
INSTITUTE OF ARABLE CROPS RESEARCH Long Ashton Research Station WEED RESEARCH DEPARTMENT

TECHNICAL REPORT No.104

The activity and post-emergence selectivity of some recently developed herbicides: Imazethapyr, BAS 51800H, DPX-L5300, Triasulfuron and DPX-A7881.

BAS 51800H is quinmerac, DPX-A7881 is ethametsulfuron-methyl, DPX-L5300 is tribenuron-methyl

June 1988

Price: £6.00

1

Long Ashton Research Station, Weed Research Department, Long Ashton, Bristol BS18 9AF England

ISSN 0551 4136 ISBN 0 7084 0482 0

CONTENTS

Page

SUMMARY

INTRODUCTION

METHODS AND MATERIALS

RESULTS

```
Imazethapyr (AC 263,499)
   (RS)-5-ethyl-2-(4-isopropyl-4-methyl-5-oxo-2-
   imidazolin-2-yl)nicotinic acid.
```

```
BAS 51800H (Quinmerac)
   7-chloro-3-methylquinoline-8-carboxylic acid
```

```
DPX-L5300
  Methyl 2-{[4-methoxy-6-methyl-1,3,5-triazin-2-yl
   (methyl)carbamoyl]sulphamoyl}benzoate
```

```
Triasulfuron (CGA 131036)
   1-[2(2-chloroethoxy)phenylsulphonyl]-3-(4-
  methoxy-6-methyl-1,3,5-triazin-2-yl)urea.
```

12

20

28

36

44

44

2

DPX-A7881 Methyl 2-[3-(4-methoxy-6-methylamino-1,3,5triazin-2-yl)carbamoylsulphamoyl]benzoate

ACKNOWLEDGEMENTS

REFERENCES

APPENDIX

45

The content of this publication, in whole or in part, may be quoted or reproduced provided the authors and the Long Ashton Research Station, Weed Research Department are fully acknowledged. The correct bibliographical reference is :

WEST, T.M. The activity and post-emergence selectivity of some recently developed herbicides: Imazethapyr, BAS 51800H, DPX-L5300, Triasulfuron and DPX-A7881. Technical Report Long Ashton Research Station, Weed Research Department, 1988, No. 104 pp. 58.

-1-

THE ACTIVITY AND POST-EMERGENCE SELECTIVITY OF SOME RECENTLY DEVELOPED HERBICIDES: IMAZETHAPYR, BAS 51800H, DPX-L5300, TRIASULFURON and DPX-A7881.

T.M. WEST

Weed Research Department, Department of Agricultural Sciences, University of Bristol, Institute of Arable Crops Research, Long Ashton Research Station, Bristol, BS18 9AF.

SUMMARY

Five herbicides were tested for post-emergence selectivity on 45 crop and weed species. Wheat, barley, oat and maize were each treated with seed dressings of the safener 1,8-naphthalic anhydride (NA) to investigate possible protection from herbicide injury. The route of entry for BAS 51800H, DPX-L5300, triasulfuron and DPX-A7881 was examined in a separate test on six selected species.

Imazethapyr was active as both pre- and post-emergence applications. A wide range of grass and broad-leaved weed species were controlled, postemergence, at rates to which pea and lettuce were tolerant. The safener, NA, increased the tolerance of maize.

BAS 51800H controlled only a few weed species, notably Galium aparine and Veronica persica. The cereals, maize, perennial ryegrass, brassicas, sugar beet, onion and dwarf bean were tolerant. When applied post-emergence most of the activity appeared to be via the soil.

DPX-L5300 was active pre-emergence and post-emergence, through the foliage and via the soil. Many important annual broad-leaved weeds were controlled but activity against grass weeds was poor. Wheat and barley were tolerant and the safener, NA, improved the tolerance of maize.

Triasulfuron showed a similar type of activity and spectrum of weed control to DPX-L5300 although it was more active against grass species. Wheat and barley were highly tolerant and the safener NA again improved the tolerance of maize.

DPX-A7881 was active pre-emergence and post-emergence, particularly via the soil. Applied post-emergence, many grass and broad-leaved weeds were controlled, while brassica crops were tolerant, especially oilseed rape. The tolerance of barley and maize was increased by the safener NA.

INTRODUCTION

The pre- and post-emergence activities and selectivities of new herbicides are investigated at L.A.R.S. Weed Research Department on a large number of crop and weed species grown in pots. Although only one crop variety or source of weed species is used, in one soil type, at one depth of sowing and without interspecific competition, the results provide a guide for more detailed investigations where warranted.

-2-

This report gives information on the post-emergence selectivity of five new herbicides. Results of an experiment investigating activity of the herbicides applied separately to shoot, root and seed are also included for BAS 51800H, DPX-L5300, Triasulfuron and DPX-A7881 (Tables 4,6,8 and 10). This provides information on (1) route of entry and (2) type and degree of phytotoxicity. Similar data for imazethapyr (AC 263,499) was reported previously (Richardson and West, 1986a).

METHODS AND MATERIALS

Activity experiment

This was carried out in a glasshouse on six selected species, general techniques were as described by Richardson and Dean, 1974. The four annual species were raised from seeds and the two perennials from rhizome fragments. Plant information, spraying and assessment dates are summarised in Appendix 1. Herbicides were applied by four different methods.

- (i) A post-emergence spray to the foliage only, avoiding contact with the soil.
- (ii) Post-emergence to the soil only, as a drench avoiding foliar contact.
- (iii) Pre-emergence to the soil surface.
- (iv) Pre-emergence with thorough incorporation to 5 cm depth before planting.

Post-emergence selectivity experiment

General techniques were those described by Richardson and Parker (1977). Plants were raised in 9 cm diameter plastic pots containing a Mendip silt loam with added Vitax Q4 fertiliser (Table 1). Sowing dates were staggered so that the majority of species would achieve a pre-determined stage (2-4 leaves) by the time of spraying. All species were raised outdoors, although some, especially weed species, were germinated in trays of compost in the greenhouse, then pricked out into pots at a very early stage. Before spraying, each species was thinned to the same number per pot (Appendix 1).

An additional series of wheat, barley, oat and maize were treated with a safener, (NA, 1,8 napththalic anhydride formulated as a wettable powder), to investigate possible protection from herbicide injury. Seeds were dressed by shaking in a polythene bag with NA, at 0.5% of the seed weight.

Herbicides were applied using a laboratory track sprayer fitted with an 80015 Spraying Systems TeeJet operating at 312 1/ha and moving at 0.5 m/s, 45 cm above the stationary plants. There were two replicates for each treatment. Stages of growth at spraying and assessment are summarised in Appendix 2.

After spraying, the plants were protected from rainfall for 24 hours, then watered overhead using a rose connected to a water line to simulate rainfall and wash off excess herbicides residues. The pots were then put outdoors in two randomised blocks per species. Watering the experiment was by natural rainfall, plus additional overhead hand watering, as necessary. Additional slow release fertiliser tablets 'Growtabs' were given to all species two weeks after spraying. Insecticide and fungicide solutions were applied to individual species as required. The brassicas and Veronica persica were given a soil drench with Cheshunt Compound (ammonium carbamate + copper suphate), at 3.05 g/l, to prevent damping-off disease, on 1 July 86. The cereals were sprayed with Milstem (ethirimol), at 0.9 g/l, to control mildew, on 14 July 86.

-3-

Assessments and processing of results

Results were assessed and processed as in previous work (Richardson and Dean, 1974). Survivors were counted and scored for vigour on a 0 - 7 scale, where 0 = dead and 7 = as untreated control. Pairs of histograms are presented for each treatment, the upper representing plant survival and the lower, vigour; both calculated as percentages of untreated controls. Each 'x' represents a 5% increment in the post-emergence experiment but 7% in the activity experiments. A '+' indicates a value in excess of 100%; 'R' indicates a result based on one replicate only and 'M' represents a missing treatment.

A table of observed selectivities, using the criteria specified, is presented for each herbicide, along with comments to highlight important results.

Soil and environment conditions Table 1.

Experiment type

Activity

-4-

Post-emergence

selectivity

.

.

11 Jul 86 and 14 Nov 86 Dates of spraying 22 Jul 86 . 18 Aug 86 5 Jan 86 Main assessment completed

<u>Soil</u> - Mendip silt loam	(+ 15% v/v sand)		
Particle size analysis	%	%	
coarse sand $(600\mu m-2mm)$ medium sand $(212\mu m-600\mu m)$ fine sand $(63\mu m-212\mu m)$ silt $(2\mu m-63\mu m)$ clay $(< 2\mu m)$	2.1 41.4 13.8 26.6 16.1	1.8 3.3 6.5 58.0 30.4	
Organic matter (%)	4.6	5.4	
pH (in water: 1:2 soil: water	ratio) 6.0	6.0	
Fertiliser addition			
Vitax Q4	3.3g/litre	3.3g/litre	
Temperature (°C)	Glasshouse	Outdoors	
Mean Maximum Minimum	· 15 20 10	16 30 6	

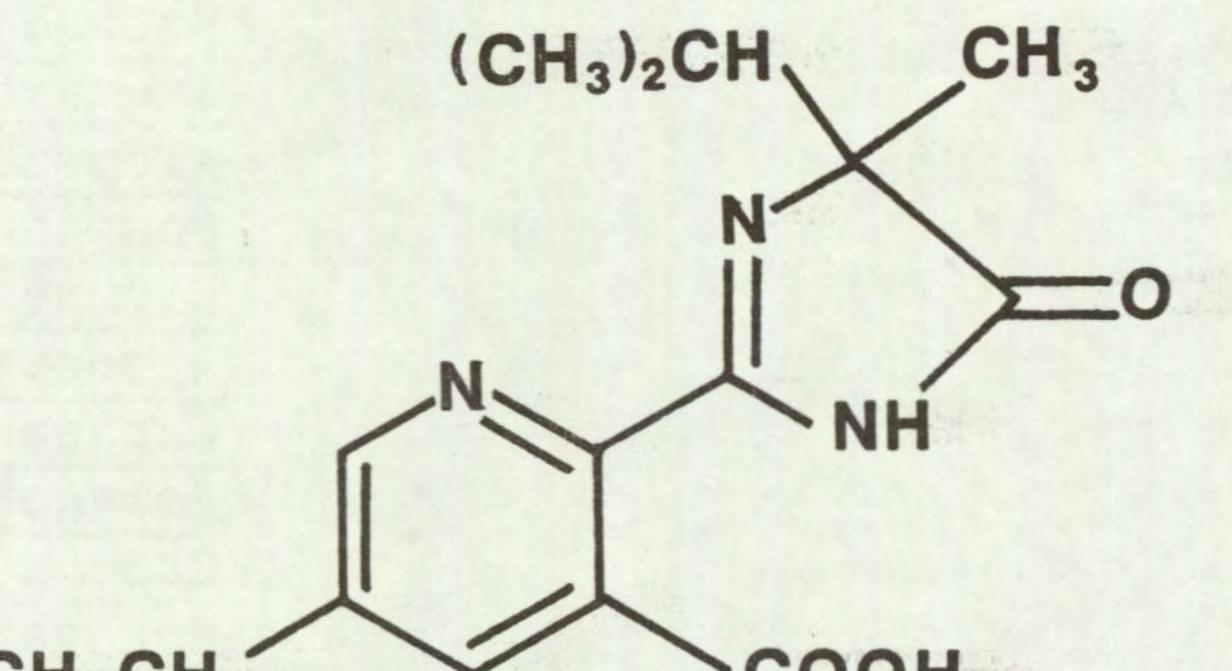
Relative humidity (%)

Mean	60	77	
Maximum	85	98	
Minimum	35	50	

Imazethapyr

-5-

Code numbers AC 263499 Trade name Pursuit CL 263,499 Pivot


Common name

Imazethapyr (approved-BSI, ISO and ANSI)

Chemical name

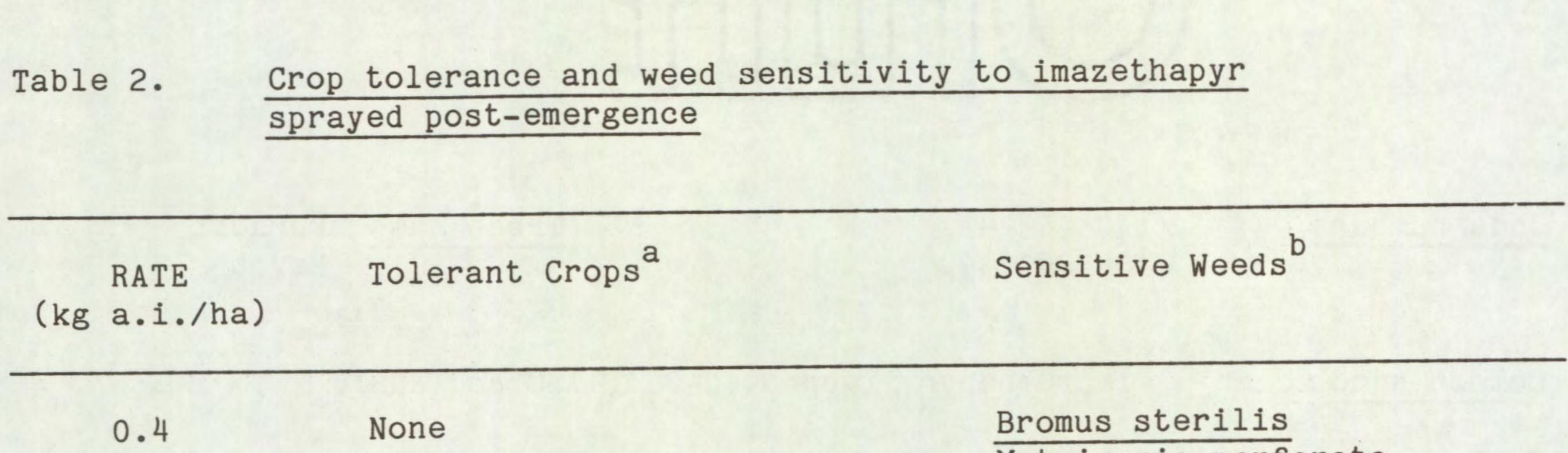
(RS)-5-ethyl-2-(4-isopropyl-4-methyl-5-oxo-2imidazolin-2-yl)nicotinic acid.

Structure

CH3CH2 COOH

Source

Cyanamid International Limited Fareham Road Gosport Hants, P013 OAS, UK.


Information available and suggested uses from originating company

Annual grass and broad-leaved weed control in soyabeans, peas, beans, peanuts, alfalfa, clover, chickpeas and lentils, pre- and/or post-emergence at doses ranging from 0.05 to 0.15 kg a.i./ha.

. Formulation used Aqueous concentrate 24% a.i.

Results

Full results are given in the histograms on pages 8 - 11 and potential selectivities in Table 2.

-6-

Dromus scertis
Matricaria perforata
Senecio vulgaris
Lamium purpureum
Chenopodium album
Rumex obtusifolius
plus species listed below

0.1

pea lettuce Maize + safener Festuca rubra Avena fatua Alopecurus myosuroides Poa annua Elymus repens Agrostis stolonifera Chrysanthemum segetum Polygonum lapathifolium Galium aparine Papaver rhoeas Raphanus ruphanistrum Cirsium arvense Convolvulus arvensis Solanum nigrum plus species listed below

species listed above plus dwarf bean white clover

Poa trivialis Beta vulgaris Sinapis arvensis Stellaria media Geranium dissectum

a Vigour reduced by less than 15%

number or vigour reduced by

0.025

70% or more

Comments on results

Activity

The activity, persistence, pre-emergence selectivity and symptoms produced on susceptible species were described in a previous report (Richardson and West 1986a). The most common symptoms were severe growth inhibition of main shoots followed by yellowing and necrosis. Sub-lethal doses often stimulated axillary shoots or tillering.

b

Post-emergence selectivity

A wide spectrum of broad-leaved and grass weeds were controlled or severely suppressed. Five species, including <u>Stellaria media</u> and <u>Sinapis</u> <u>arvensis</u> were sensitive to 0.025 kg/ha. At 0.1 kg/ha a further eight broad-leaved and six grass species were controlled and several others, including <u>Matricaria perforata</u> and <u>Bromus sterilis</u>, were severely affected. Viola arvensis and Veronica persica were the most resistant weed species.

-7-

No crops tolerated 0.4 kg/ha, although peas were only slightly affected. Pea and lettuce tolerated 0.1 kg/ha, while dwarf bean and white clover tolerated 0.025 kg/ha. Maize, with the safener tolerated 0.1 kg/ha, whereas without the safener it was considerably damaged at 0.025 kg/ha.

The brassicas, sugar beet, carrot and onion were sensitive to the lowest dose.

As with the pre-emergence activity (Richardson and West, 1986a) the post-emergence weed control was impressive but the crop tolerance limited.

Pea was the most tolerant crop at doses which suppressed several weeds that may be a problem in this crop, i.e. Matricaria spp., Solanum nigrum, Cirsium arvense and Elymus repens. Surprisingly, lettuce tolerated doses which suppressed composite weeds including Chrysanthemum segetum, Senecio vulgaris, Matricaria perforata and Cirsium arvense. Both these selectivities warrant further investigation. The protection of maize by NA to post-emergence treatments of this herbicide (also found pre-emergence) deserves further studies.

		of plants Pc	st-eme	ergence selectivity expe	riment	
xxxxx = v $(20 x's =$	-	of untreated controls)		Imazethapyr		
SPECIES		0.025 kg/ha		0.100 kg/ha		0.400 kg/ha
WHEAT	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	90	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	0	
	64	XXXXXXXXXXXX	29	XXXXXX	0	
WHEAT+S	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	90	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	10	~~
	71	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	43	XXXXXXXXX		XX X
					,	•
BARLEY	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	0	
	71	XXXXXXXXXXXXX	57	XXXXXXXXXX	0	
DADT DULC	100					
BARLEY+S	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	50	XXXXXXXXXX	0	
	11	XXXXXXXXXXXXX	29	XXXXXX	0	
OAT	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	0	
	64	XXXXXXXXXXXXX		XXXXXXXXXXX	0	
OAT+S	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	20	XXXX
	71	XXXXXXXXXXXXXX	57	XXXXXXXXXX	14	XXX
DED DVCD	00		~		-	
PER RYGR		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	0		0	
	04	XXXXXXXXXXXX	0		0	
ONION	70	XXXXXXXXXXXXX	20	XXXX	0	
		XXXXXXX		XXXX	0	
DWF BEAN		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
	86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	71	XXXXXXXXXXXXX	50	XXXXXXXXX
FTD DEAN	100		100		100	
LD DEAN		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
	15	ллллллллллллл	51	XXXXXXXXXX	43	XXXXXXXXX
PEA	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
				XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
W CLOVER	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
	86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	64	XXXXXXXXXXXX	50	XXXXXXXXX
	70					
RAPE		XXXXXXXXXXXXX	10	XX	0	
	29	XXXXXX	7	X	0	

.

.

XXX

.

00

and the second second

XXX

XXX

XXX

SPECIES		0.025 kg/ha		0.100 kg/ha		0.400 kg/ha
KALE	100 29	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	90 14	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	70 14	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
CABBAGE	100 14	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	90 14	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	90 14	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
CARROT	40 43	XXXXXXXX XXXXXXXXX	10 14	XX XXX	20 7	XXXX X
PARSNIP	100 57	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 36	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 14	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
LETTUCE	100 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 50	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
SUG BEET		XXXXXX XXX	00		00	
BETA VUL	10 7	XX X	000		000000000000000000000000000000000000000	
BROM STE	100 64	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	89 43	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	44 29	XXXXXXXX XXXXXX
FEST RUB		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	40 29	XXXXXXXX XXXXXX	000	
AVE FATU		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		XXXX XXX	0 0	
ALO MYOS	100 64	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	20 21	XXXX XXXX	000	
POA ANN		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		XXXXX XXX	000000000000000000000000000000000000000	
POA TRIV		XX XXX	000000000000000000000000000000000000000		00	

Imazethap

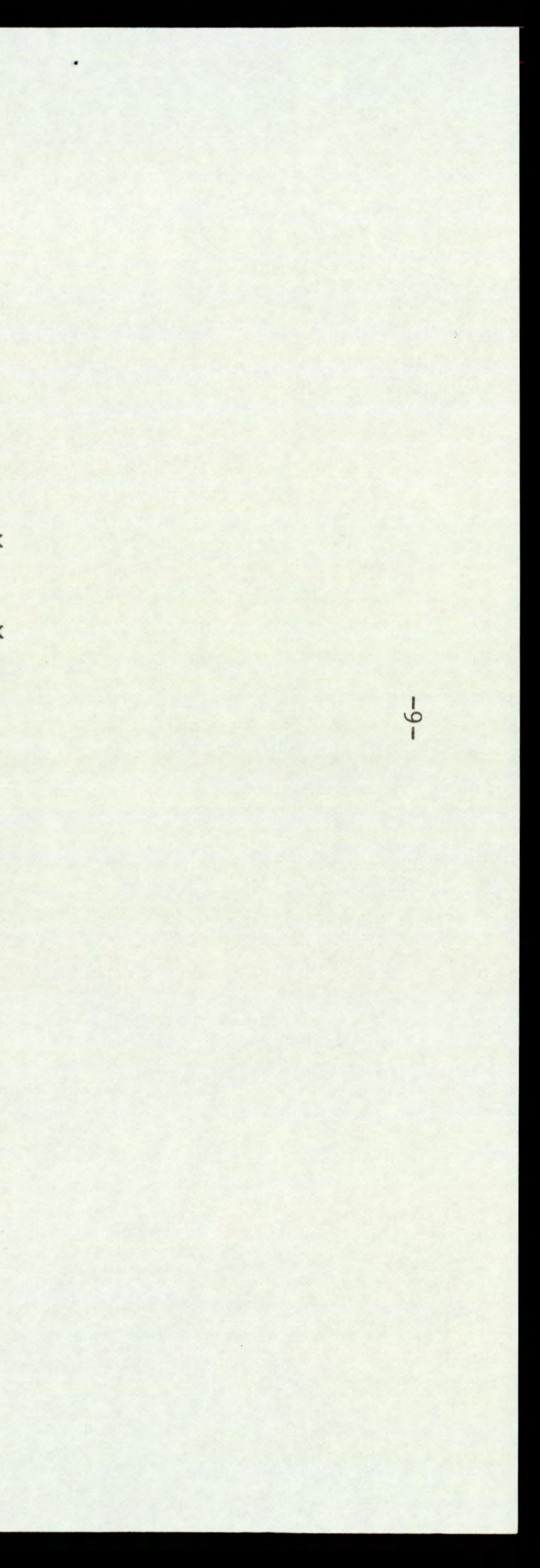
0	.1	00	kg/	h
-			51	

.

.

×.

. .

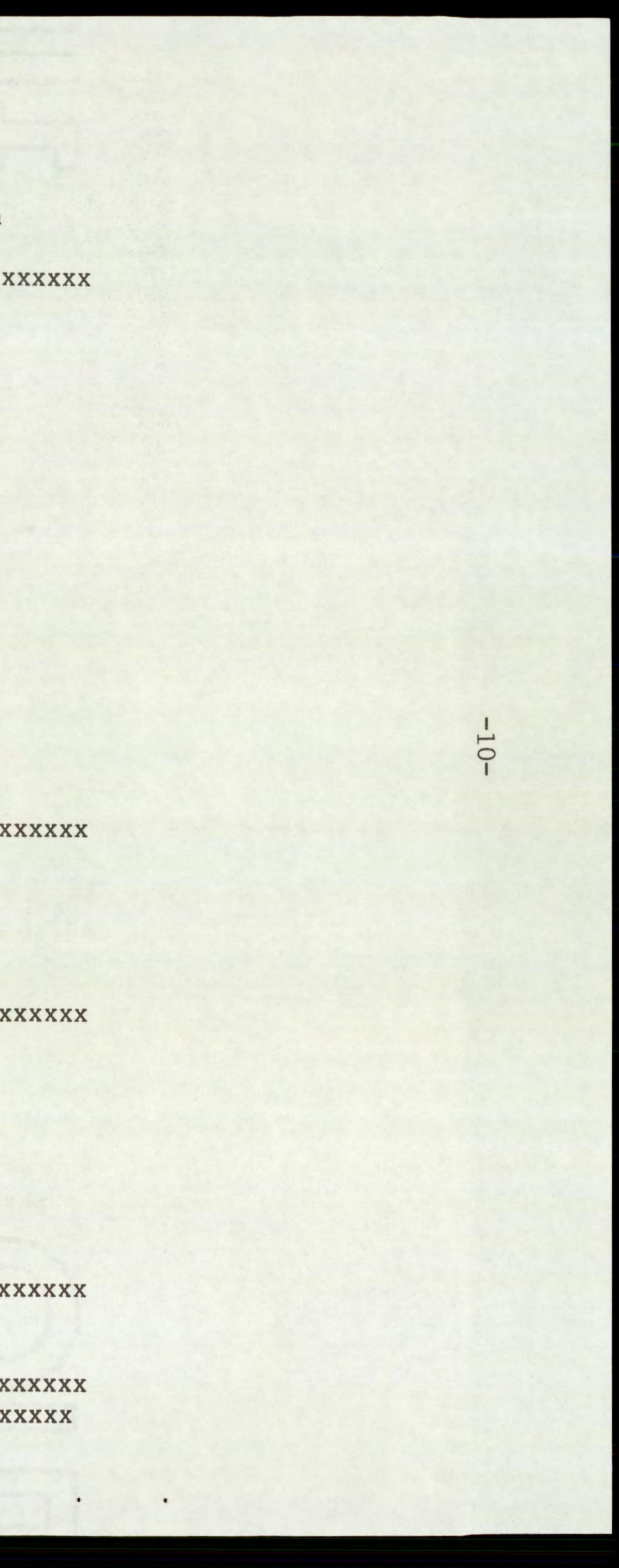

.

.

n	1	7	r	
r	1		-	

0.	400	ka	/ha
U •	JOU	124/	110

٠


SPECIES	0.025 kg/ha		0.100 kg/ha		0.400 kg/ha
SIN ARV 100 29	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 29	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 14	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
RAPH RAP 100 57	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	000		000000000000000000000000000000000000000	
	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	0		00	
MAT PERF 100 64	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	90 36	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	50 7	XXXXXXXXXX X
SEN VULG 100 64	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 43	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	20 14	XXXX XXX
POL LAPA 100 43	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 29	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	70 14	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
LAM PUR 100 64	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 43	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 14	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
GAL APAR 90 43	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	20 7	XXXX X	000000000000000000000000000000000000000	
CHEN ALB 100 43	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	90 36	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 21	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
STEL MED 0 0		0 0		000	
SPER ARV 100 50	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	80 43	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	000	
VER PERS 100 86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 71	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 50	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
VI ARVE 100 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 93	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 93	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

.

.

Imazethapyr

1

SPECIES	0.02
GER DISS	XXXXXXXX
PAPA RHO	XXXXXXXX
RUM OBTU	XXXXXXXX
EL REPEN	XXXXXXXX
AG STOLO	XXXXXXXX
CIRS ARV	XXXXXXX
CONV ARV	XXXXXXXX
MAIZE+S	XXXXXXXX
MAIZE	XXXXXXXX
SOL NIG	XXXXXXX

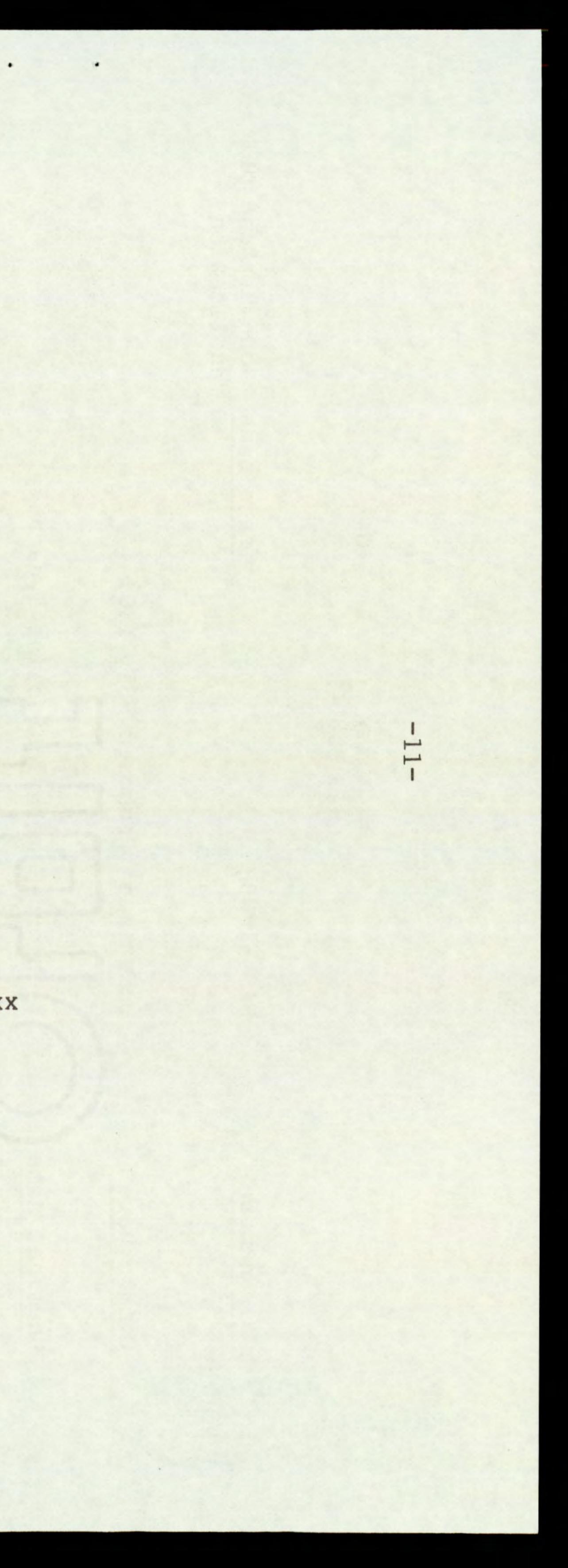
Imazethapy

025 kg/ha

.

.

0.100 kg/ha


XXXXXXXXXXXXX	50	XXXXXXXXX
	14	XXX
XXXXXXXXX	10	XX
XXXXX	14	XXX
XXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXX	36	XXXXXXX
XXXXXXXXXXXX	10	XX
XXXXX	21	XXXX
XXXXXXXX	12	XX
XXX	14	XXX
XXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXX	29	XXXXXX
XXXXXXXXXXXXX	29	XXXXXX
XXX	7	X
XXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXX	86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
xxxxxxxxxxxx	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXX	29	XXXXXX
XXXXXXXXX	90	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
x	21	XXXX

-	*	7	-	-	
)	1	1	I		
-	7		-	-	
	-				

.

0.400 kg/ha

		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
	000	
XXXXXX	12 14	XX XXX
	20 7	XXXX X
	00	
XXXXXX	20 7	XXXX X
	0000	
XXXXXXX	62	XXXXXXXXXXXX
XXXX	64	XXXXXXXXXXXX
XXXXXX	100 14	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXX	40 14	XXXXXXXX XXX

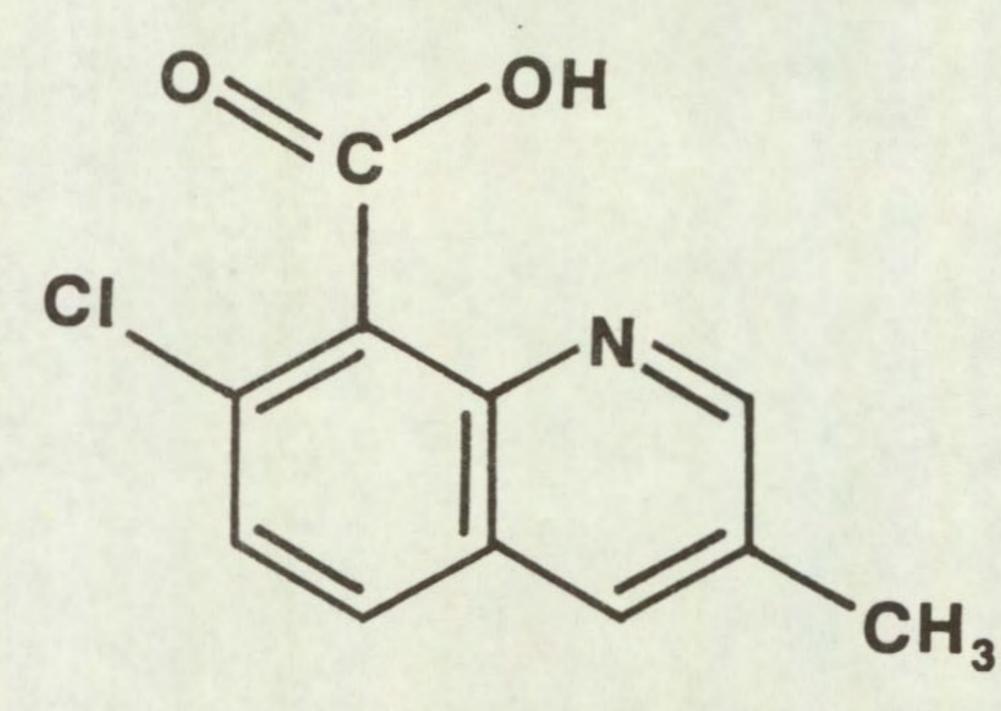
-12-

BAS 51800H

Code number

BAS 51800H

Trade name None at time of publication


Common name

Quinmerac (Proposed BSI, ISO)

Chemical name

7-chloro-3-methylquinoline-8-carboxylic acid

Structure

Source

BASF (UK) Ltd Agricultural Division Lady Lane Hadleigh Suffolk, IP7 6BQ, UK.

Information available and suggested uses from originating company

For control of Galium aparine, Veronica spp. and Lamium spp. pre- and post-emergence in cereals, oilseed rape and sugar beet at rates from 0.5 - 2.0 kg a.i./ha.

Formulation used Wettable powder 50% a.i.

Results

Full results are given in the histograms on pages 15 - 19 and potential selectivities in Table 3.

-13-

Table 3. Crop tolerance and weed sensitivity to post-emergence treatments of BAS 51800H

RATE Tolerant Crops^a (kg a.i./ha)

Sensitive Weeds^b

2.0 Wheat +/- safener Barley +/- safener Oat +/- safener

Lamium purpureum Papaver rhoeas Convolvulus arvensis

Maize +/- safener Perennial ryegrass Oilseed rape Kale Sugar beet Onion Dwarf bean

plus species listed below

0.5 species listed above plus Cabbage Lettuce White clover

Galium aparine Veronica persica

0.125 species listed above plus

Field bean No weeds susceptible Pea Carrot

a Vigour reduced by less than 15% b number or vigour reduced by 70% or more

Comments on results

Activity

Generally, the foliar treatments were inactive on the broad-leaved species, apart from slight suppression of dwarf bean and kale at 4.0 kg/ha. However, the soil drench treatments caused considerable damage to dwarf bean at 1.0 kg/ha and slight suppression of kale and Polygonum amphibium at 4.0 kg/ha; pre-emergence treatments produced a similar response to the soil . drenches. (Table 4)

There were no effects against the grass species tested post-emergence and only slight suppression of perennial ryegrass and <u>Avena fatua</u> from the pre-emergence treatment at 4.0 kg/ha.

Symptoms on susceptible species

The foliar treatment on dwarf bean caused epinasty of stems, while soil applications gave considerable stunting and inhibition of growing points. Symptoms on kale were an overall reduction in size and vigour of plants.

-14-

Susceptible species in the post-emergence test e.g. <u>Galium aparine</u> and <u>Veronica persica</u>, showed epinasty of sprayed leaves followed by inhibition of growing points and plant necrosis. These symptoms are similar to those produced by (aryloxy) alkanoic acids, i.e. 2,4-D, exhibiting a characteristic growth regulatory/hormone type of activity. With <u>Papaver rhoeas</u> some leaves formed after spraying did not separate completely, being joined along one side of leaf margins.

Post-emergence selectivity

Galium aparine and Veronica persica were controlled at 0.5 kg/ha and Lamium purpureum, Papaver rhoeas and Convolvulus arvensis at 2.0 kg/ha. These were the only weed species sensitive to this herbicide.

The cereals, perennial ryegrass, brassicas, sugar beet, dwarf bean and onion all showed very good tolerance, whereas field bean, carrot and parsnip were sensitive to 0.5 kg/ha.

Although the weed control spectrum is narrow, crop tolerance is good. This herbicide should be useful in mixtures where weed problems include Galium or Veronica spp. Recent work (Nuyken et al., 1985) has shown BAS 51800H to be a useful partner to metazachlor, chlorotoluron, isoproturon or chloridazon in various weed/crop situations.

The activity shown against the perennial <u>Convolvulus arvensis</u> is worth further investigation.

-15-

Table 4

ACTIVITY EXPERIMENT

BAS 51800H

	0.25 kg a.i./ha	1.0 kg a.i./ha	4.0 kg a.i./ha
F	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
S	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
Р	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

DWARF BEAN

		XXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXX	XXXXX
	I	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
	F	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
KALE	S	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
	Ρ	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
	I	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
	F	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
POLYGONUM AMPHIBIUM	S	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
	Р	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
	I	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
	F	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
PERENNIAL RYEGRASS	S	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
MILLUMADD	Р	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
	I	XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXX XXXXXXXXXXXXX
	F	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
AVENA FATUA	S	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
	Р	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
	I	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
	F	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
ELYMUS REPENS	S	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
	Р	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
	I	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

Key	F	=	post-emergence, foliar application
	S	=	post-emergence, soil drench
	Р	=	pre-emergence, surface film
	I	=	pre-planting, incorporated

xxxxxxxxxxx = number of plants xxxxxxxxxxx = vigour (14 x's = 100% of untreated control, + = >100%)

<pre>xxxxx = vigour (20 x's = 100% of untreated controls SPECIES 0.125 kg/ha WHEAT 100 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx</pre>	5)
WHEAT 100 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	
WHEAT+S 100 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx	
BARLEY 100 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	
BARLEY+S 100 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx	
OAT 100 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	
OAT+S 100 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx	
PER RYGR 100 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	
ONION 100 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	
DWF BEAN 100 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	
FLD BEAN 100 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	
PEA 100 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	
W CLOVER 100 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	
RAPE 100 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	
100 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	

Post-emergence selectivity experiment

0.500 kg/ha

100 xxxxxxxx	xxx
100 xxxxxxxx	
100 xxxxxxxx 100 xxxxxxx	
100 XXXXXXXXX 100 XXXXXXXX	
100 xxxxxxxxx 100 xxxxxxxx	
100 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	
100 xxxxxxxxx 100 xxxxxxxx	
100 xxxxxxxxx 100 xxxxxxxx	
100 xxxxxxxxx 100 xxxxxxxx	
100 xxxxxxxxx 93 xxxxxxxx	
100 xxxxxxxx 36 xxxxxxx	
100 xxxxxxxxx 71 xxxxxxxx	
100 xxxxxxxxx 86 xxxxxxxx	XXX
100 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	
100 xxxxxxxx	XXXX

BAS	51	8	0	OH	1
DND	JT	U	U	OU	

2.000 kg/ha

.

"

XXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXX	79	XXXXXXXXXXXXXXXXX
XXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXX	86	XXXXXXXXXXXXXXXXXXX
	7.00	
XXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXX	93	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXX	93	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
AAAAAAAA		AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
XXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXX	93	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
	100	
XXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXX	93	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXX	86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXX	50	XXXXXXXXXX
	29	XXXXXX
XXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXX	57	XXXXXXXXXX
XXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXX	36	XXXXXXX
	100	
XXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

XX XX XX X XX XX XX 16. XX XX XX XX XX XX XX XX XX

.

.

SPECIES		0.125 kg/ha
KALE	100 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
CABBAGE	100 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
CARROT	100 93	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
PARSNIP	100 71	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
LETTUCE	100 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
SUG BEET	100 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
BETA VUL	100 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
BROM STE	100 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
FEST RUB	100 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
AVE FATU	100 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
ALO MYOS	100 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
POA ANN	100 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
POA TRIV	100 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

BAS 51800H is quinmerac, DPX-A7881 is ethametsulfuron-methyl, DPX-L5300 is tribenuron-methyl

BAS 51800H

0.500 kg/ł

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

1			
- }	3	-	
1	1	C	
	-	-	-

2.000 kg/ha

XXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXX	93	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXX	79	XXXXXXXXXXXXXXXX
XXXX	70	XXXXXXXXXXXXX
	21	XXXX
xxxxxx	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
	14	XXX
XXXXXXX		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXX	43	XXXXXXXXX
XXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXX	93	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
xxxxxxx	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXX	93	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXX
xxxxxxxx	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
xxxxxxx	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
xxxxxxx	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

. • X X -1 2 2 A XX

SPECIES		0.125 kg/ha		0.500 kg/
SIN ARV	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXX
	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXX
RAPH RAP	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	94	XXXXXXXXXXXX
	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXX
CHRY SEG	1,00	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXX
	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXX
MAT PERF	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXX
	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	93	XXXXXXXXXXXX
SEN VULG	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXX
	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXX
POL LAPA	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXX
LAM PUR	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	80	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
	79	XXXXXXXXXXXXXXX	50	XXXXXXXXXX
GAL APAR	90	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	60	XXXXXXXXXXXX
	43	XXXXXXXXX	21	XXXX
CHEN ALB	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
STEL MED	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
SPER ARV	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
VER PERS		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
	71	XXXXXXXXXXXXX	21	XXXX
VI ARVE	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

1					
1	۲	٦	-	3	
	Ł	I	C	2	
		-	1		

2.000 kg/ha

XXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXX	86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXX	93	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXX	71	XXXXXXXXXXXXXX
XXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXX	40	XXXXXXXX
	14	XXX
	0	
	0	
XXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXX	93	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXX	67	XXXXXXXXXXXXX
	14	XXX
XXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXX	71	XXXXXXXXXXXXX

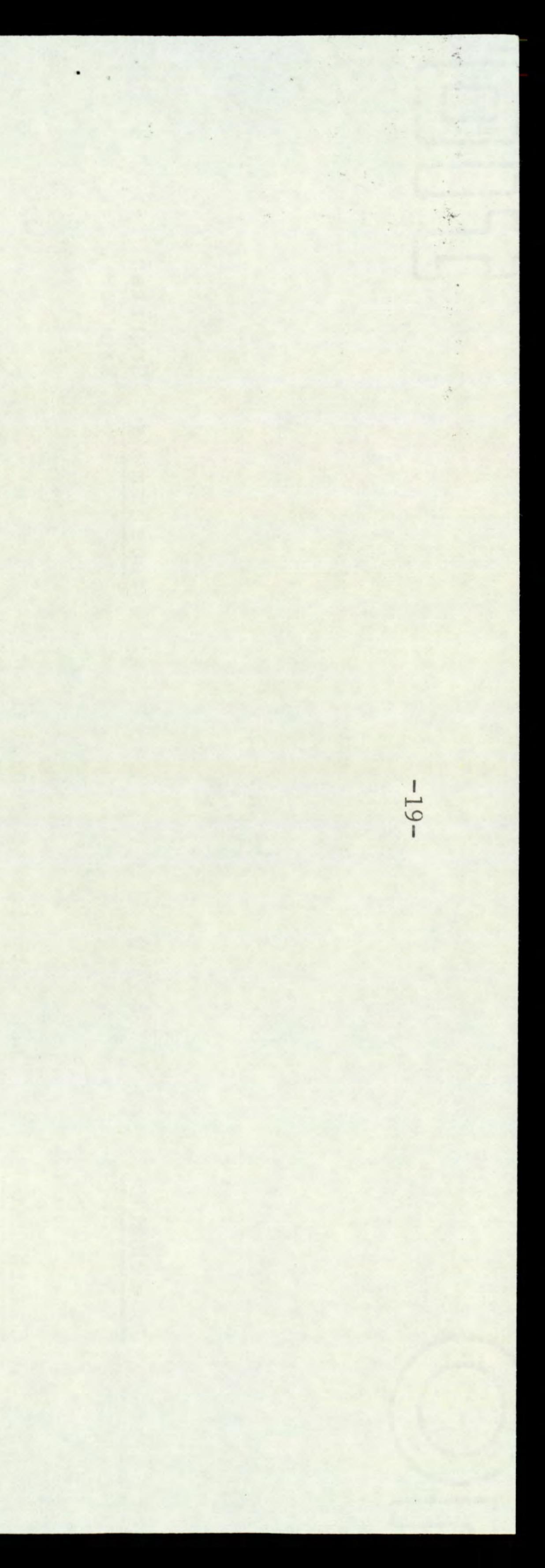
X x Х 18-X . .

SPECIES		0.12
GER DISS		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
PAPA RHO	100 79	
RUM OBTU		XXXXXXXX
EL REPEN		XXXXXXXX
AG STOLO		XXXXXXXX
CIRS ARV	100 100	XXXXXXXX
CONV ARV	100 100	XXXXXXXX
MAIZE+S	100 100	XXXXXXXX
MAIZE		XXXXXXXX
SOL NIG		XXXXXXXX

BAS 51800H

.25 kg/ha

.


0.500 kg/ha

- XXXXXXXXXXXXXX XXXXXXXXXXXXXX
- XXXXXXXXXXXXXX XXXXXXXXXX
- XXXXXXXXXXXXXX XXXXXXXXXXXXXXX
- XXXXXXXXXXXXXX XXXXXXXXXXXXXX
- XXXXXXXXXXXXXX XXXXXXXXXXXXXXX
- XXXXXXXXXXXXXXX XXXXXXXXXXXXXX
- . XXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX
- XXXXXXXXXXXXXXX XXXXXXXXXXXXXX
- XXXXXXXXXXXXXX XXXXXXXXXXXXXXX
- XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXX

100 93	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 71	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	0	
43	XXXXXXXXX	0	
100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	79	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	14	XXX
64	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	21	XXXX
100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	
100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
		55	AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	93	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
71	XXXXXXXXXXXXX	57	XXXXXXXXXXX

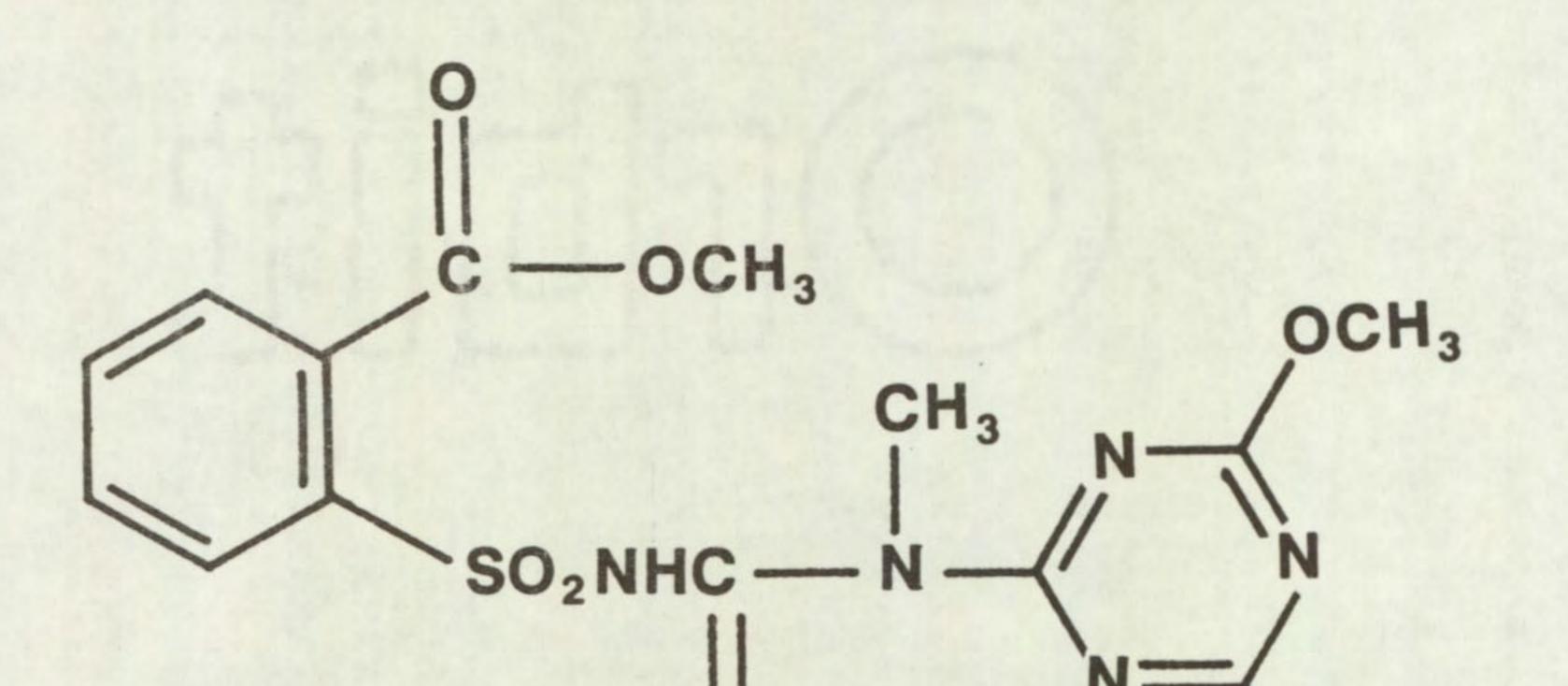
2.000 kg/ha

.

-20-

DPX-L5300

Granstar Trade name/s Code number DPX-L5300 Express


Common name

(None at time of publication)

Chemical name

Methyl 2-{[4-methoxy-6-methyl-1,3,5,-triazin-2-yl(methyl)cabamoyl]sulphamoyl}benzoate

Structure

CH₃

Source

DuPont (UK) Ltd Wedgwood Way Stevenage Herts, SG1 4QN, UK.

Information available and suggested uses

For control of a wide spectrum of broad-leaved weeds, including the perennial Cirsium arvense, applied post-emergence in cereals at rates of 10 - 30 a.i./ha.

Formulation used Dry flowable 75% a.i.

Results

Full results are given in the histograms on pages 23 - 27 and potential selectivities in Table 5.

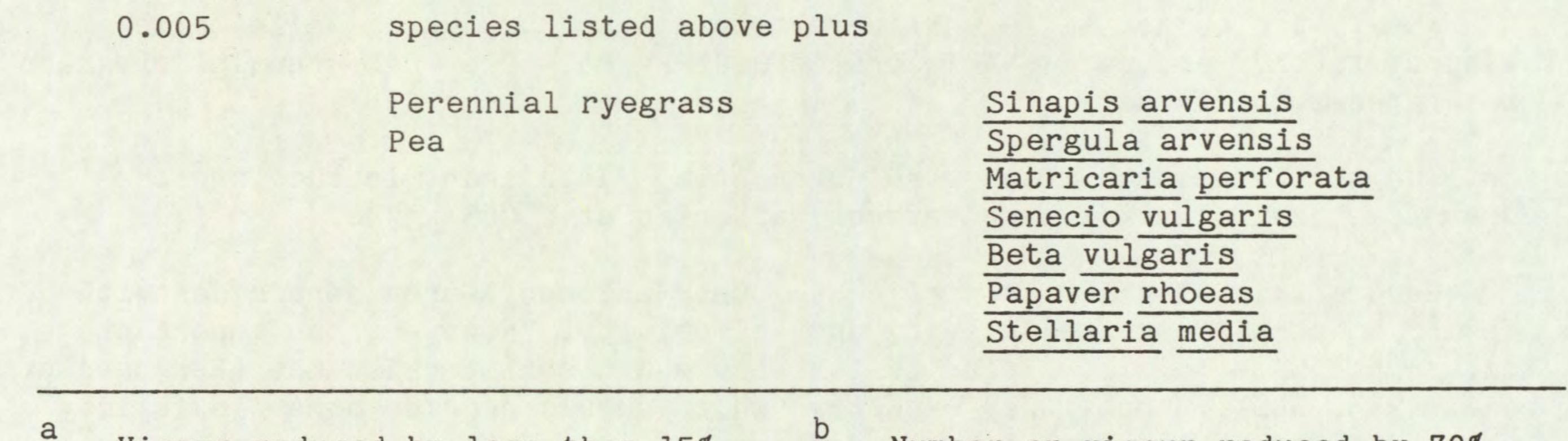
-21-

Table 5. Crop tolerance and weed sensitivity to post-emergence treatments of DPX-L5300

RATE Tolerant Crops^a (kg a.i./ha) Sensitive Weeds^b

0.08 Wheat +/- safener

Poa trivialis


Barley +/- safener Maize + safener Raphanus raphanistrum Geranium dissectum Lamium purpureum Viola arvensis Chrysanthemum segetum Rumex obtusifolius Solanum nigrum

plus species listed below

0.02 species listed above plus Maize Oat +/- safener

Polygonum lapathifolium Veronica persica Cirsium arvense

plus species listed below

Vigour reduced by less than 15% Or more

Comments on results

Activity

The foliar-only treatment was more active than the soil drench against the broad-leaved species; kale and Polygonum amphibium being more sensitive than dwarf bean. However, against perennial ryegrass the soil drenches were more damaging than the foliar only application. Elymus repens and Avena fatua were unaffected by the foliar treatment and only slighly affected by the post-emergence soil drench and pre-emergence applications at the highest dose.

Pre-emergence treatments caused appreciable damage to the small seeded annuals, kale and perennial ryegrass, at 0.02 kg/ha, but only moderately suppressed Polygonum amphibium; dwarf bean appeared somewhat tolerant.

-22-

Symptoms on susceptible species

Symptoms were similar to those reported previously for other sulphonyl-urea herbicides i.e. chlorsulfuron, metsulfuron-methyl and thiameturon-methyl (Richardson, West and Parker, 1980; Richardson, West and White, 1984 and Richardson and West, 1986b). On broad-leaved species these were seen as a rapid inhibition of growth followed by general yellowing/chlorosis or in some instances i.e. Rumex obtusifolius prominent reddening of leaves. At low doses, new leaves were often deformed, 'strap-like' and with interveinal chlorosis and little stem elongation between leaves. In the activity experiment,

pre-emergence treatments did not inhibit germination of sensitive species, i.e. kale, but often growth was inhibited at the cotyledon leaf stage.

Grasses were more tolerant than broad-leaved species, although in some small seeded annuals the growth of the main shoot was inhibited, leading usually to increased tillering. The tillers were often stunted and yellowed initially but most eventually recovered well.

Post-emergence selectivity

A wide range of broad-leaved weeds were controlled, seven of them at the lowest dose of 0.005 kg/ha. Species with notable susceptibility included Stellaria media and Matricaria perforata at 0.005 kg/ha and Veronica persica and the perennial Cirsium arvense at 0.02 kg/ha. At the highest dose of 0.08 kg/ha several other broad-leaved weeds and one grass, Poa trivialis, were controlled. Those weed species tolerating the high dose were <u>Galium aparine</u>, Convolvulus arvensis and all other grass species tested.

Wheat, barley and maize + NA were tolerant to 0.08 kg/ha while maize without safener and oat + NA tolerated 0.02 kg/ha. Pea and perennial ryegrass tolerated 0.005 kg/ha.

The most sensitive crops were sugar beet, field bean, lettuce and the brassicas, all of which were severely affected at 0.005 kg/ha.

Generally, DPX-L5300 is similar to other sulphonyl-urea herbicides with regard to post-emergence activity and selectivity. However, one important difference with this herbicide is its very short soil persistence (Ferguson <u>et</u> <u>al.</u>, 1985, West, unpublished results), which should provide more flexibility when considering crop rotations. For complete weed control in cereals, mixtures or sequences with other herbicides would be required to control problem broad-leaved weeds, e.g. Galium spp. and grass weeds.

The tolerance of pea at a dose controlling some problem weeds, i.e. Matricaria spp. and volunteer oilseed rape, warrants further investigation.

The protection of maize and oat by NA against the effects of DPX L5300 corresponds to similar results with other sulphonyl-ureas e.g. chlorsulfuron (DPX 4189), (Richardson, West and Parker, 1980). Further studies of this effect maybe worthwhile.

Activity against the perennial species <u>Rumex obtusifolius</u> and <u>Cirsium</u> arvense and partial selectivity of perennial ryegrass and <u>Festuca rubra is</u> also of interest. Further work is needed against more established plants with this herbicide, either alone or perhaps in mixtures, with a view to possible uses in grassland.

-23-

Table 6

DWARF

ACTIVITY EXPERIMENT

DPX-L5300

0.005 kg a.i./ha 0.02 kg a.i./ha 0.08 kg a.i./ha

	BEAN		XXXXXXXXXXX	XXXXXXXXXX	XXXXXXXXX
	DLAN	P	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
		I	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
		F	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
	KALE	S	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
		Ρ	XXXXXXXXXXXXXXX XXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
		I	XXXXXXXXXXXXXXX XXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
		F	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
	POLYGONUM	S	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
	AMPHIBIUM	P	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
		I	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
		F	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
	PERENNIAL	S	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
	RYEGRASS	Р	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXX
		I	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
		F	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
	AVENA FATUA	S	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
		P	XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
		I	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
		F	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
	ELYMUS	S	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	· XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
	REPENS	P	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
		I	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

Key F = post-emergence, foliar application

S = post-emergence, soil drench

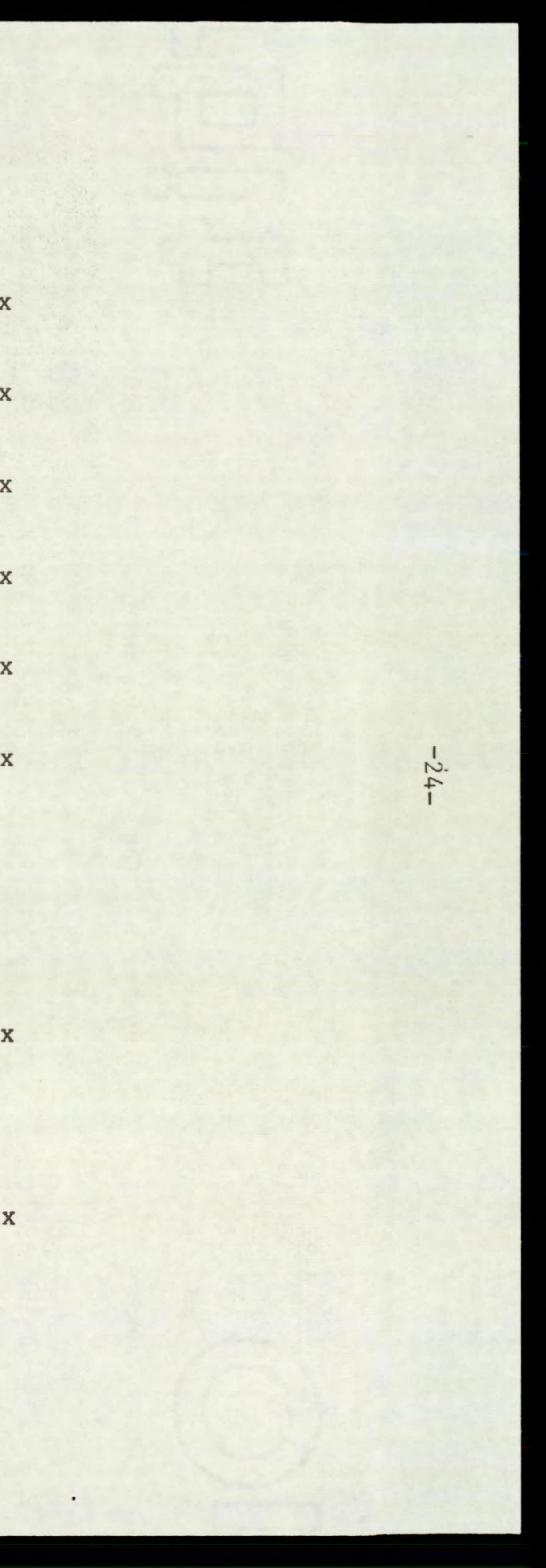
- P = pre-emergence, surface film
 - = pre-planting, incorporated

I

xxxxxxxxxxx = number of plants
xxxxxxxxxxx = vigour
(14 x's = 100% of untreated control, + = >100%)

xxxxx = nu xxxxx = vi		of plants
	-	of untreated controls
SPECIES		0.005 kg/ha
WHEAT	100 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
WHEAT+S	100 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
BARLEY	100 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
BARLEY+S	100 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
OAT	100 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
OAT+S	100 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
PER RYGR	100 86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
ONION		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
DWF BEAN		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
FLD BEAN	100 29	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
PEA	100 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
W CLOVER	100 64	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
RAPE	90 43	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

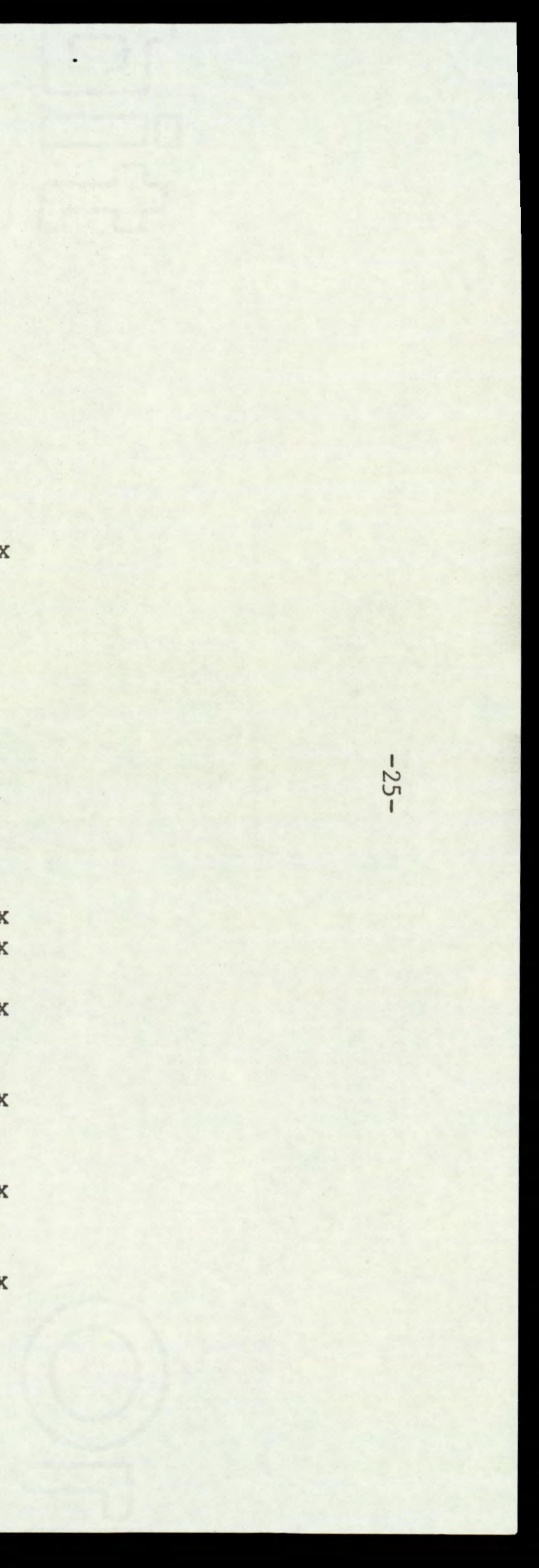
_		-	_	
ar	11		S	
~		-	~	


streated controls)

		0.020 kg/ha		0.080 kg/ha
x		XXXXXXXXXXXXXXXXXXXXX		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
X		XXXXXXXXXXXXXXXXXXXXXX		
x x		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
x	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
x	93	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	93	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
X				
х		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
X	93	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	79	XXXXXXXXXXXXXXX
x	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
x	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	79	XXXXXXXXXXXXXXX
x		XXXXXXXXXXXXX		XXXXXXXXXXXXX
	71	XXXXXXXXXXXXX	50	XXXXXXXXX
x	70	XXXXXXXXXXXXX	10	XX
	43	XXXXXXXXX	14	XXX
x		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		XXXXXXXXXXXXXXXXXXXX
	57	XXXXXXXXXX	45	XXXXXXXXX
x	50	XXXXXXXXXX	0	
	14	XXX	0	
x	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
x	79	XXXXXXXXXXXXXXX	50	XXXXXXXXX
x	80	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	0	
	36	XXXXXXX	0	
	0		0	
	0		0	

.

Post-emergence selectivity experiment


DPX-L5300

.

SPECIES		0.005 kg/ha		0.020 kg/ha		0.080 kg/ha
KALE	100 57	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 43	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	80 21	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
CABBAGE	100 50	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 29	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	70 14	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
CARROT	100 71	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 50	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	10 7	XX X
PARSNIP	100 71	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 50	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 36	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
LETTUCE	00		00		0 0	
SUG BEET	10 14	XX XXX	000		000	
BETA VUL	30 14	XXXXXX XXX	000		000	
BROM STE	100 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
FEST RUB	100 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 93	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 50	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
AVE FATU	100 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 71	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
ALO MYOS	100 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 71	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 50	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
POA ANN	100 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
POA TRIV	100 79	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	42 36	XXXXXXXX XXXXXXX	0 0	

DPX-L5300

SPECIES		0.005 }
SIN ARV		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
RAPH RAP		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
CHRY SEG		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
MAT PERF		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
SEN VULG	0 0	
POL LAPA		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
LAM PUR		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
GAL APAR		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
CHEN ALB		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
STEL MED		XXXXXX XXX
SPER ARV	20 7	XXXX X
VER PERS		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
VI ARVE		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

.

.

DPX-L5300

0.020 kg/ha		0.080 kg/ha
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	90 14	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	0 0	
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
	000	
	000	
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	90 14	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	40 7	XXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 21	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
	000	
	0 0	
	00	

.

0.005 kg/ha		0.020 kg/ha		0.080 kg/ha
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	0 0	
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 43	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXX	10 7	XX X	0 0	
	0 0		0 0	
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		XXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 21	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXX	0 0		0 0	
X	000000000000000000000000000000000000000		0 0	
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	000		0 0	
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	80 43	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	0 0	

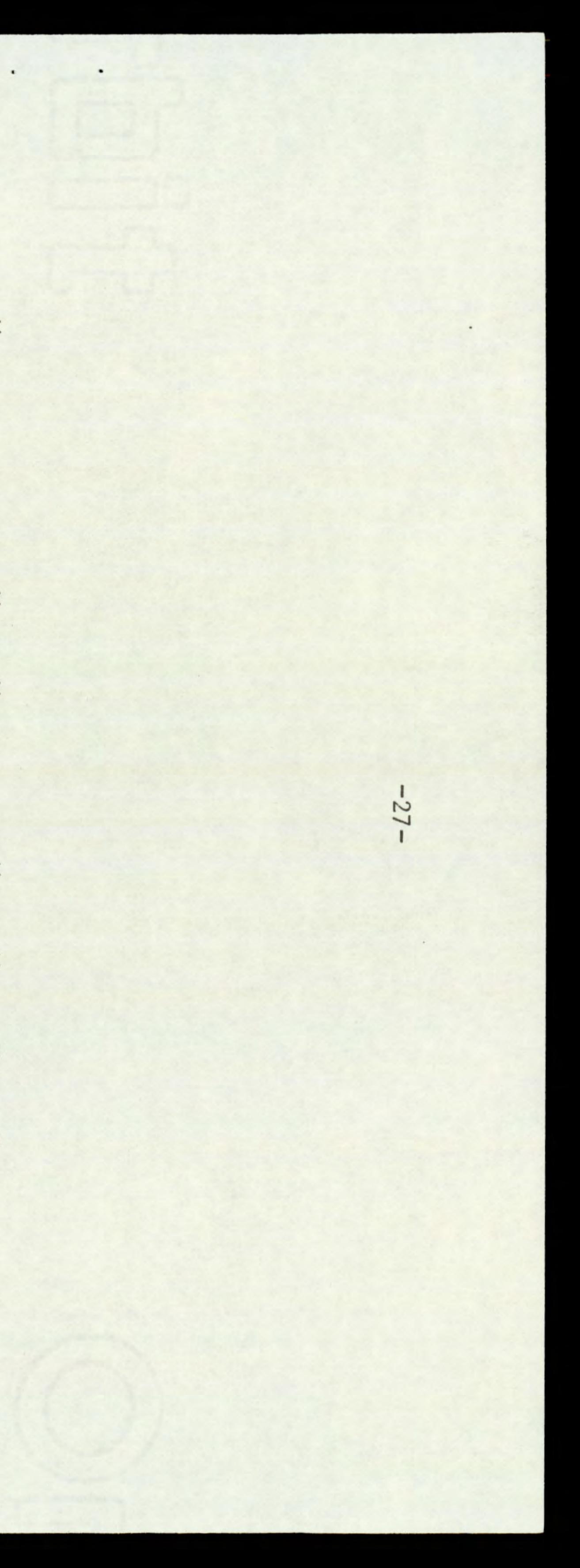
.

.

XXX

-26-

SPECIES		0.005 kg/ha		0.020 kg/ha		0.080 kg/ha
GER DISS	100 71	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 43	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 21	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
PAPA RHO	20 21	XXXX XXXX	0 0		00	
RUM OBTU	100 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	25 7	XXXXX X
EL REPEN	100 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 93	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 71	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
AG STOLO	100 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 64	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
CIRS ARV	100 36	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 21	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	20 7	XXXX X
CONV ARV	100 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 43	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
MAIZE+S	100 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
MAIZE	100 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 79	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
SOL NIG	100 57	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 36	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 21	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX


.

DPX-L5300

.

.

.

-28-

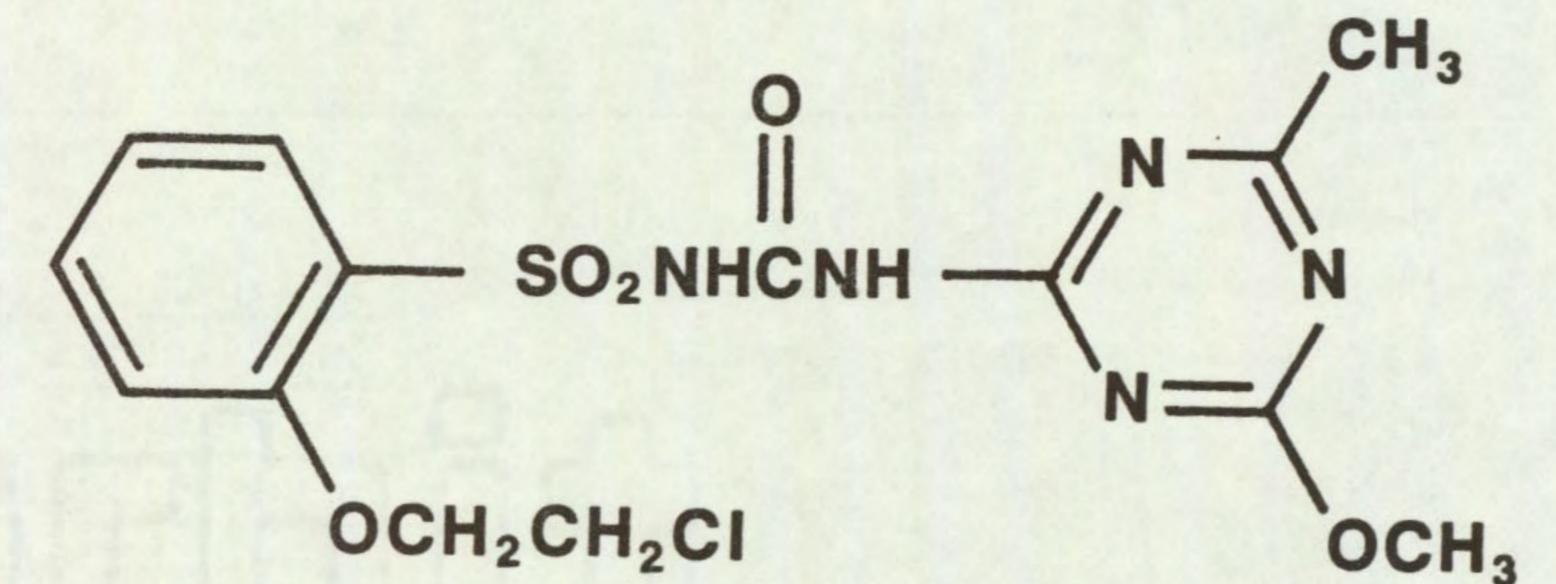
Triasulfuron

Code number

CGA 131036

Trade Name None at time of publication

Common name


.

Triasulfuron (approved - BSI, proposed ISO)

Chemical name

1-[2-(2-chloroethoxy)phenylsulphonyl]-3-(4methoxy-6-methyl-1,3,5-triazin-2-yl)urea

Structure

Source

Ciba-Geigy (UK) Ltd Agrochemical Division Whittlesford Cambridge CB2 4QT

Information available and suggested uses from originating company

For control of a wide spectrum of broad-leaved weeds including Viola spp. and Galium aparine pre- and post-emergence in small grain cereals at rates of 10-20 g a.i./ha.

· Formulation used Water dispersable granules 20% a.i.

Results

Full results are given in the histograms on pages 31 - 35 and potential selectivities in Table 7.

