but little effect was seen on either species.

The larger seeded species maize, cotton, soyabean and groundnut were only fully tolerant at 0.25 kg/ha and the latter almost tolerated 1.00 kg/ha.

Kenaf showed marginal resistance at 0.25 kg/ha.

<u>E. crus-galli</u> was the only weed selectively controlled at 0.25 kg/ha, although a number of other small seeded annual weeds were severely reduced at this dose.

Soil persistence

Perennial ryegrass showed no symptoms at 0.25 and 1.00 kg/ha 17 and 43 weeks respectively after application. The fresh weight of plants was, however, still reduced by 70% at 4.00 kg/ha 43 weeks after treatment.

Possible uses and further testing

The pattern of activity of oryzalin was generally similar to trifluralin. Annual grass weed control was not so good as with trifluralin with the exception of <u>E. crus-galli</u>. The temperate composite weeds and <u>P. lapathi-</u> folium were more sensitive to oryzalin.

Crop tolerance, with the exception of the large seeded temperate legumes, was notably lower than with trifluralin. Hence few potential selectivities were noted.

A shorter period of soil persistence was obtained with oryzalin compared with trifluralin.

From the results of this experiment no outstanding advantages were noted over existing herbicides in either the temperate or tropical situation.

ACTIVITY EXPERIMENT

- 28 -

ORYZALIN

0.23 kg/ha (S 0.20 kg/ha)

0.90 kg/ha (S 0.80 kg/ha)

P

F

S

P

F

S

P

F

S

P

F

S

D

XXXXXXXXXXXXXX XXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX

3.61 kg/ha (S 3.20 kg/ha)

XXXXXXXXXXXXXXX XXXXXXXXXXXXXXX

XXXXXXXXXXXXXXX XXXXXXXXXXXXXXX

XXXXXXXXXXX

XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXX

F XXXXXXXXXXXXXXX XXXXXXXXXXXXXXX

S XXXXXXXXXXXXXX XXXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXX

XXXXXXXXXXXXXX

XXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXX

XXXXXXXXXXXX

XXXXXXXXXXXXXXX XXXXXXXXXX

XXXXXXXXXXXXXX XXXXXXXXXXXXXXX

XXXXXXXXXXXXXX XXXXXXXXXXXXX

XXXXXXXXXXXXXXXX + XXXXXXX

XXXXXXXXXXXX XXXXXXXXXX

XXXXXXXXXXXXXXX XXXXXXXXXXXX

XXXXXXXXXXXXXXX XXXXXXXXXXXXXXX

XXXXXXXXXXXXXXX XXXXXXXXXXXXXXX

XXXXXXXXXXXXXX XXXXXXX

XXXXXXXXXXXXXXXX XXXXXXXX

XXXXXXXXXXXXXXX XXXXXXXXXXXXXX

XXXXXXXXXXXXXXX XXXXXXXXXX

XXXXXXXXXXXXXX XXXXX

XXXXXXXXXXXX XXXXXX

XXXXXXXXXXXXXX XXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXX XXXXXXXXXXXX

XXXXXXXXXXXXXXX XXXXXXXXXXXX

XXXXXXXXXXXXXX XXXXX

KALE

DWARF

BEAN

g. . . .

PERENNIAL RYEGRASS

XXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXX

- XXXXXXXXXXXXXX XXXXXXXXXXX

XXXXXXXXXXXXXXX

XXXXXXXXXXXXXXX

XXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXX

XXXXXXXXXXXXX

XXXXXXXXXXXXX

XXXXXXXXXXX

XXXXXXXXXX

XXXXXXXXXXXXXX XXXXXXXX

XXXXXXXXXXXXXXX

XXXXXXXXXXXXXX

XXXXXXXXXXXXXXX XXXXXXXXXX

XXXXXXXX XXXXXXX

XXXXXX

XXXXXXXXXXXXXX

XXXXXXXXXXXXXX XXXXXXXXXXXXXXX

XXXXXXXXXXXXXXX XXXXXXXXXXXXXXX

XXXXXXXXXXXXX

XXXXXXXXXX XXXXXX

XXXXXXXXXXXXXXX XXXXXXXXXXXXXX

- XXXXXXXXXXXXX XXXXXXXXXXXXXX

XXXXXXXXXXXXXXX XXXXXXXXXXXXXXX

XXXXXXXXXXXXXXX XXXXXXXXXXX

XXXXXXXXXXXXXXX XXXXXXXX

XXXXXXX XXX

XXXXXXXXXX XXXX

XXXXXXXXXXXXXXX XXXXXXXXXXXXXX

XXXXXXXXXXXXXXX XXXXXXXXXXX

XXXXXXXXXXXXXX XXXXXXXXXXX

XXXXXXXXXXX XXXXX

XXXXXXXXXXXXXX

XXXXXXXXXXXXX XXXXXXXXX

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXX

XXXXXXXXXXXXX XXXXXX

AGROPYRON

REPENS

XXXXXXXX

XXXXXXXXXXXXX XXXXXX

F = post-emergence, foliar application Key: S = post-emergence, soil drench and the second P = pre-emergence, surface film I = pre-planting, incorporated

WHEAT (1)	104 57
BARLE (2	Y)	96 71
0AT (3)	117 57
PER R (4	YGR)	100 57
ONION (8)	171 86
DWF B	EAN)	100
FLD B (10	EAN)	87
PEA (11)	105
W CLO (12	VER)	99~ 100
TOMAT (14	0)	104 79
KALE (15)	109
SWEDE (17)	112 86

ORYZALIN

. .

0.25 KG/HA

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	+	98	XXXXXXXXXXXXXXXXXXX		104	XXXXXXXX
XXXXXXXXXXX		43	XXXXXXXXX		43	XXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		102	XXXXXXXXXXXXXXXXXXXXXXXX	+	89	XXXXXXXX
XXXXXXXXXXXXX		57	XXXXXXXXXXX		43	XXXXXXXXX
XXXXXXXXXXXXXXXXXXXXX	+	110	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	+	102	XXXXXXXXX
XXXXXXXXXXX		43	XXXXXXXXX		36	XXXXXXX
XXXXXXXXXXXXXXXXXXXXXX		86	XXXXXXXXXXXXXXXXX		57	XXXXXXXX
XXXXXXXXXXX		36	XXXXXXX		29	XXXXXX
XXXXXXXXXXXXXXXXXXXXXX	+	129	XXXXXXXXXXXXXXXXXXXXXXX	+	9	XX
XXXXXXXXXXXXXXXXX		50	XXXXXXXXXX		21	XXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		100	XXXXXXXXXXXXXXXXXXXXXXX		100	XXXXXXXX
XXXXXXXXXXXXXXXXXXXX		86	XXXXXXXXXXXXXXXXX		64	XXXXXXXXX
XXXXXXXXXXXXXXXXXX		100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		87	XXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		86	XXXXXXXXXXXXXXXXX		57	XXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXX	+	105	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	+	105	XXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		93	XXXXXXXXXXXXXXXXXX		71	XXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		95	XXXXXXXXXXXXXXXXXXXXXX		33	XXXXXXX
XXXXXXXXXXXXXXXXXXXXX		43	XXXXXXXXX		14	XXX
XXXXXXXXXXXXXXXXXXXX	+	81	XXXXXXXXXXXXXXXX		58	XXXXXXXX
XXXXXXXXXXXXXXXX		43	XXXXXXXXX		43	XXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	+	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		127	XXXXXXXX
XXXXXXXXXXXXXXXXXXX		71	XXXXXXXXXXXXX		29	XXXXXX
XXXXXXXXXXXXXXXXXXXXXXXX	+	66	XXXXXXXXXXXXX		122	XXXXXXXX
XXXXXXXXXXXXXXXXXXX		64	XXXXXXXXXXXXX		43	XXXXXXXX

ORYZALIN

2.

.

1.00 KG/HA

()]	R	٦
1	-		-

Click here to continue

YZALIN 4.00 KG/HA

1

* XXXXXXXXXXXX +

.

XXXXXXXXXXX

+ XXXXXXXXXXXXXXX

XXX

XXXXXXXXXXXX XXXXX

XXXXXXXXXX XXX

+ XXXXXXXXXXXXXXX XXXXXX

XXXX

+ XXXXXXXXXXXXXXX

+ XXXXXXXXXXXXXXX

PRE-EMERGENCE SELEC -James LY. 1 EXPERIMENT

29

•