WEED RESEARCH ORGANIZATION

AGRICULTURAL RESEARCH COUNCIL

RECENTLY DEVELOPED HERBICIDES:

OXADIAZON	NORFLURAZON
U-29,722	AC 50,191
U-27,658	AC 84,777
METFLURAZONE	IPRYMIDAM

W.G. Richardson and M.L. Dean

June 1974

Price

U.K. and overseas surface mail - £3.62 - £3.88 Overseas airmail

NB:AC 50-191 is confidential (Cyanamid), AC 84777 is difenzoquat metilsulfate, U-27,658 is 2-(3,4,5-tribromopyrazol-1-yl)acetic acid (Upjohn), U-29,722 is 3,4,5-tribromo-@-methyl-pyrazole-1-acetic acid (Upjohn)

N.S

BEGBROKE HILL, YARNTON, OXFORD

Inder

ERRATA. Please note that throughout this report IPRYMIDAN

should read IPRYMIDAM. Also, following a recent

BSI Committee decision, OXADIAZONE and NORFLURAZONE

*

1

should now read OXADIAZON and NORFLURAZON

CONTENTS


```
2-t-buty1-4-(2,4-dichloro-5-isopropoxypheny1)-1,3,4-
     oxadiazolin-5-one
                                                                    19
U-29,722
     3,4,5-tribromo-a-methyl-pyrazole-l-acetic acid
                                                                    26
U-27,658
     3,4,5-tribromopyrazole-1-acetic acid
                                                                    33
METFLURAZONE
     4-chloro-5-(dimethylamino)-2-(3-trifluoromethylphenyl)
     pyridazin-3(2H)-one
                                                                    41
NORFLURAZONE
     4-chloro-5-methylamino-2-(3-trifluoromethylphenyl)
     pyridazin-3(2H)-one
                                                                    50
AC 50,191
```

Confidential

AC 84,777

-

4

۹

.

-

-

1,2-dimethy1-3,5-dipheny1pyrazolium methyl sulphate

IPRYMIDAN

2-amino-4-chloro-6-isopropyl-aminopyrimidine

ACKNOWLEDGEMENTS

REFERENCES

66

74

74

The content of this publication, in whole or in part, may be quoted or reproduced provided the authors and the ARC Weed Research Organization are fully acknowledged. The correct bibliographical reference is:-

RICHARDSON, W.G. & DEAN, M.L. The activity and post-emergence selectivity of some recently developed herbicides: oxadiazone, U-29,722, U-27,658, metflurazone, norflurazone, AC 50,191, AC 84,777 and iprymidan. Tech. Rep. agric. Res. Coun. Weed Res. Orgn, 1974, 32, pp 74.

THE ACTIVITY AND POST-EMERGENCE SELECTIVITY OF SOME RECENTLY DEVELOPED HERBICIDES: OXADIAZONE, U-29,722, U-27,658, METFLURAZONE, NORFLURAZONE, AC 50,191, AC 84,777 AND IPRYMIDAN

W.G. Richardson and M.L. Dean **

ARC Weed Research Organization, Begbroke Hill, Yarnton, Oxford OX5 1PF

SUMMARY

.

.

.

The foliar and soil activity of eight recently developed herbicides was investigated in pot experiments on six species. Subsequently the early post-emergence selectivity of these compounds was determined on 36 temperate and 20 tropical and sub-tropical crops and weeds.

No selectivities were found with oxadiazone because of lack of crop tolerance. A broad spectrum of weeds were controlled although certain annual and the majority of perennial species exhibited some resistance.

A number of annual broad-leaved weeds were controlled at 6.0 kg/ha with U-29,722 but at lower rates no control was achieved. Annual and perennial grass weeds showed considerable resistance. Crop tolerance was limited to monocotyledonous species.

Results with U-27,658 were of a similar pattern to those obtained with U-29,722. Control of broad-leaved weeds and activity on grass weeds was improved without loss of selectivity.

Carrot showed outstanding tolerance to metflurazone. Several other crops were also resistant but selectivities were marginal. Control of a range of annual broad-leaved and grass species was achieved at higher doses.

Norflurazone exhibited a broad spectrum of crop tolerance at lower doses while the majority of weeds were only controlled at higher rates. Both annual and perennial weeds were susceptible but selectivities were marginal. Generally activity was greater on both crop and weed species compared with the related metflurazone.

A high specificity for <u>Avena fatua</u> was found with AC 50,191 although control took some time to be achieved. A few broad-leaved weeds were also controlled. Many crops showed tolerance, most notably wheat and barley.

AC 84,777 produced a very similar pattern of results to AC 50,191, although Avena fatua and wheat proved to be more susceptible.

Iprymidan was highly active and only a limited number of crops were tolerant. The majority of crop and weed species were severely affected or killed at 3.0 kg/ha. Both mono and dicotyledonous annual weeds were susceptible but selectivities were not outstanding.

* Herbicides Group

** ODA Tropical Weeds Group

INTRODUCTION

The Herbicide Group and ODA Tropical Weeds Group of the Weed Research Organization investigate the selectivity of new herbicides which are in the process of commercial development by industry. This involves application, both pre-emergence and post-emergence, to a wide range of crop and weed species grown in pots, as a preliminary stage of this process. The objectives are to discover selectivities additional to those pin-pointed by the firm which originally discovered the herbicidal properties of the chemical; to obtain experience of the type of effects produced by the chemical; and to provide a source of information on the relative susceptibility of plant species. The latter may subsequently prove useful in considering problems such as the cropping of land contaminated with the herbicide. Essentially the main value of this experimentation is as a guide in the planning of further experiments both in pots and in the field.

- 2 -

Attention is drawn particularly to the fact that the selectivity experiments described here are only a preliminary guide to the relative resistance or susceptibility of the species included. Pot experiments of this sort are not a reliable guide to the dose levels needed to produce the same effects in the field. Furthermore the experiments are conducted on only one widely grown variety of each crop plant or on weed material from one readily available source. Large variations in response can occur between different varieties of the same crop, or between different strains or clones of weed species. In a few instances a cultivar attributed to the same species as the weed has been used for ease of propagation and there are a number of cases where a species has been included which is a crop in some circumstances and a weed in others. The experiments are conducted on one soil type and at one particular stage of growth only. All these important variables can have a profound effect on response. For the above reasons it must be emphasised that the data reported should be regarded primarily as a source of ideas for further work.

8

The Weed Research Organization only accepts herbicides for inclusion in its research programme if the chemical nature is disclosed. However, in some cases this disclosure is confidential for a limited period of time. Hence there may be occasional instances in these reports where the chemical composition of a herbicide is not stated but marked as confidential. In general, readers of these reports will find that information on this point becomes available from other sources in a relatively short period of time.

The present report gives post-emergence data on eight new compounds from two separate experiments and results are also included from Activity Experiments which elucidate the types of activity possessed by the herbicides.

METHODS AND MATERIALS

a) Activity Experiments (AE 1-6)

This is the first routine test when a new herbicide is received. It provides information on levels of phytotoxicity, mode and type of action and whether the activity is associated with uptake by the roots or foliage of the plant. Herbicides were applied by four different methods to six selected species, four being raised from seeds and perennial species from one-node rhizome fragments (see Table 1 for species data). All species were grown in a sandy loam soil from a field at Begbroke Hill and every treatment was replicated twice. Soil and environmental conditions are summarised in Table 2. Growth stages at treatment and assessment are recorded for untreated controls exclusive of cotyledons.

Table 1. Plant data for Activity Experiments

- 3 -

				and the second se	The second se			
	Cultivar/ source	No. per pot at spraying pre- post-		Source No. per pot at spraying Depth of growth pre- post- Depth of growth planting (cm) Stage of growth at post- treatment		Stage of growth at post- emergence treatment	Stage growt assess pre-	e of h at ment post-
Dwarf bean (Phaseolus vulgaris)	The Prince	3	2-3	1.8	2 unifoliate leaves	1 ¹ / ₂ -2 ¹ / ₂ trifo- liate leaves	1 ¹ / ₂ -2 trifo- liate leaves	
Kale (Brassica oleracea acephala)	Marrow- stem	8-15	4-5	0.6	1/2-2 leaves	2½-4½ leaves	1 ¹ / ₂ -4 leaves	
Polygonum amphibium	WRO Clone 1	6	3-6	1.2	2½-4½ 1eaves	4 <u>1</u> -8 <u>1</u> 1eaves	6-10 leaves	
Perennial ryegrass (Lolium perenne)	S23	10	10	0.6	$2-2\frac{1}{2}$ leaves	3-8 leaves	5-9 leaves	
Avena fatua	Boxworth 1967	8	4-6	1.2	$1\frac{1}{2}-2\frac{1}{2}$ leaves	5-8 leaves	4-8 leaves	
Agropyron repens	WRO Clone 31	6	4-5	1.2	$1\frac{1}{2}-3$ leaves	4-9 leaves	5 ¹ / ₂ -9 leaves	

.

i) foliar spray, post-emergence

.

*

.

Plants were raised in 8.9 cm plastic disposable pots and thinned to constant number before treatment. The herbicide was applied from a Teejet fan nozzle moving at constant speed 30 cm above the level of maximum foliage. The soil surface was protected with a layer of perlite to intercept any spray which might reach the soil surface. After careful removal of the perlite, following spraying, the plants were transferred to fibre-glass beds in the glasshouse and sub-irrigated until assessment. The herbicide was not washed off the foliage at any time.

ii) soil drench, post-emergence

Plants were raised as for the foliar spraying but herbicides were applied by pipette to the soil surface in 10 ml water per pot. Care was taken to spread the liquid evenly over the soil surface and contact with the stem at soil level was avoided as far as possible. Following application, pots were transferred to the glasshouse and watered individually from overhead in foil dishes until assessment.

iii) surface spray, pre-emergence

Test species were planted in untreated soil in 8.9 cm plastic disposable pots (see Table 1 for numbers and depths of planting). The herbicide was applied from a Teejet fan nozzle moving at constant speed 30 cm above the smoothed soil surface. Pots were transferred to foil dishes in the glasshouse and watered from overhead with a boom until emergence. Subsequent watering was individually from overhead.

iv) soil incorporated, pre-emergence

Tin plate containers (19.0 x 13.7 x 7.6 cm) were filled to a depth of 6.5 cm with untreated soil and the herbicide was applied to the soil surface as in (iii). Following thorough mixing the treated soil was used to fill 8.9 cm plastic pots to a depth of 6.5 cm and seeds or rhizome pieces were planted as detailed in Table 1. Watering was overhead as in (iii).

Table 2. Soil and environmental conditions for Activity Experiments

Experiment number and herbicides included	AE 1 oxadia- zone	AE 2 U-29,722 U-27,658	AE 3 metflura- zone	AE 4 iprymi- dan	AE 5 norflura- zone	AE 6 AC 50,191 AC 84,777
Date of spraying	15.5.70	5.6.70	25.6.70	3. 9.70	10.11.70	14.4.72
Main assessment completed	15.6.70	3.7.70	23.7.70	3.11.70	8.12.70	18.5.72
Organic matter (%)	1.8	1.8	1.8	2.1	2.1	2.8
Clay content (%)	13.0	13.0	13.0	13.0	13.0	16.0
pH	7.3	7.3	7.3	7.2	7.2	7.7
John Innes Base fertiliser (g/kg)	4.0	4.0	4.0	4.0	4.0	4.0
5% DDT dust (g/kg)	0.5	0.5	0.5	0.5	0.5	0.5
Fritted trace elements (g/kg)	-	-	-	-		0.25
Temperature (°C)						
Mean Maximum Minimum	20 32 11	20 35 11	21 35 11	20 26 15	19 25 12	18 27 8
Relative (%) humidity	Relative (%) humidity					
Mean Maximum Minimum	60 95 34	60 90 28	60 90 28	50 78 28	55 76 32	60 90 25

Post-emergence selectivity experiments b)

Eight herbicides were tested at three doses in two separate experiments. Plants were raised in 8.9 cm diameter plastic pots in a sandy loam topsoil from a field at Begbroke Hill. Soil conditions are summarised in Table 3. Planting dates were staggered so that the majority of plants had reached the 2-4 leaf stage by the time of spraying. Temperate species were raised in the open and tropical species in the glasshouse. Environmental conditions during the course of the experiment are recorded in Table 3.

.

Table 3. Soil and environmental conditions for post-emergence selectivity tests

Experiment number and herbicides included	oxadiazone U-29,722 U-27,658 metflurazone	norflurazone AC 50,191 AC 84,777 iprymidan
Date of spraying	9.9.70	6.7.72
Assessment completed	30.9.70	26.7.72
Organic matter (%)	2.1	2.8

Clay content (%)	13.	C	16.	.C	
рH	7.	.2	7	.0	
John Innes Base fertiliser (g/kg)	1	.5	2.	.c	
5% DDT dust (g/kg)	0	.5	0.5		
Temperature (°C)	Temperate	Tropical	Temperate	Tropical	
Temperature (°C) Mean	Temperate 15	Tropical 24	Temperate 13	Tropical 24	
Temperature (^o C) Mean Maximum	Temperate 15 24	Tropical 24 28	Temperate 13 18	Tropical 24 31	

Relative humidity (%)				
Mean	70	75	75	70
Maximum	95	90	95	95
Minimum	32	40	50	30

Before spraying all species were thinned to constant number with a maximum of nine plants per pot. Certain plant material was pre-treated to improve establishment. Chenopodium album seeds were soaked in 0.1 M potassium nitrate solution and kept in the light three days prior to planting in the first experiment but in the second experiment seeds were lightly rubbed with fine sand-paper before sowing. Seeds of Polygonum aviculare and Veronica persica were kept moist at 2°C for at least six weeks before sowing. Tubers of Cyperus esculentus were stored moist at 4°C for at least 14 days prior to planting in both experiments to break dormancy. In the second experiment bulbs of Oxalis latifolia were stored at 2°C for 14 days prior to heating at 45°C for 2 hours before planting. Perennial species were propagated vegetatively as denoted in Table 4.

- 6 -

Stages of growth (exclusive of cotyledons) at spraying and at assessment are summarised in Table 4 for both experiments. After spraying the plants were protected from rainfall for 24 hours and then given an overhead watering to wash any residues off the foliage. The pots were then returned to their original position in the glasshouse or the open. Additional fertiliser in solution and insecticide and fungicide were applied to individual species as required.

The herbicides were used in the formulation supplied by the manufacturer for field experimentation but special surfactants were added where necessary and are referred to where appropriate. Unless otherwise indicated, all doses were in terms of active ingredient i.e. kg a.i./ha. Each treatment was replicated twice on each species and the plants were sprayed using the same laboratory sprayer as used for the Activity Experiments.

Table 4.	Species, abbreviations, varieties and stages of growth at spraying and assessment for post-emergence selectivity tests				
	Designa- tion and computer serial number	Expt. No.	Cultivar or source	Stage of growth at spraying	Stage of growth at assessment (untreated controls)
Temperate species					
Wheat (Triticum aestivum)	WHEAT (1)	1 2	Kolibri	3 leaves 3-4 leaves	5½ leaves, tillering 6 leaves,

tillering

		1		3 leaves	$5\frac{1}{2}$ leaves,
Barley	BARLEY		Sultan		tillering
(Hordeum vulgare)	(2)	2		3½ leaves	7 leaves, tillering
		1		$2\frac{1}{2}-3$ leaves	$5\frac{1}{2}$ leaves,
Oat (Avena sativa)	OAT	2	Condor	$2\frac{1}{2}$ leaves	tillering 7 leaves, tillering

Table 4 (continued)

	Designa- tion and computer serial number	Ėxpt. No.	Cultivar or source	Stage of growth at spraying	Stage of growth at assessment (untreated controls)
		1		2 leaves	5 leaves,
Perennial ryegrass	PER RYGR		S 23		tillering
(Lolium perenne)	(4)	2		2 leaves	6 leaves,
					tillering
Onion	ONION	1	Rijnsburger	$1\frac{1}{2}-2$ leaves	2 leaves
(Allium cepa)	(8)	2	Ailsa Craig	2 leaves	$2\frac{1}{2}$ leaves
Dwarf bean	DWF BEAN	1		2 unifoliate	1 ¹ / ₂ trifoliate
(Phaseolus vulgaris)	(9)	2	The Prince	2 unifoliate	1 ¹ / ₂ trifoliate
Field bean	FLD BEAN	1		2 leaves	not recorded
(Vicia faba)	(10)	2	Maris Bead	2 ¹ / ₂ leaves	7 ¹ / ₂ leaves
Pea	PEA	1	(Dark Skinned	3 leaves	6 ¹ / ₂ leaves
(<u>Pisum sativum</u>)	(11)	2	(Perfection	$2\frac{1}{2}$ leaves	9 leaves
White clover	W CLOVER	1	0 100	1 trifoliate	$3\frac{1}{2}-4$ trifoliate
(Trifolium repens)	(12)	2	5 100	1 trifoliate	7½ trifoliate

- 7 -

Kale (Brassica oleracea acephala)	KALE (15)	1 2	Marrowstem	$1\frac{1}{2}-2$ leaves $2\frac{1}{2}$ leaves	3 ¹ / ₂ -4 leaves 4 leaves
Cabbage (Brassica oleracea capitata)	CABBAGE (16)	1 2	Primo	$1\frac{1}{2}-2$ leaves $1\frac{1}{2}-2\frac{1}{2}$ leaves	not recorded $4\frac{1}{2}$ leaves
Swede (Brassica napus)	SWEDE (17)	1 2	Lord Derby	$2-2\frac{1}{2}$ leaves $2\frac{1}{2}$ leaves	$3\frac{1}{2}-4$ leaves $3\frac{1}{2}$ leaves
Carrot (Daucus carota)	CARROT (18)	1 2	(Chantenay Red (Core	1-2 leaves $1\frac{1}{2}$ -2 leaves	$3\frac{1}{2}$ leaves $5\frac{1}{2}$ leaves
Parsnip (Pastinaca sativa)	PARSNIP (19)	1 2	Hollow Crown Avonresister	$1-1\frac{1}{2}$ leaves 1 leaf	$2\frac{1}{2}$ -3 leaves $2\frac{1}{2}$ leaves
Lettuce (Lactuca sativa)	LETTUCE (20)	1 2	Borough Wonder	$\begin{array}{r} 2-2\frac{1}{2} \ 1 \text{ eaves} \\ 3\frac{1}{2} \ 1 \text{ eaves} \end{array}$	$4\frac{1}{2}-5 \text{ leaves}$ $8\frac{1}{2} \text{ leaves}$
Sugar beet (Beta vulgaris)	SUG BEET (21)	1 2	(Klein E (monogerm	2 leaves 2 leaves	$3\frac{1}{2}-4$ leaves $4\frac{1}{2}$ leaves
Avena fatua	AVE FATU (26)	1 2	Boxworth 1967	$2\frac{1}{2}$ leaves $3\frac{1}{2}$ leaves	5 ¹ / ₂ leaves, tillering 6 leaves, tillering

Table 4 (continued)

1

Designa-Stage of tion and Stage of Cultivar growth at Expt. computer growth at assessment or No. seria1 spraying (untreated source number controls)

 $2\frac{1}{2}$ leaves 5 leaves,

٠

.

.

.

- 8 -

Alopecurus myosuroides	ALO MYOS (27)	2	Rothamsted 1968	$2\frac{1}{2}$ leaves	tillering 8 leaves,
					tillering
Poa annua	POA ANN	1	Twyfords Ltd 1967	3 leaves	6 leaves, tillering
	(20)	2	WRO 1966	4 leaves	numerous tillers
	POA TRTV	1	Twyfords Ltd 1967	$2\frac{1}{2}$ leaves	6 leaves, tillering
Poa trivialis	(29)	2	Watts Itd 1972	2 leaves	5 leaves.
					tillering
Sinapis arvensis	SIN ARV	1	WRO 1966	$2\frac{1}{2}$ -3 leaves	3 ¹ / ₂ leaves
	(30)	2	WRO 1964	3½ leaves	6 leaves
Raphanus	RAPH RAP	1	Dlack Snanich	$2\frac{1}{2}$ leaves	3½ leaves
raphanistrum	(31)	2	DIACK Spanisn	1 ¹ / ₂ leaves	$4-4\frac{1}{2}$ leaves
Chrysanthemum	CHRY SEG	1	WRO 1967	2-3 leaves	$7\frac{1}{2}-8\frac{1}{2}$ leaves
segetum	(32)	2	WRO 1971	nil germination	
Tripleurospermum	TRIP MAR	1	WRO 1969	3-4 leaves	6-7 leaves
maritimum	(33)	2	WRO 1967	4 ¹ / ₂ leaves	9½ leaves
Concio mulacaio	SEN VULG	1	WRO 1967	2-3 leaves	6 leaves
Senecio vulgaris	(34)	2	WRO 1970	2 leaves	6 ¹ / ₂ leaves
Polygonum	POL LAPA	1	WRO 1967	1 leaf	3 ¹ / ₂ leaves
<u>lapathifolium</u>	(35)	2	WRO 1970	2 ¹ / ₂ leaves	5 ¹ / ₂ leaves
Polygonum aviculare	POL AVIC	1	Wytham 1967	$2\frac{1}{2}$ leaves	8-11 leaves
TOTIECHT GATCUTATC	(36)	2	WRO 1968	nil germination	
Rumex crispus	RUM CRIS	1	(Bletchington	$\frac{1}{2}$ -1 leaf	1-2 leaves
	(37)	2	(1967	2½ leaves	4-6 leaves

Galium aparine	GAL APAR (38)	1 2	WRO 1969 WRO 1970	1 whor1 1-2 whor1s	12-20 whorls $6\frac{1}{2}$ whorls
Chenopodium album	CHEN ALB	1	Gosford Rd 1967	2 ¹ / ₂ leaves	8 leaves
	(39)	2	WRO 1971	6 leaves	10 leaves
Stellaria media	STEL MED	1	Wytham 1967	4 leaves	12 leaves
	(40)	2	WRO 1970	6-8 leaves	numerous shoots
Spergula arvensis	SPER ARV	1	WRO 1964	1 whor1	7 whor1s
	(41)	2	WRO 1965	$1\frac{1}{2}$ whor1s	8 whor1s

Table 4 (continued)

- 9 -

Veronica persica (42)

VER PERS 1 2

not tested WRO 1970

nil germination

Stage of controls)

	1701	-	mate - // ·	0	
Solanum nigrum	SOL NIG (43)	1 2	not tested Asmer Seeds Ltd 1972	1 ¹ / ₂ leaves	6 ¹ / ₂ leaves
Agropyron repens	AG REPEN (47)	1 2	WRO Clone 314	$2-2\frac{1}{2}$ leaves $3-3\frac{1}{2}$ leaves	$5\frac{1}{2}$ leaves, tillering $5\frac{1}{2}$ leaves, tillering
Agrostis stolonifera	AG STOLO (48)	1 2	WRO Clone 1*	2-4 leaves $1\frac{1}{2}-4$ leaves	not recorded 14 shoots
Tropical species	(grown under h	igher	of temperature re	gimes)	
Maize (Zea mays)	MAIZE (58)	1 2	Inra 200	2 ¹ / ₂ leaves 3 leaves	6 leaves 6-7 leaves

Sorghum	SORGHUM	1	SB 68	$2-2\frac{1}{2}$ leaves	5-6 leaves
(Sorghum bicolor)	(59)	2	Fetereita	3 leaves	5-5½ leaves
Rice	RICE	1	Kogbandi	2 leaves	4-6 leaves, tillering
(Oryza sativa)	(60)	2	IR 5	$2\frac{1}{2}$ -3 leaves	3 leaves, tillering
Groundnut (Arachis hypogea)	GRNDNUT (64)	1 2	Natal Common	$2\frac{1}{2}$ leaves $2\frac{1}{2}$ leaves	5-6 leaves 5-6 leaves
Soyabean (Glycine max)	SOYABEAN (65)	1 2	Altona Wayne	$\frac{1}{2}$ -1 trifoliate $\frac{1}{2}$ -1 trifoliate	3-4 trifoliate $3\frac{1}{2}-4$ trifoliate
Cotton (Gossypium hirsutum)	COTTON (66)	1 2	26 J	1 ¹ / ₂ leaves 1-2 leaves	3-4 leaves $2\frac{1}{2}-3$ leaves

T.A.

•

Jute (<u>Corchorus</u> <u>olitorius</u>)	JUTE (67)	1 2	Trinidad 1970 Egypt 1971	1/2 - 1/2 leaves 3-31/2 leaves	5-6 leaves $8-9\frac{1}{2}$ leaves
Kenaf (Hibiscus cannabinus)	KENAF (68)	1 2	Thai Native	$1\frac{1}{2}-2$ leaves $1\frac{1}{2}-2$ leaves	4-5 leaves $4\frac{1}{2}-5\frac{1}{2}$ leaves
Tobacco (Nicotiana tabacum)	TOBACCO (69)	1 2	Yellow Mammoth	2 leaves 4-5 leaves	5-6 leaves $4\frac{1}{2}$ leaves

- 10 -

Table 4 (continued)

Designa- tion and computer serial number	cultivar or No. Source	Stage of growth at spraying	Stage of growth at assessment (untreated controls)
--	------------------------------	-----------------------------------	--

Sesamum

SESAMUM

1 not tested

2 Addis Ababa 1970 $1\frac{1}{2}$ - 2 leaves 4 leaves

(Sesamum indicum)	(70)	2	Addis Adada 1970	12 L ICAVES	· _carco
<u>Eleusine indica</u>	ELEU IND (74)	1 2	WRO 1964	$2\frac{1}{2}$ -3 leaves $3\frac{1}{2}$ -4 leaves	6-7 leaves 7-7 $\frac{1}{2}$ leaves, tillering
<u>Echinochloa</u>	ECH CRUS	1	WRO 1966	$2\frac{1}{2}$ -3 leaves	6-7 leaves
crusgalli	(75)	2	WRO 1969	3-4 $\frac{1}{2}$ leaves	6 leaves
<u>Rottboellia</u>	ROT EXAL	1	Philippines 1970	$2-2\frac{1}{2}$ leaves	5-6 leaves
exaltata	(76)	2	Rhodesia 1971	$3-3\frac{1}{2}$ leaves	$4\frac{1}{2}$ -6 leaves
<u>Digitaria</u>	DIG SANG	1	not tested	2-3 leaves	6-7 leaves,
sanguinalis	(77)	2	WRO 1968		tillering
Amaranthus	AMAR RET	1	WRO 1968	4 ¹ / ₂ leaves	10-12 leaves
retroflexus	(78)	2		2-3 leaves	$8\frac{1}{2}$ -10 leaves

Portulaca oleracea	PORT OLE	1	WRO 1967 WRO 1969	2-4 leaves	12 leaves 12-16 leaves
Cynodon dactylon	(79) CYN DACT (82)	1 2	WRO Clone 2* (ex Sudan)	$3\frac{1}{2}-5\frac{1}{2}$ leaves $4\frac{1}{2}-7$ leaves	Numerous shoots 25-35 shoots/pot
Cyperus esculentus	CYP ESCU (85)	1 2	not tested WRO Clone 2 (ex South Afri	$2-5\frac{1}{2}$ leaves ca)	10-11 leaves
Cyperus rotundus	CYP ROTU (86)	1 2	WRO Clone 1 ** (ex Rhodesia)	$5\frac{1}{2}$ leaves 4-5 leaves	9 leaves 13 leaves
Oxalis latifolia	OXAL LAT (87)	1 2	not tested WRO Clone 2 [#] (ex Cornwall)	$2-2\frac{1}{2}$ leaves	6-14 leaves .

/ one node rhizome pieces * shoot fragments
// bulbs
** tubers

c) Assessment and processing of results

In the Activity Experiments, the number of surviving plants was recorded and plant vigour was assessed on the 0-7 scale as defined below. Histograms were prepared with similar format to those described for the selectivity experiments.

In selectivity experiment 1 the number of plants per pot for each species was recorded on punch cards before spraying and the main assessment was made directly on to punch cards 2-3 weeks after treatment. In selectivity experiment 2 all information was tabulated prior to assembly on papertape. The number of survivors and their vigour on a 0-7 scoring scale, were recorded for each treatment. Scale points were defined as follows:

- 11 -

0 = completely dead
1 = moribund but not all tissue dead
2 = alive, with some green tissue, but unlikely to make much

further growth

.

.

.

- 3 = very stunted, but apparently still making some growth
- 4 = considerable inhibition of growth
- 5 = readily distinguishable inhibition of growth
- 6 = some detectable adverse effect as compared with control colour difference, morphological abnormality, epinasty or
 very slight reduction in growth
- 7 = indistinguishable from control

The punch cards used in experiment 1 were processed by ORION computer while the data from experiment 2 was processed by an ICL 470 computer. These results give rise to the histograms which form the main diagrammatic presentation of the data and are given separately for each herbicide.

Each histogram indicates the herbicide used, dose applied and species tested, abbreviations for the latter being summarised in Table 4. For individual species at each dose of herbicide there is a pair of figures; the upper figure represents mean plant survival as a percentage of untreated controls, corrected for any natural mortality in these controls, and the lower figure shows mean vigour score as a percentage of untreated controls. Directly to the right of each figure is the same information presented as a horizontal histogram where each 'x' represents a 5% increment in the value being plotted. With Activity Experiment histograms, each 'x' represents a 7% increment. An 'R' indicates a result based on one replicate only, 'M' represents a missing treatment and '+' indicates a value in excess of 100%.

For a variety of reasons it was not possible to process the data for certain species. In the first experiment there was severe mortality of plants of <u>Rumex crispus</u>, even in control pots, which was believed due to contamination. Onion plants also suffered a premature die-back but as this occurred only in control pots it was possible to draw some conclusions from the herbicide treatments. In the second experiment, <u>Chrysanthemum segetum</u>, <u>Polygonum aviculare and Veronica persica</u> showed inadequate germination. Dwarf bean control plants were contaminated but some

assessment of the herbicide treatments was possible.

Several species, notably the perennials, were kept for a period of several months to observe later effects on the degree of recovery from injury and these final observations are referred to in the text.

Throughout the interpretation of the results arbitrary levels of vigour reduction of 15% or less compared with control in respect of crops, and number or vigour reduction of 70% or more as compared with control in respect of weeds have been taken as the criteria of selectivity. A summary table of observed selectivities and a series of individual comments have been made on the results for each herbicide to highlight the salient points.

- 12 -

OXADIAZONE

Code numbers

Chemical name

RP 17623, Vt 2569

Trade name Ronstar

2-t-buty1-4-(2,4-dichloro-5-isopropoxypheny1)-1,3,4-oxadiazolin-5-one

Source

Rhone Poulenc via Societe des Usines Chimiques 21^{me} rue Jean Goujon

May and Baker Ltd Ongar Research Station Fyfield Road Ongar

Paris 8^{me} Essex France

Information available and suggested uses

Introduced at the 3rd EWRC Symposium (1969) for selective control of annual grass and broad-leaved weeds in potatoes, groundnut, cotton and soyabean at 0.56-1.68 kg/ha, applied pre-crop emergence. Good activity was also reported on <u>Convolvulus arvensis</u> and <u>Calystegia sepium</u> with preemergence application of 2.0 kg/ha. Burgaud et al (1969) suggest two main uses of oxadiazone under temperate conditions; a) selective weed control in certain ornamental and garden crops and b) selective weed control in woody species. The herbicide persists in the soil and shows a useful 'knock-down' post-emergence effect. It is also suggested for total weed control and in rice.

Formulation used 40% w/v a.i. emulsifiable concentrate

Spray volume

338 1/ha (30.1 gal/ac) in both experiments

RESULTS

Full histogram results are given on pages 14-18 and potential selectivities are summarised in the following Table.

Rate	CROPS: vigour reduced	WEEDS: number or vigour
(kg ai/ha)	by less than 15%	reduced by more than 70%
4.5, 1.5 and 0.5	None	None listed as no crops tolerant

Comments on results

General

.

Activity was found on all species in the activity experiment especially following the foliar and pre-emergence treatments. In the latter, surface application tended to be more phytotoxic than incorporation, this being particularly noticeable with the smaller seeded species. Post-emergence soil drenches tended to be less active against broadleaved species than comparable foliar applications. These results would support the manufacturer's report that uptake is largely through the emerging shoot.

Results from the selectivity experiment showed a high level of phytotoxicity such that no crop species were tolerant, although a wide range of weeds were susceptible.

Symptoms

Severe scorch symptoms appeared on treated foliage within a few days of spraying. Axillary buds and main shoots were not always affected however, and in some instances there was recovery. New leaves were frequently shiny and showed deformity due to leaf-trapping. In preemergence treatments higher doses resulted in a failure of grass seedlings to emerge from the coleoptile while at lower rates leaf trapping

was again a feature.

Temperate weeds and crops

0.5 kg/ha was sufficient to control several important broad-leaved weeds including Galium aparine. A serious limitation was observed however, with the high resistance of Stellaria media and to a lesser extent Polygonum aviculare. [A similar result was found with preemergence applications on S. media (Richardson and Dean, unpublished data)]. Grass weeds were generally more tolerant with Poa trivialis being the only representative controlled at 0.5 kg/ha. The perennials Agropyron repens and Agrostis stolonifera showed considerable resistance.

No temperate crop species satisfied the criteria for selectivity in this test. However, carrot exhibited some marginal resistance at 0.5 kg/ha and new healthy leaves were produced even at 4.5 kg/ha following severe initial scorch. [In an earlier pre-emergence experiment carrot and lettuce showed good tolerance at 1.3 kg/ha but only Chenopodium album and Convolvulus arvensis were controlled]. Amongst the grasses, Poa trivialis proved to be more susceptible than perennial ryegrass.

Tropical weeds and crops

All annual weed species were severely affected at 0.5 kg/ha with the exception of Rottboellia exaltata. [This species showed greater susceptibility to pre-emergence treatments in an earlier experiment]. Cynodon dactylon showed considerable sensitivity with the majority of plants eventually being killed at 1.5 kg/ha. Slow recovery was apparent at 0.5 kg/ha but no new rhizome was produced. Cyperus rotundus was recovering from 4.5 kg/ha 10 weeks after application but no tuber or rhizome development had occurred.

As in the temperate situation, no crops showed definite tolerance. However, rice showed only mild symptoms at 0.5 kg/ha and vigour was only slightly reduced at higher doses.

Possible uses and further testing

Post-emergence margins of selectivity were negligible but the results obtained in these experiments suggest some potential as a contact pre-crop emergence herbicide with some residual soil activity and for selective control of Echinochloa crus-galli in rice at low doses.

The recovery of several perennial species and the resistance of certain annual weeds suggests limitations to the value of oxadiazone for total weed control.

However in other pot trials oxadiazone has proved to be an effective treatment for the control of well established plants of Convolvulus arvensis, Calystegia sepium and Pteridium aquilinum.

ACTIVITY EXPERIMENT

- 14 -

OXADIAZONE

XXXX	XX	XXX	XXX
XXXXX	TY		
Alas Caller Contor	hadler		

5.1 kg/ha

.

.

.

.

DWARF	2	XXXXXXXXXXXXXXX	XXXXXXXXXX	XXXXXXXXXXXX
BEAN	P	XXXXXX	XXXXXXXX	8
	I	THE	8	8
	F	THE TAXABLE TO TAXA	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
TFATTO	S	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
KALE	P	TITICAL	XXXX	8
	I	*	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXX
	13		**********	XXXXXXX
	Ľ	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXX	XXXX
POLYGONUM	S	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
AMPHIBIUM	P	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXX	8
	I	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXX

	F	HITTHE CONTRACTOR	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXX
PERENNIAL	S	HILL BOUNDARD	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXX
RYEGRASS	P	8	8	8
	I	HILLE HELLE	8	8
				VVVVVVVV
	F	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXX
AVENA	S	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
FATUA	P	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXX	8
	I	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	8
	F	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	
AGROPYRON	S	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
REPENS	D	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXX

Key: F = post-emergence, foliar application S = post-emergence, soil drench P = pre-emergence, surface film I = pre-planting, incorporated

NB:AC 50-NB:AC 50-191 is confidential (Cyanamid), AC 84777 is difenzoquat metilsulfate. **W27,658 is 2-(3),5-**tribromopyrazol-1-yl)acetic acid (Upjohn), U-29,722 is 3,4,5-tribromo-@-methyl-pyrazole-1-acetic acid (Upjohn)3,4,5-tribromo-@-methyl-pyrazole-1-acetic acid (Upjohn)

WHEAT (1)	10
BARLEY (2)	10
OAT (3)	10
PER RYGR (4)	8
DWF BEAN (9)	10
FID BEAN (10)	10
PEA (11)	10
W CLOVER (12)	
KALE (15)	1
CABBAGE (16)	1
SWEDE (17)	1
CARROT (18)	1
PARSNIP (19)	1

.

0.50 KG/HA

0	XXXXXXXXXXXXXXXXXXX	100
11	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	51
00	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	13 14
00 54	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	75 36
31 57	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	31 36
20 43	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	50 21
20 43	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 43
OOR 29R	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100R 29R
31 29	XXXXXXX XXXXXX	13 29
00 57	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 43
00 43	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	80 29
00 57	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	90 43
00 79	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 64
00 71	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 57

.

OXADIAZONE

1.5 KG/HA

	13	XXX
XXXXXXXXXXX	14	XXX
XXX	0	
XXX	0	
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	0	
XXXXXX	0	
XXXXXX	19	XXXX
XXXXXX	14	XXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	25 7	xxxx
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100R 29R	XXXX
XXX	0	
XXXXXXX	0	
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	70 29	XXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	70	XXXX
XXXXXX	14	XXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	70	XXXX
XXXXXXXXX	29	xxxx
XXXXXXXXXXXXXXXXXXXXXX	100	XXXX
XXXXXXXXXXXX	20	AAA
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	43	xxx

OXADIAZONE

4.5 KG/HA

X

XXXXXXXXXXX

POST-EMERGENCE SELECTIVITY EXPERIMENT

15 -

LETTUCE	C
(20)	C
SUG BEET (21)	80 50
AVE FATU (26)	100 71
ALO MYOS (27)	100 64
POA ANN (28)	50 43
POA TRIV (29)	0
SIN ARV (30)	58 29
RAPH RAP (31)	10 14
CHRY SEG (32)	89 50
TRIP MAR (33)	75 50
SEN VULG (34)	31 29
POL LAPA (35)	000
POL AVIC (36)	94 57

OXADIAZONE 0.50 KG/HA

.

.

.

4

	0		000000000000000000000000000000000000000		
	20 14	XXXX XXX	000000000000000000000000000000000000000		
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	75 36	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	000		
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	6 14	XXX	6 14	XXX	
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	6 14	XXX	000		
	000		000		
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	50 21	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	8 14	XX XXX	
XX XXX	00		000000000000000000000000000000000000000		
	00		000		
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	8 14	XX XXX	000000000000000000000000000000000000000		
XXXXXX XXXXXX	000		00		
	00		000000000000000000000000000000000000000		
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	56 43	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	44 36	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	

OXADIAZONE 1.5 KG/HA

OXADIAZONE 4.5 KG/HA

.

1

POST-EMERGENCE SELECTIVITY EXPERIMENT

16

5

.

XXXXX XXXX

GAL 4 (38	PAR)	1
CHEN (39	ALB)	
STEL (40	MED)	. 1
SPER (41	ARV)	
AG RI (47	CPEN)	1
AG S? (48	COLO)	1
MAIZI (58	G)	1
SORGI (59	HUM)	
RICE (60)	
GRNDI (64	NUT)	
SOYA: (65	BEAN)	
COTT (66	ON)	
JUTE (67)	

OXADIAZONE

0.50 KG/HA

21		40 14
00		000
00	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 64
00		000
00 71	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 64
00 54	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	83 50
00 64	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	50 43
25	XXXXX	000
00 79	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 71
00 64	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 57
00 64	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 64
00 29	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	25 7
00		000

OXADIAZONE 1.5 KG/HA

XXXXXXX	20	XXXX
	0	
	0	
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	69	XXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	57	XXXX
	0	
	0	
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXX
XXXXXXXXXXXXX	50	XXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	67	XXXXX
XXXXXXXXX	29	XXXX
*****	25	IIII
XXXXXXXX	21	XXXX
	-	
	0	
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	50	XXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXX
XXXXXXXXX	43	XXXX
	100	****
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	36	TTT
XXXXXXXXXXXXX	50	Andread
XXXXX	0	
X	0	
	0	

00

OXADIAZONE 4.5 KG/HA

x

POST-EMERGENCE SELECTIVITY EXPERIMENT

frend

2

.

KENAF	50
(68)	7
robacco (69)	000
ELEU INI	56
(74)	36
ECH CRUS (75)	3 33 21
ROT EXAL	L 100
(76)	71
AMAR RE'	r 63 21
PORT OLI	E 8
(79)	14
CYN DAC'	r 100
(82)	57
CYP ROT	U 100
(86)	86

.

.

OXADIAZONE 0.50 KG/HA

.

.

XXXXXXXXXXX	38	XXXXXXXX	0	
x	7	X	0	
	0		0	
	0		0	
XXXXXXXXXXXXX	0		0	
XXXXXXX	0		0	
XXXXXXX	0		0	
XXXX	0		0	
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	88	XXXXXXXXXXXXXXXXXX	75	XXXXXX
XXXXXXXXXXXXX	29	XXXXXX	21	XXXX
XXXXXXXXXXXXXX	0		0	
XXXX	0		0	
XX	0		0	
XXX	0		0	
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	38	XXXXXXXX	38	XXXXXX
XXXXXXXXXXX	21	XXXX	29	XXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXX	100	XXXXXX
XXXXXXXXXXXXXXXX	79	XXXXXXXXXXXXXXXXX	57	XXXXXX

OXADIAZONE 1.5 KG/HA

OXADIAZONE 4.5 KG/HA

.

.

XXXXXXXXXX

xxx

POST-EMERGENCE SELECTIVITY EXPERIMENT

H

U-29,722

Code numberU-29,722Trade nameChemical name3,4,5-tribromo-α-methyl-pyrazole-l-acetic acidSourceThe Upjohn Company
Kalamazoo
Michigan 49001
USA

Information available and suggested uses

Manufacturer's literature from 1970 suggests post-emergence control of broad-leaved weeds at 1.12-6.72 kg/ha. Tropical and temperate cereals are reported to be tolerant as well as sugar cane. This compound can also be used for broad-leaved weed control in plantation and non-crop areas. Treatment of established turf at 1.12-6.72 kg/ha and control of brush species at 5.60-16.80 kg/ha is suggested. The use of surfactants may enhance activity.

Formulation used 48% w/v a.i. aqueous concentrate

Spray volume 338 1/ha (30.1 gal/ac) in both experiments

RESULTS

Full histogram results are on pages 21-25 and potential selectivi-

ties are summarised in the following Table.

Rate (kg ai/ha)	CROPS: vigour reduced by less than 15%	WEEDS: number or vigour reduced by more than 70%		
6.00	wheat oat perennial ryegrass rice	<u>Sinapis arvensis</u> <u>Raphanus raphanistrum</u> <u>Chenopodium album</u> <u>Stellaria media</u> <u>Amaranthus retroflexus</u> <u>Portulaca oleracea</u>		
2.00 and	None listed as no weeds controlled	None		

0.07

Comments on results

General

The activity experiment results showed that broad-leaved species were susceptible to post-emergence treatments, especially the foliar spray. Pre-emergence treatments were also active on these species with more phytotoxicity occurring from surface applications than with incorporation. This suggested the possibility of uptake by the emerging shoot. Grasses were more resistant in all treatments.

- 20 -

In the post-emergence selectivity experiment, control of certain broad-leaved weeds was achieved. Annual and perennial grass weeds showed considerable resistance and crop tolerance was limited to monocotyledonous species.

Symptoms

Symptoms were typical of those caused by phenoxyalkanoic herbicides.

Severe epinasty of leaves and stems of broad-leaved species occurred with leaves often failing to expand normally. The effects produced in brassicae, (the severe inhibition of lamina expansion), were reminiscent of "whiptail disease" known in this family. Dwarf bean exhibited a severe swelling and eventual splitting of stems. Main shoot inhibition, leaf trapping and premature tillering were evident in the grasses. Pre-emergence treatment of these species sometimes produced cylindrical leaves, reminiscent of the "onion leaf" effect caused by phenoxyalkanoic herbicides.

Temperate weeds and crops

Only four broad-leaved weeds were controlled at 6.0 kg/ha, including the two cruciferous species <u>Raphanus raphanistrum</u> and <u>Sinapis arvensis</u>. The composite weeds, <u>Tripleurospermum maritimum</u> and <u>Chrysanthemum segetum</u> were very resistant as was <u>Spergula arvensis</u>. Grass weeds were generally very tolerant but <u>Poa trivialis</u> was severely reduced in vigour at 2.0 kg/ha.

Perennial ryegrass and the cereals, wheat and oat were tolerant to 6.0 kg/ha. Barley however, was sensitive at all doses, as shown by premature and excessive tillering. Broad-leaved crops were very susceptible, especially the leguminous species.

Potential selective control of four broad-leaved weeds was achieved in wheat, oat and perennial ryegrass.

Tropical weeds and crops

Only the tropical broad-leaved annual weeds were controlled at 6.0 kg/ha. Annual grass weeds were highly resistant, particularly <u>Rottboellia</u> exaltata. The perennials <u>Cyperus rotundus</u> and <u>Cynodon dactylon showed</u> little or no symptoms even at 6.0 kg/ha.

Of the crops, only the cereals showed resistance. Rice was tolerant at 6.0 kg/ha although plant number was slightly reduced and there was a tendency to increased tillering. Maize showed marginal resistance at this dose but all broad-leaved crops were susceptible, particularly cotton.

Only Amaranthus retroflexus and Portulaca oleracea were controlled at rates where rice was tolerant.

Possible uses and further testing

The activity and symptoms of U-29,722 resembles currently used phenoxyalkanoic herbicides. From the present test, no advantages were apparent over these established compounds in either the temperate or tropical situation. The lack of activity on members of the Compositae was similar to the phenoxyalkanoic compounds. A growth-regulatory activity on certain cereals, producing increased tillering, was observed.

DWARF
BEAN

.

.

.

	-
B. A. I.	н.
Aller and	-

		XXXXXXX		XXXX
DWARF	S	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
BEAN	P	HILLING .	+	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
	I	THE REAL PRODUCTION OF THE PRODUCT OF THE		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
	F	INTERNET		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
KALE	S	THE HEAT THE TAXABLE PARTY IN THE TAXABLE PARTY INTENTION IN TAXABLE PARTY IN TAXABLE PARTY INTENT IN TAXABLE PARTY INTENT INTENT IN TAXABLE PARTY INTENT IN		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
	P	TITICE .	+	XXXXX
	I	HEREFER		
	F	HERE		HILL CONTRACTOR
POLYGONUM	S	HERE		HHHH
AMPHIBIUM	P	THEFT	+	XXXXXXXXXX

Andrea	and	all burn the set hand	Charles Constant	(Bend Store
ALBACOP .				
A.A.				

0 00

XXXXX	XXXXXXXX
XXXXX	

XXXXXXXXXXXXXX	
XXXXX	

XXXXXXXXXXXXXXXXX
XXXXXX

0 ŏ

	I	HEREFER	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXX
	P	HHHH		
PERENNIAL	S	HILLING	HHHHH	
RYEGRASS	P	HIHHH	HILLER +	THE REAL PRODUCTION OF THE PRODUCT OF THE
	I	HILLEN +	**************************************	THE
	F	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
AVENA	S	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	HOUDDOOL
FATUA	P	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	*****************************	HILL BOUNDARY
	I	THE	**************************************	HERE
	F	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	

Key: F = post-emergence, foliar application S = post-emergence, soil drench P = pre-emergence, surface film I = pre-planting, incorporated

unoronno-@-meanyi-pyrazon		U-29,722		U-29,722		U-29,722
SPECIES		0.67 KG/HA		2.0 KG/HA		6.0 KG/HA
WHEAT (1)	100 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
BARLEY (2)	100 79	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 71		100 71	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
OAT (3)	100 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 100		100 93	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
PER RYGR (4)	100 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
DWF BEAN (9)	100 43	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	75 29	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	50 14	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
FLD BEAN (10)	100 57	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 43	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	25 14	XXXXXX
PEA (11)	100R 71R	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100R 57R	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100R 43R	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
W CLOVER (12)	100 57	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 43	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	38 29	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
KALE (15)	100 86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 57	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	60 29	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
CABBAGE (16)	100 79	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 64	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	80 43	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
SWEDE (17)	100 64	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 57	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	20 21	XXXX XXXX
CARROT (18)	100 100		92 86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	75 43	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
PARSNIP (19)	100 100		100 71	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	92 57	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

722 -- 00 G/HA

.

POST-EMERGENCE S EI T < -EXPERIMENT

Type text here

NB:AC 50-191 is confidential (Cyanamid), AC 84777 is difenzoquat metilsulfate, U-27,658 is 2-(3,4,5-tribromopyrazol-1-yl)acetic acid (Upjohn), U-29,722 is 3,4,5-tribromo-@-methyl-pyrazole-1-acetic acid (Upjohn)

SPECIES

					1000	
TETTICE	33	XXXXXXX	50	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	33	XXXXXXXX
(20)	36	XXXXXXX	43	XXXXXXXXX	29	XXXXXXX
and Deep	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	90	XXXXXXXXXX
(21)	71	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	71	XXXXXXXXXXXXXXX	50	XXXXXXXXXX
AVE FATU	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXX
(26)	100	XXXXXXXXXXXXXXXXXXX	93	XXXXXXXXXXXXXXXXXX	79	200000000
ALO MYOS	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXX
(27)	100	XXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXX
POA ANN	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	94	XXXXXXXXXX
(28)	93	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	71	XXXXXXXXX
POA TRTV	88	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	88	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXX
(29)	79	XXXXXXXXXXXXXXXXX	57	XXXXXXXXXXXX	36	XXXXXXXX
STN ARV	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	25	XXXXX
(30)	79	XXXXXXXXXXXXXXXXX	57	XXXXXXXXXXXXX	29	XXXXXXX
RAPH RAP	90	XXXXXXXXXXXXXXXXX	70	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	10	XX
(31)	57	XXXXXXXXXXX	57	XXXXXXXXXXXXX	29	XXXXXX
CHRY SEG	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXX
(32)	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	86	XXXXXXXXXX
MAR GTOM	133	* XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	133	* XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	133	XXXXXXXXXXX
(33)	93	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	93	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	93	XXXXXXXXX
SEN VIIIA	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	38	XXXXXXXX
(34)	93	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	71	XXXXXXXXXXXXX	43	XXXXXXXXXX
DOT LADA	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXX	75	XXXXXXXXXX
(35)	86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	86	XXXXXXXXXXXXXXXXX	43	XXXXXXXXX
POT. AVTO	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXX
(36)	79	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	64	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	50	XXXXXXXXXX

U-2 9	,722
0.67	KG/HA

U-29,722 2.0 KG/HA

U-29,722 6.0 KG/HA

.

. .

XXXXXXXXXXXX

.

XXXXXXXXXXX

POST-EMERGENCE SELECTIVITY EXPERIMENT

. 23 -

SPECIES

1

GAL APAR	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXX
(38)	79	XXXXXXXXXXXXXX	64	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	50	XXXXXXXXXX
CHEN ALB	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	0	
(39)	57	XXXXXXXXXXXX	64	XXXXXXXXXXXXX	0	
STEL MED	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	6	x
(40)	57	XXXXXXXXXXX	43	XXXXXXXXX	14	XXX
SPER ARV	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXX
(41)	93	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	79	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	71	XXXXXXXXXX
AG REPEN	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXX
(47)	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	93	XXXXXXXXXX
AG STOLO	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXX
(48)	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	86	XXXXXXXXX
MAIZE	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXX
(58)	86	XXXXXXXXXXXXXXXXXXX	86	XXXXXXXXXXXXXXXXX	79	XXXXXXXXXX
SORGHUM	100	XXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXX
(59)	93	XXXXXXXXXXXXXXXXXX	93	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	64	XXXXXXXXXX
RICE	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	88	XXXXXXXXXX
(60)	100	XXXXXXXXXXXXXXXXXXXXXXX	86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	86	XXXXXXXXXXX
GRNDNUT	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXX
(64)	71	XXXXXXXXXXXXXX	57	XXXXXXXXXXX	43	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
SOYABEAN	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXX
(65)	57	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	57	XXXXXXXXXXX	36	XXXXXXXXX
COTTON	50	XXXXXXXXXX	0		25	XXXXX
(66)	7	X	0		1	X
JUTE	86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	86	XXXXXXXXXXXXXXXX	0	
(67)	21	XXXX	36	XXXXXXX	0	

.

U-2 9	,722
0.67	KG/HA

U-29,722

2.0 KG/HA

U-29,722 6.0 KG/HA

XXXXXXXXXXX

XXXXXXXXXXXX XXXXX

XXXXXXXXXXXX XXXXXXXXXXXX

XXXXXXXXXXX XXXXXXXXX

XXXXXXXXXXXX XXXXXXX

XXXXXXXXXXXXXXX XXXX

XXXXXXXXX XXXXXXXXXX

XXXXXXXXXXX

XXXXXXXXXXX

POST-EMERGENCE SELECT frend VIT K EXPERIMENT

SPECIES

(68)	50 14	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 43	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	63 36	XXXXXXXXXXX
TOBACCO (69)	100 50	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	60 43	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	30 36	XXXXXXXX
ELEU IND (74)	100 93	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 93	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
ECH CRUS (75)	100 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
ROT EXAL (76)	100 93	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 79	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
AMAR RET (78)	100 71	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 57	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	000	
PORT OLE (79)	100 64	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 57	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	42 29	XXXXXXXXX XXXXXXX
CYN DACT (82)	100 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 79	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
CYP ROTU (86)	100 93	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 93	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

U-29	,722
0.67	KG/HA

U-29,722 2.0 KG/HA

6.0 KG/HA

.

.

U-29,722

XXXX

XXXXXXXXXXXX XXXXXXXX

XXXXXXXXXXXX XXXXXXXXXXXX

XXXXXXXXXXX XXXXXXX

XXXXXXXXXXX XXXXXXX

XXXXXXXXXXXX XXXXXXXXXXX

POST-EMERGENCE SEL LECTI VIT K EXPERIMENT

- 26 -

U-27,658

Michigan 49001 USA

Information available and suggested uses

Manufacturer's literature from 1970 reports selective postemergence broad-leaved weed control in established turf and in small and large seeded grain crops at 1.12-6.72 kg/ha. Use in non-crop situations and in plantation crops is also suggested. The control of brush at 5.60-16.80 kg/ha is recommended. Variations in surfactants can enhance activity. Pre-emergence applications in tolerant annual crops at 3.36-6.72 kg/ha are suggested.

36% w/v a.i. emulsifiable concentrate Formulation used 338 1/ha (30.1 gal/ac) in both experiments Spray volume

RESULTS

.

Full histogram results are given on pages 28-32 and potential selectivities are summarised in the following Table.

Rate (kg ai/ha)	CROPS: vigour reduced by less than 15%	WEEDS: number or vigour reduced by more than 70%
6.00	wheat oat perennial ryegrass	Poa annua Poa trivialis Raphanus raphanistrum Chrysanthemum segetum Chrysanthemum segetum Senecio vulgaris Polygonum lapathifolium Galium aparine Stellaria media Spergula arvensis Amaranthus retroflexus Portulaca oleracea + species below
2.00	species above + barley maize	<u>Sinapis arvensis</u> <u>Chenopodium album</u>
0.67	None listed as no weeds controlled	None

Comments on results

General

The level and pattern of activity of U-27,658 in the activity experiment was very similar to that found with U-29,722. Broad-leaved species were again more susceptible than monocotyledons but both pre and postemergence activity was apparent.

- 27 -

In the post-emergence selectivity experiment U-27,658 controlled a larger number of broad-leaved weeds compared with U-29,722. Activity on grass weeds was also marginally better.

Symptoms

Epinasty on susceptible broad-leaved species and leaf trapping in sensitive grass species were evident with U-27,658. These symptoms were identical to those caused by U-29,722.

Temperate weeds and crops

Good control of the majority of the broad-leaved weeds tested was achieved. Although Tripleurospermum maritimum and Polygonum aviculare were not controlled at 6.0 kg/ha, their vigour was reduced by 36% and 57% of control respectively.

Crop tolerance was very similar to that of U-29,722 with wheat, oat and perennial ryegrass being resistant at 6.0 kg/ha. Barley was again more sensitive but was tolerant at 2.0 kg/ha.

The majority of broad-leaved weeds tested plus the two Poa spp. were selectively controlled in wheat, oat and perennial ryegrass at 6.0 kg/ha. At 2.0 kg/ha, only Sinapis arvensis and Chenopodium album were susceptible where barley and onion showed tolerance.

Tropical weeds and crops

Although severe reductions in vigour were achieved with Amaranthus retroflexus and Portulaca oleracea at 2.0 kg/ha, 6.0 kg/ha was required for control. These results were very similar to those of U-29,722, the activity of U-27,658 on grass weed species was marginally better. The perennials Cyperus rotundus and Cynodon dactylon showed little or no symptoms initially and were similar to the control 10 weeks after treatment.

Maize was the only tolerant crop at 2.0 kg/ha. Sorghum and rice were more severely affected by U-27,658, compared with U-29,722, the latter species being only marginally resistant at 2.0 kg/ha. All broad-leaved crops were susceptible. No potential selectivities were found.

Possible uses and further testing

A potential advantage of U-27,658 over U-29,722 and the phenoxyalkanoic herbicides, was the control of Chrysanthemum segetum, Galium aparine, Spergula arvensis and Poa spp.

Further investigation of this compound for the control of annual broad-leaved weeds and Poa spp. in wheat and oat would therefore seem worthwhile. It could also prove useful for control of the same spectrum of weeds in perennial ryegrass swards.

- 28 -

U-27,658

0.6 kg/ha

2.5 kg/ha

10.0 kg/ha

F

DWARF	S	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
BEAN	P	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXX +	XXX
	I	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXX
	F	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
	S	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
KALE	P	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	8
	I	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXX
	F	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
POLYGONUM AMPHIBIUM	S	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
	P	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	0
	I	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXX

XXXXXXXXXXXXXXXX

PERENNIAL RYEGRASS

.

	F	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
,	S	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
	P	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
	I	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
	F	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
	S	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
	P	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
	I	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX

> XXXXXXXXXXXX XXXXXXXXXXXXX

XXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXX

XXXXXXXXXXXXXX XXXXXXXXXXXX

XXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXX

XXXXXXXXXXXXXX

XXXXXXXXXXXXXXX

XXXXXXXXXXXXX

XXXXXXXXXXXX

XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXXXX XXXXXXXXXXXXX

XXXXXXXXXXXXXXX XXXXXXX

XXXXXXXXXXXXX

XXXXXXXXXXXXXXXX

XXXXXXXXX XXXXXX

XXXXXXXXXXXXXX XXXXXXXX

P

XXXXXXXXXXXXXXXX XXXXXXXXXXXX

XXXXXXXXXXXXXXXX

XXXXXXXXXXX

.

AVENA

FATUA

XXXXXXXXXXXXX XXXXXXXXXXX

Key: F = post-emergence, foliar application S = post-emergence, soil drench P = pre-emergence, surface film I = pre-planting, incorporated

WHEAT	100
(1)	100
BARLEY	100
(2)	100
OAT	100
(3)	100
PER RYGR	100
(4)	100
DWF BEAN	100
(9)	43
FLD BEAN	100
(10)	71
PEA	100R
(11)	71R
W CLOVER	100
(12)	50
KALE	100
(15)	57
CABBAGE	100
(16)	57
SWEDE	100
(17)	43
CARROT	100
(18)	100
PARSNIP	100
(19)	93

U-27,658 0.67 KG/HA

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXX
XXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	86	
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	86	XXXXXXXXXXXXXXXXXXX	64	XXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXX	86	XXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXX
XXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	86	XXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXX
XXXXXXXX	43	XXXXXXXXX	29	XXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXX
XXXXXXXXXXXXXX	57	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	36	XXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100R	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	OR	
XXXXXXXXXXXXXX	57R	XXXXXXXXXXXX	OR	
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	38	XXXXXXXXX
XXXXXXXXXX	36	XXXXXXX	29	XXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	10	XX
XXXXXXXXXXX	50	XXXXXXXXXX	14	XXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	0	
XXXXXXXXXX	36	XXXXXXX	0	
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	80	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	20	XXXX
XXXXXXXX	29	XXXXXX	7	X
XXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	75	XXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	71	XXXXXXXXXXXXXXX	36	XXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	42	XXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	57	XXXXXXXXXXXX	36	XXXXXXXXX

U-27,658 2.0 KG/HA

U-27,658 6.0 KG/HA

XXXXXXXXX

XXXXXXXXXXXXXX XXXXX

XXXXXXXXXXXXXX XXXXXXXXXX

XXXXXXXXXXXXX XXXXXXXXX

XXXXXXXXXXXX

XXXXXXXXXXXXX

POST-EMERGENCE S EL EC hand < F 1 K EXPERIMENT

29

XXXXXXXX

. .

LETTUCE	100
(20)	57
SUG BEET	100
(21)	71
AVE FATU (26)	100
ALO MYOS (27)	100
POA ANN	100F
(28)	100F
POA TRIV (29)	100 93
SIN ARV	100
(30)	57
RAPH RAP	100
(31)	64
CHRY SEG	100
(32)	79
TRIP MAR (33)	133
SEN VULG (34)	100
POL LAPA	100
(35)	93
POL AVIC	100
(36)	71

U-27,658 0.67 KG/HA

.

•

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	92	XXXXXXXXXXXXXXXXXXX	75	XXXXXX
XXXXXXXXXXX	50	XXXXXXXXXX	43	XXXXXX
XXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	30	XXXXXX
XXXXXXXXXXXXXX	57	XXXXXXXXXXX	36	XXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXX	100	XXXXXX
XXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	86	XXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	75	XXXXXX
XXXXXXXXXXXXXXXXXXX	93	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	57	XXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	25	XXXXX
XXXXXXXXXXXXXXXXXXX	79	XXXXXXXXXXXXXXX	50	XXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	69	XXXXXXXXXXXXXXXX	6	x
XXXXXXXXXXXXXXXXXXXX	57	XXXXXXXXXXX	21	XXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	67	XXXXXXXXXXXXX	8	xx
XXXXXXXXXXX	29	XXXXXX	14	XXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	90	XXXXXXXXXXXXXXXXXXX	0	
XXXXXXXXXXXXX	43	XXXXXXXXX	0	
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	78	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	0	
XXXXXXXXXXXXXXXXX	64	XXXXXXXXXXXXX	0	
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	133	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	133	XXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	86	XXXXXXXXXXXXXXXX	64	XXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	19	XXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	71	XXXXXXXXXXXXXX	21	XXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXX	6	x
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	79	XXXXXXXXXXXXXXXX	14	XXX
VVVVVVVVVVVVVVVVVVVVVVV	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	57	XXXXXXXXXXX	43	XXXXXX
AAAAAAAAAAAA	1	and there there want have been been been been the state of the state of the	12	

U-27,658 2.0 KG/HA

XXXX

.

•

U-27,658 6.0 KG/HA

XXXXXXXXXX XXX

XXXXXXXXXXXXXXX XXXXXXXXXXXX

XXXXXXXXX XXXXXX

XXXX

XXXXXXXX

XXXXXXXXXXXXXXXX

OST EMERGENCE SELECTI VIT K EXPER IMENT

30

NB:AC 50-NB:AC 50-191 is confidential (Cyanamid), AC 84777 is difenzoquat metilsulfate, U-27,658 is 2-(3,4,5-tribromopyrazol-1-yl)acetic acid (Upjohn), U-29,722 is 3,4,5-tribromo-@-methyl-pyrazole 1-acetic acid (Upjohn), U-29,722 is 3,4,5-tribromo-@-methyl-pyrazole 1-acetic acid (Upjohn), **U-27,658**

SPECIES

GAL APAR	100
(38)	79
CHEN ALB	100
(39)	57
STEL MED	100
(40)	57
SPER ARV	100
(41)	93
AG REPEN	100
(47)	100
AG STOLO	100
(48)	100
MAIZE	100
(58)	86
SORGHUM	100
(59)	86
RICE	100
(60)	86
GRNDNUT	100
(64)	57
SOYABEAN	100
(65)	71
COTTON	100
(66)	57
JUTE	143
(67)	50

0.67 KG/HA

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	71	XXXXXXXXXXXXXXXXX	29	XXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	50	XXXXXXXXXXX	0	
XXXXXXXXXXX	29	XXXXXX	0	
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	6	x
XXXXXXXXXX	43	XXXXXXXXX	14	XXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	6	x
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	86	XXXXXXXXXXXXXXXXXX	21	XXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXX
XXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXX	86	XXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXX
XXXXXXXXXXXXXXXXXXX	86	XXXXXXXXXXXXXXXXX	79	XXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXX
XXXXXXXXXXXXXXXXX	86	XXXXXXXXXXXXXXXXX	77	XXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	25	XXXXX	0	
XXXXXXXXXXXXXXXXXX	29	XXXXXX	0	
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXX
XXXXXXXXXXXXXXXXX	79	XXXXXXXXXXXXXXX	71	XXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXX
XXXXXXXXXXX	50	XXXXXXXXXXX	36	XXXXXXX
XXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXX
XXXXXXXXXXXXXX	57	XXXXXXXXXXXX	43	XXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	50	XXXXXX
XXXXXXXXXXXX	29	XXXXXX	14	XXX
XXXXXXXXXXXXXXXXX +	57	XXXXXXXXXXX	0	
XXXXXXXXXX	14	XXX	0	

2.0 KG/HA

٣	٦	•
L)	-

-27,658 6.0 KG/HA

XXXXXXXXXXXXXX

XXXXXXXXXXXXXX XXXXXXXXXXX

XXXXXXXXXXXXXX XXXXXXXXX

XXXXXXXXXXXXXXX XXXXXXXX

XXXXXXXXXXXXXXX XXXXXXXX

XXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXX XXX

XXXX

POST-EMERGENCE SELEC H hand VIT Y EXPERIMENT

KENAF	100
(68)	43
TOBACCO	100
(69)	43
ELEU IND	100
(74)	100
ECH CRUS	100
(75)	100
R OT EXAL	100
(76)	79
AMAR RET (78)	100 64
PORT OLE	100
(79)	86
CYN DACT (82)	100
CYP ROTU (86)	100

U-27,658 0.67 KG/HA

-

•

•

.

.

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 36	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	25 29	XXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 43	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	00	
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	75 50	XXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 93	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	92 64	XXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 64	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	75 50	XXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 50	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	000000000000000000000000000000000000000	
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 57	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	17 29	XXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 93	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 71	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 79	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

U-27,658 2.0 KG/HA

.

.

-27,658 KG/HA

XXXXXXX XX

XXXXXXXXXXX XXXXX

XXXXXXX XX

XXXXXXXXXXXXX XXXXXXX

XXXXXXXXXXXXX XXXXXXXXXX

POS T EMERGENCE SELEC -< H K EXPERIMENT

- 33 -

METFLURAZONE

Code numbers

SAN 6706, HER 6706

Trade name -

Chemical name

Source

.

4-chloro-5-(dimethylamino)-2-(3-trifluoromethylphenyl)pyridazin-3(2H)-one

Sandoz Ltd 3090 Agro Research CH-4002 Basle Switzerland

Information available and suggested uses

Technical information received from the manufacturer during 1969 and 1970 reports good pre-emergence activity against a range of weed species, especially grasses. Cotton is reported as being tolerant. Weed control is long lasting and use in orchards, grapevines and industrial situations is suggested.

Formulation used 80% w/w a.i. wettable powder

Spray volume 338 1/ha (30.1 gal/ac) in both experiments

RESULTS

Full histogram results are given on pages 36-40 and potential selectivities are summarised in the following Table.

Rate (kg ai/ha)	CROPS: vigour reduced by less than 15%	WEEDS: number or vigour reduced by more than 70%
4.5	carrot	Alopecurus myosuroides Raphanus raphanistrum Senecio vulgaris Galium aparine Amaranthus retroflexus + species below
1.5	species above + parsnip	<u>Chenopodium album</u> + species below
0.5	species above + wheat barley oat soyabean kenaf	Poa trivialis Sinapis arvensis Stellaria media Spergula arvensis

Comments on results

General

Activity experiment results showed metflurazone to be a particularly active compound when applied to the soil. Foliar activity was much reduced compared with soil treatments and was limited to certain broad-leaved species. Pre-emergence applications appeared more damaging at assessment than comparable soil drench treatment of established plants. Later observations revealed both to have more or less equivalent activity. Preemergence surface application and incorporation usually produced comparable degrees of phytotoxicity although perennial ryegrass showed greater susceptibility to surface application.

In the selectivity experiment, a number of annual broad-leaved and grass species were controlled, but mostly at the higher doses. Several crops showed tolerance, particularly carrot, but selectivities tended to

- 34 -

be marginal.

Symptoms

Susceptible species exhibited a pronounced chlorosis particularly of newly developing foliage. In broad-leaved plants initial symptoms appeared in the petioles and veins. These later developed in the leaf lamina in some cases producing a variegated effect. Grasses also showed total chlorosis at higher rates while at lower doses, alternate green and white stripes occurred, possibly due to a diurnal effect. Necrosis was slow to develop in all species, plants often surviving and remaining turgid for a considerable time before dying, despite the lack of chlorophyll. Agropyron repens and Brassica spp. exhibited a red pigmentation of the foliage due to an unmasking of the natural pigments by the lack of chlorophyll. According to Hilton et al (1969) these effects are largely due to an inhibition of carotenoid synthesis and it may be significant that carrot, a plant producing relatively large quantities of these pigments was the most resistant species tested. Pre-emergence applications had

little effect on germination and symptoms were identical to those reported here (Richardson and Dean, 1972). Symptoms were reminiscent of those caused by aminotriazole and pyriclor.

Temperate weeds and crops

Nine grass and broad-leaved weeds were controlled at 4.5 kg/ha, at the main assessment, including such difficult species as <u>Galium aparine</u>. Later observations revealed however, that due to the slow action of metflurazone, this species was eventually controlled at only 1.5 kg/ha and <u>Senecio vulgaris</u> at 0.5 kg/ha. Furthermore, 4.5 kg/ha subsequently controlled <u>Avena fatua</u> and the composites, <u>Chrysanthemum segetum</u> and <u>Tripleurospermum maritimum</u>. The perennials <u>Agropyron repens</u> and <u>Agrostis</u> stolonifera were also completely killed at this rate at the later assessment but Polygonum lapathifolium and <u>P. aviculare</u> were resistant.

Although a mild chlorosis was observed on carrot at 1.5 and 4.5 kg/ha, these symptoms were not evident five weeks later when fresh weights of shoots at both doses were similar to the untreated control. Parsnip exhibited tolerance at 1.5 kg/ha while the cereals wheat, barley and oat were resistant at 0.5 kg/ha.

The selective control of a range of weeds in carrot is interesting and parallels the results found in a recent pre-emergence selectivity experiment, (Richardson and Dean, 1972), although <u>Polygonum aviculare</u> proved more resistant to post-emergence treatments. A number of broadleaved weeds plus <u>Poa trivialis</u> were also selectively controlled in parsnip and the cereals.

Tropical weeds and crops

.

Only <u>Amaranthus retroflexus</u> was controlled at the initial assessment at 4.5 kg/ha. However, all weed species, with the exception of <u>Cynodon dactylon</u>, were reduced in vigour by 50% or more at 1.5 kg/ha and the majority were severely affected at the lower rates. Later assessments (4 weeks after treatment) showed that all species were controlled at 4.5 kg/ha. At this time the annual grasses <u>Eleusine indica</u> and <u>Echinochloa crus-galli</u>, plus <u>Amaranthus retroflexus</u>, were also controlled at 1.5 kg/ha, while the remaining annual and perennial weeds were severely affected. Root and rhizome production of the perennial species, <u>Cyperus rotundus</u> and <u>Cynodon dactylon</u> were correspondingly reduced. At 0.5 kg/ha

- 35 -

Only soyabean and kenaf exhibited tolerance at 0.5 kg/ha but margins of resistance would suggest that these crops would not tolerate rates much higher than this. Cotton showed no resistance in this test but rice exhibited some marginal tolerance at the lowest dose. Small seeded crop species were particularly susceptible and no selectivities were found in this trial.

Possible uses and further testing

Although a large range of species were found to be susceptible in this trial, it would appear that the majority of the herbicidal effects were caused by uptake from the soil as exemplified in the activity

experiment.

A broad-spectrum of weeds were controlled at doses where carrots were resistant but advantages over existing herbicides used in this crop are not obvious. The particularly long period of soil persistence of metflurazone reported previously (Richardson and Dean, 1972) could limit its use in this crop.

The reported tolerance of cotton to pre-emergence treatment was not paralleled in this post-emergence trial and the resistance of soyabean and kenaf was not outstanding.

Tropical weed control was not so good in this present experiment compared with the pre-emergence application (Richardson and Dean, 1972). The activity shown in this test against both annual and perennial species would appear to offer some use in the non-crop and industrial situations, especially in view of the extended soil persistence. The lack of quick 'knock-down' effect could be a disadvantage in this situation however.

ACTIVITY EXPERIMENT

- 36 -

METFLURAZONE

1.3 kg/ha

5.1 kg/ha

XXXXXXXXXXXXXX

.

BEAN		ICCLULL	AAAAAAA	Shadhadhadhadhadhadhadhadhadha
	P	THEFT	XXXXXXX	8
	I	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	8	8
	-			****
	K.	ITTICCE	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXX
KALE	S	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	HIMINIC	HINK KANK
	P	00	8	8
	I	00	8	8

POLYGONUM AMPHIBIUM	F			XXXXXXXXXXX
	S	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
	P	10000000000000000000000000000000000000	XXXXXXXXXXX +	XXXXXXXXXXX +
	I	THE	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

	F	THEFT	HIXING CONTRACTOR	
PERENNIAL RYEGRASS	S	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXX
	P	XXXXXXXXX	8	8
	I	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXX	8
	F	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	
AVENA	S	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXX
FATUA	P	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXX	8
	I	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	8	8
	F	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	
AGROPYRON	S	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

Key: F = post-emergence, foliar application S = post-emergence, soil drench P = pre-emergence, surface film I = pre-planting, incorporated

HEAT	100 100
BARLEY	100
2)	100
OAT	100
(3)	86
PER RYGR	100
(4)	79
DWF BEAN	100
(9)	79
FID BEAN	100
(10)	64
PEA	100R
(11)	71R
W CLOVER	100
(12)	57
KALE	100
(15)	71
CABBAGE	100
(16)	71
SWEDE	100
(17)	57
CARROT	100
(18)	100
PARSNIP	100
(19)	86

STROTE TTT A CT CATT

.

.

.

.

METFLURAZONE		METFLURAZONE		ME
0.50 KG/HA		1.5 KG/HA		4
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 64	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 29	XXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 64	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 50	XXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 57	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 43	XXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 43	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	38 29	XXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 57	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 43	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 43	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 29	XXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100R 57R	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100R 57R	XXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	69 36	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	38 29	XXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 50	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 43	XXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 57	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 43	XXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	90 29	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	000	
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 86	XXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 71	XXXXXX

XXXXXXXXXXX

METFLURAZONE

.5 KG/HA

٠

.

XXXXXXXXXXXXXX

XXXXXXXXXXXXXX XXXX

XXXXXXXXXXXXXXXXX XXX

CCX

XXXXXXXXXXXXXXXXX XXXX

XXXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXXX XXXXXX

XXX

XXXX

XXXXXXXXXXXXXXXXX XXXXX

XXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX

Click here to continue

37

POST

EMERGENCE

5

E

-

~

EX

PERIMENT