INSTITUTE OF ARABLE CROPS RESEARCH Long Ashton Research Station

TECHNICAL REPORT No.99

THE PRE-EMERGENCE SELECTIVITY IN WARM-CLIMATE SPECIES OF SOME RECENTLY DEVELOPED HERBICIDES: SMY 1500, PPG 884, PPG 1259, DPX M6316 AND FMC 57020.

SMY 1500 is ethiozin, PPG 884 is lactofen, PPG1259 is busoxinone, DPM-M6316 is thifensulfuron-methyl, FMC 57020 is clomazone

Anita K. Wilson and C. Parker

December, 1987

Harm Jer. Herts AL5 2JQ Res 1 29 AUG 1989 Display Until

Price:

Long Ashton Research Station, Weed Research Department, Long Ashton, Bristol BS18 9AF England

ISSN 0551 4136 ISBN 0 7084 0472 3

UNIVERSITY OF

BRISTOL

INTRODUCTION

SUMMARY

CONTENTS

Page

2

5

11

17

22

METHODS AND MATERIALS

RESULTS

```
SMY 1500
    4-amino-61(1,1-dimethylethyl)-3-(ethylthio)-1,2,4-
    triazin-5(4H)-one
```

```
PPG 884
```

```
1'-(carboethoxy)ethyl 5-[2-chloro-4-(trifluoro-methyl)
phenoxy]-2-nitrobenzoate
```

```
PFG 1259
     3-[5-(1,1-dimethylethyl)-3-isoxazolyl)-4-hydroxoy-1-
     methyl-2-imidazolidinon
```

DPX-M6316

Methyl 3-(3-(4-methoxy-6-methyl-1,3,5-triazin-2-y1) ureidosulphonyl)thiophene-2-carboxylate

FMC 57020 2-(2-chlorophenyl)methyl-4,4-dimethyl-3-isoxaxolidinone

AC KNOWLEDGEMENTS

32

27

REFERENCES

The content of this publication, in whole or in part, may be quoted or reproduced provided the authors and the AFRC Long Ashton Research Station, Weed Research Department, are fully acknowledged. The correct bibliographic reference is :-

WILSON, A.K. and PARKER, C. (1987) The pre-emergence selectivity in warmclimate species of some recently developed herbicides: SMY 1500, PFG 884, PFG 1259, DFX M6316 and FMC 57020. Technical Report, Weed Research Division IACR, Long Ashton Research Station, Bristol, UK. No.99, pp 34. (1)

THE PRE-EMERGENCE SELECTIVITY IN WARM-CLIMATE SPECIES OF SOME RECENTLY DEVELOPED HERBICIDES: SMY 1500, PPG 884, PPG 1259, DPX-M6316 and FMC 57020

Anita K. Wilson and C. Parker

Weed Research Department, Department of Agricultural Sciences,

University of Bristol, Institute of Arable Crops Research,

Long Ashton Research Station, Long Ashton, Bristol,

BS18 9AF, UK.

SUMMARY

.

Surface pre-emergence treatments of five herbicides were tested in a glasshouse pot experiment on 31 warm-climate crop and weed species. Maize and sorghum were each included in two sets, with and without seed dressings of the safeners, 1,8-napthalic anhydride (NA) on maize, and CGA 92194 on sorghum.

SMY 1500, a compound related to metribuzin was well tolerated by tomato and groundnut and moderately well by maize + safener, cotton and sesamum. It controlled a broad spectrum of annual grasses at 0.75 kg ai/ha. <u>Bromus</u> <u>pectinatus</u> and the broad-leaved weed <u>Amaranthus retroflexus</u> were controlled at the lowest dose of 0.25 kg ai/ha but <u>Commelina diffusa</u> and <u>Euphorbia</u> heterophylla were susceptible only at the highest dose of 2.25 kg ai/ha.

PPG 884 controlled only a limited range of weeds, but is of interest for its possible control of Euphorbia heterophylla in maize and large-seeded legumes.

PPG 1259 and DPX-M6316 controlled very few species at the doses used and are of doubtful value as pre-emergence treatments in tropical crops.

FMC 57020 controlled several annual grasses and <u>Amaranthus retroflexus</u> and is of interest for the selectivity it showed in kenaf, pigeon pea and jute as well as in maize and large-seeded legumes.

INTRODUCTION

In April 1985, following reorganisation within AFRC establishments, the Weed Research Organization (WRO) officially became part of the University of Bristol, Long Ashton Research Station, Bristol, UK., although the Tropical Weeds Unit did not move to Bristol until April 1986. Also in April 1985, the (2)

Tropical Weeds Unit was able to resume evaluation of new herbicides on species of relevance to developing countries under a project (Contract No. TSD.A.198.UK(H)) partially funded by the European Economic Community.*

This report covers the last evaluation experiment on warm climate species to be done at WRO before the move to Bristol. Work on the temperate species continues and these results are reported separately. Relevant reports are Richardson and West (1986, 1987).

The objectives of the work reported here are exactly as indicated in previous reports in this series, i.e. to provide a guide to the potential usefulness of new compounds in the crops tested. Owing to the relatively artificial conditions of glasshouse pot experiments, it must be emphasized that the results are to be regarded only as a guide, and that further field testing is essential to confirm any of the interesting leads revealed.

This report give pre-emergence selectivity data for five new herbicides.

METHODS AND MATERIALS

Techniques were used as described by Richardson and Dean (1973), all herbicides being applied as surface pre-emergence treatments. Species were sown as detailed in Appendix 1, each one being replicated twice for each treatment. Soil and environmental details are given in Table 1.

Table la

Date of spraying Main assessment completed 15.11.85

Soil
organic matter %1.3clay content %16.0pH7.5

Added nutrients	
ammonium sulphate g/kg	0.5
superphosphate g/kg	1.0
potassium sulphate g/kg	0.6
fritted trace elements g/kg	0.1
hydrated magnesium sulphate g/kg	0.4

* This work had been previously carried out at the Weed Research Organization, Oxford, UK, under a joint arrangement between the Herbicide and Tropical Weeds Groups from 1960 - 1982.

(3)

Table 1b Environmental conditions

Temperature (°C)

mean maximum minimum 22 30 14

50

76

32

Relative humidity (%)

mean

.

maximum minimum

Amaranthus retroflexus was soaked in 0.1M potassium nitrate before planting to improve germination. Cyperus esculentus failed to give adequate emergence even after pre-planting storage at 4 C for two weeks. <u>Pennisetum setosum</u> also failed to germinate satisfactorily in spite of exposure of the seeds to light.

To protect against soil-borne pathogens, most seeds were pre-treated with thiram. Some had been pre-dressed by the supplier. Those not treated at all were rice, Snowdenia polystachya and Bromus pectinatus.

Maize and sorghum were each set up with and without a seed treatment of 'safener'. For maize seeds were shaken with a quantity of technical 1,8-naphthalic anhydride (NA) equivalent to 0.5% of seed weight. Sorghum seeds were shaken with a quantity of 70% CGA 92194 (N-1(1,3-dioxolan-2-ylmethoxy)-imino-benzene acetonitrile) a.i. equivalent to 0.2% of seed weight.

Herbicides were applied using a laboratory sprayer fitted with an 8002E Spraying Systems Tee Jet operating at a pressure of 207 kpa (30 1b/in²) and moving at 0.54 m/sec 30 cm above the soil. Subsequent watering was applied overhead.

Assessment and processing of results

Results were processed as described by Richardson and Dean (1973). Surviving plants were counted and scored for vigour on a 0-7 scale where 0 = dead, 7 = no difference from the untreated control.

Pairs of histograms are presented for each treatment, the upper representing plant survival and the lower the vigour score, both calculated as percentage of untreated control. Each 'x' represents a 5% increment. A '+' indicates a value in excess of 100%. (4)

A table of observed selectivities, using the criteria specified is presented for each herbicide with comments to highlight salient points.

The perennial Cyperus rotundus was kept for several weeks after the main assessment to observe later effects and/or recovery from injury.

SMY 1500

SMY 1500

Trade name

Tycor

Common name

Ebuzin (proposed) Ethiozin (proposed)

Chemical name

4-amino-6-(1,1-dimethylethyl)-3-(ethylthio)-1,2,4-

triazin-5(4H)-one

Structure

Source

Bayer Agrochemicals (UK) Ltd., Eastern Way, Bury St. Edmunds, Suffolk, IP32 7AB

Information available and suggested uses

Control of Alopecurus myosuroides, Bromus spp. and broad-leaved weeds in cereals, pre-emergence, early and late post-emergence at 1.4 to 2.1 kg/ha.

Formulation used 60% w/w a.i. wettable powder

Spray volume 372 1/ha

RESULTS

Full results are given in the histograms on pages 3-10 and potential selectivities are summarised in the following table.

(6) SMY 1500

Dose Crop plants: Vigour reduced Weeds: Number or vigour (kg ai/ha) by less than 15% reduced by 70% or more

2.25

tomato

Commeling diffuse

2.23	groundnut	Euphorbia diffusa Euphorbia heterophylla Oryza barthii plus species below
0.75	plus crops above	Eleusine indica
	maize + salener	Digitaria crus-galli
	cotton	Snowdenia polystachya
		Phalaris minor
		plus species below

0.25	plus crops above	Amaranthus retroflexus
	maize	Bromus pectinatus
	millet	
	sorghum + safener	
	cowpea	

lentil mungbean soyabean

Comments on results

This triazinone herbicide controlled <u>Amaranthus retroflexus</u> and most annual grasses at 0.75 kg ai/ha, but had little effect on other broad-leaved weeds and Rottboellia cochinchinensis.

Tomato proved highly resistant, as to be expected with a compound related to metribuzin. The resistance of soyabean was lower than expected, but results

on groundnut, cotton, sesamum and maize (+ NA) are of particular interest and suggest that further work comparing SMY 1500 with metribuzin would be of value on all these species.

(7)

The tolerance of millet, soyabean and several legume crops to 0.25 kg ai/ha would be of interest only in relation to the control of particular weed species. The susceptibility of <u>Bromus pectinatus</u> at this dose, however, is notable, in view of the tolerance of wheat and barley (Richardson and West 1987). This will be followed up in further experiments, as <u>Bromus pectinatus</u> is becoming a serious problem in wheat and barley crops in the highlands of Kenya.

.

SPECIES		0.2500 kg/ha		0.7500 kg/ha		2.2500 kg/ha
MILLET (57)	42 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	117 79	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	33 29	XXXXXXX XXXXXX
MAIZE+S (58)	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 93	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 71	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
MAIZE (59)	106 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	106 71	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	97 57	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
SORG+S (60)	95 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	109 79	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	95 50	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
SORGHUM (61)	85 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	98 64	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	46 43	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
TOMATO (62)	95 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	110 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	102 86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
PIGEON P (63)	71 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	63 79	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	39 71	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
COWPEA (64)	106 86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	88 57	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	35 14	XXXXXXXX XXX
CHICKPEA (65)	55 79	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	68 64	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	0 0	
GRNDNUT (66)	100 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 93	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
SOYABEAN (67)	100 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	109 64	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	0 0	
COTTON (68)	62 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	124 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	21 29	XXXX XXXXXX
JUTE (69)	000		000		000	

.

٠

.

SMY 1500

.

.

XXXXX

XXXX

XXXX

XXXXX XX

(8)

XXXXX XXXXX

•

SPECIES		0.2500 kg/ha		0.7500 kg/ha		2.2500 kg/ha
KENAF (70)	89 57	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	000		000	
SESAMUM (72)	123 93	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	105 86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	36 64	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
RICE (74)	113 79	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 64	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	53 29	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
ELEU IND (76)	107 43	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	30 29	XXXXXX XXXXXX	000	
ECH CRUS (77)	119 64	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	17 36	XXX XXXXXXXX	000	
ROT COCH (78)	77 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	103 86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	86 79	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
DIG SANG (79)	100 50	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	000		000	
AMAR HYB (80)	000		000		000	
BROM PEC (84)	21 36	XXXX XXXXXXX	5 14	X XXX	000	
SNO POL (85)	38 71	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	000		000	
PHAL MIN (86)	62 50	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	000		000	
CYP ROTU (88)	109 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	78 93	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	65 71	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
LENTIL (92)	98 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	98 79	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	13 57	XXX XXXXXXXXXXX

.

.

C	M	7	7
2	14	1	

1500

.

				SMY 1500		
SPECIES		0.2500 kg/ha		0.7500 kg/ha		2.2500 kg/ha
MUNGB (93)	83 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	58 57	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	000	
TEFF (94)	61 50	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	000		000	
COMMEL (95)	107 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	114 57	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	43 29	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
EUPHOR (96)	95 86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	80 64	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	000	
ORY BATH (97)	83 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	109 64	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	45 29	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

535

CHAR 1EOO

.

.

.

.

.

.

10 .

Structure

Source

PPG Industries, Inc.,

One PPG Place, Pittsburgh, Pennsylvania 15272, USA.

Information available and suggested uses

Broad-leaved weed control pre- and post-emergence in maize, row crops, e.g. soyabeans, peanuts, rice and cereals (0.1 to 0.25 kg/ha) and perennial crops (0.5 to 2.0 kg/ha).

Formulation used 24% a.i. emulsifiable concentrate

Spray volume 372 1/ha

RESULTS

Full results are given in the histograms on pages 14-16 and potential selectivities are summarised in the following table.

PFG 884

Dose (kg ai/ha) Crops: Vigour reduced by less than 15%

Weeds: Number or vigour reduced by 70% or more

.

.

0.80 maize + safener

Eleusine indica

	cowpea groundnut soyabean mungbean chickpea	Digitaria sanguinalis Snowdenia polystachya plus species below
0.20	plus crops above kenaf	Euphorbia heterophylla plus specie below
0.05	plus crops above millet sorghum + safener tomato pigeon pea jute rice	Amaranthus retroflexus

(12)

lentil

Comments on results

Applied pre-emergence, PPG 884 controlled only a few weed species, mainly annual grasses, but not <u>Rottboellia cochinchinensis</u>, even at the highest dose of 0.80 kg ai/ha. Maize with or without safener and several of the large-seeded legume crops were tolerant of the two highest doses and further work on the control of <u>Euphorbia heterophylla</u>, which is a problem in these crops, could be of interest. Several crops, including tomato, jute and the small-grained cereals were tolerant of the lowest dose of 0.05 kg ai/ha but

only the broad-leaved weed <u>Amaranthus retroflexus</u> was controlled at this dose. The resistance of kenaf to the intermediate dose of 0.20 kg ai/ha may be worth further investigation for use in areas where the difficult-to-control <u>Euphorbia</u> heterophylla is a particular problem. (13)

Crops were more tolerant of PFG 884 as a pre-emergence application than as a post-emergence application (Wilson and Parker 1987). Fewer broad-leaved weeds were controlled pre-emergence and even though <u>Euphorbia heterophylla</u> was controlled at the middle dose of 0.20 kg ai/ha, <u>Commelina diffusa</u> which was controlled by this dose post-emergence was resistant to all doses, pre-emergence. The pre-emergence control of several annual grasses in the large-seeded legumes offers no advantages over the use of the related compound acifluorfen. The main use this compound would be for the control of <u>Euphorbia</u> <u>heterophylla</u> in maize and the legumes, and for the control of <u>Snowdenia</u> polystachya in maize.

SPECIES

*

M]	ELLE	et	67
	57)	100
M2	AIZE	E+S	92
(58)	93
M2	AIZE	E).	97
(59		100
s(ORG-	-S	102
	60)	86
s(DRGH	TUM)	98 100
T(0MA7	07	95
(62		86
P]	GEC	ON P	39
(63		86
CC (WPE	EA	97
	64)	100
CF	HICE	(PEA	109
(65)	93
GE	RNDN	TUT	100
(66)	100
sc (9 7 67	BEAN)	109 100
CC	0 TT C)	93
(68		79
л (TE 69)	80 93

-	2	-
3	4	5
-	-	-

.

.

0.0500 kg/ha		0.2000 kg/ha		0.8000 kg/ha
XXXXXXXXXXXX	75	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	8	XX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	64	XXXXXXXXXXXXX	14	XXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	106	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	106	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	93	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	93	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	109	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	75	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	64	XXXXXXXXXXXX	43	XXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	91	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	78	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	71	XXXXXXXXXXXXXX	43	XXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	15	XXX	0	
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	43	XXXXXXXXX	0	
XXXXXXXX	24	XXXXX	24	XXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	71	XXXXXXXXXXXXXX	29	XXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	106	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	88	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	93	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	82	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	150	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	124	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	83	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	79	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	64	XXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	10	XX	0	
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	43	XXXXXXXXXX	0	

PPG 884

0	kc	1/	ha
	-		

XXXXXX XXX

+XXXXXX XXXXX

XX

XXXX XXXXX

XXXXXX+ XXX

XXXXXX XXXXXX

XXXXXX XXX

XXX

.

.

(14)

SPECIES		0.0500 kg/ha		0.2000
KENAF (70)	89 86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	115 86	XXXXXXXXX
SESAMUM (72)	27 43	XXXXX XXXXXXXXXX	0 86	XXXXXXXX
RICE (74)	93 86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	120 57	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
ELEU IND (76)	111 86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	74 57	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
ECH CRUS (77)	119 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	119 79	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
ROT COCH (78)	120 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	51 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
DIG SANG (79)	121 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	64 50	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
AMAR HYB (80)	000		000	
BROM PEC (84)	96 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	64 86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
SNO POL (85)	92 93	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	64 86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
PHAL MIN (86)	107 79	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	79 71	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
CYP ROTU (88)	74 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	61 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
LENTIL (92)	91 86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	78 71	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

535

•

.

PPG 884

0 kg/ha 0.8000 kg/ha 70 XXXXXXXXXXXXX+ XXXXXXXXXXXXXX 64 XXXXXXXXXX XXXXXXXXXXXX 0 0 XXXXXXXXXX 60 XXXXXXXXXXXX XXXXXXXXXXXXX+ 36 xxxxxxx XXXX 0 XXXXXXXX 0 XXXX 37 xxxxxxx XXXXXXXXXXXXX+ 36 xxxxxxx XXXXXXXXX 51 xxxxxxxxxx XXX 79 xxxxxxxxxxxxxxxx XXXXXXXXXXXXX 9 xx XXXXXX 29 xxxxxx XXX 0 0 80 XXXXXXXXXXXXXXXXXX XXXXXX 79 XXXXXXXXXX XXXXXXXXXXXXXXXXXX 13 xxx XXXXXX 43 XXXXXXXXX XXXXXXXXXX

•

.

XXXXXXXXX 43 xxxxxxxxx XXXXXX XXXXX 64 XXXXXXXXXXXX XXXXXXXXXXXXX 20 xxxx XXXXXXXX 57 XXXXXX XXXXXXXXXXX

(15)

SPECIES		0.0500 kg/ha		0.2000 kg/ha		0.8000 kg/ha
MUNGB (93)	92 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 93	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
TEFF (94)	113 79	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	000		000	
COMMEL (95)	100 86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	114 86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 71	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
EUPHOR (96)	132 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	7 21	X XXXX	0 0	
ORY BATH (97)	89 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	115 86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	77 64	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

.

.

T	1		~
-	1	-	τ.
-	-	-	

G 884

1752 4.2.2

•

.

.

XXXXXX XXXXX

XXXXXX

(16)

(17)

PPG 1259

Code number

PPG 1259

Trade name/s

Common name

Busoxinone (WSSA approved)

Chemical name 3-[5(1,1-dimethylethyl)-3-isoxazolyl]-4-hydroxy-1-

Source

PPG Industries, Inc., One PPG Place, Pittsburgh, Pennsylvania 15272, USA.

Information available and suggested uses

Pre- and post-emergence control of broad-leaved weeds in cereals, grasses, conifers at 0.05 to 0.15 kg/ha.

Formulation used 60% a.i. emulsifiable concentrate

Spray volume 372 1/ha

RESULTS

Full results are given in the histograms on pages 19-21 and potential selectivities are summarised in the following table.

(18) PPG 1259

Dose (kg ai/ha) Crops: Vigour reduced by less than 15% Weeds: Number or vigour reduced by 70% or more

1.0 maize + safener

species below

sorghum + safener pigeon pea cowpea chickpea groundnut cotton

0.5

plus crops above tomato soyabean rice mungbean Snowdenia polystachya plus specie below

0.25 plus crops above teff

Amaranthus retroflexus

2 . .

millet kenaf sesamum lentil

Comments on results

PRG 1259 had little herbicidal activity on both broad-leaved and grass weeds when applied pre-emergence at doses of 0.25, 0.5 and 1.00 kg ai/ha. <u>Snowdenia</u> <u>polystachya</u> and <u>Amaranthus retroflexus</u> were the only weeds controlled at this dose range, which is somewhat higher than the manufacturer's suggested dose range of 0.05 to 0.15 kg ai/ha. On the basis of this evaluation, this compound

has no interesting potential in tropical crops as a pre-emergence herbicide.

.

.

SPECIES

MI	LLE	T	83	XXX
(57)	93	
MA	IZE	+S	100	XXX
(58)	100	
MA (IZE 59)	106 93	XXX
so (RG+ 60	S)	102 100	XXX
so	RGH	UM	85	XXX
(61)	100	
TO (MAT 62	0)	102 100	XXX
PI (GE0 63	N P	47 86	XXX
CO	WPE	A	71	XXX
(64)	100	
CH	ICK	PEA	82	XXX
(65)	93	
GR	NDN	UT	87	XXX
(66)	86	
SO	YAB	EAN	91	XXX
(67)	100	
CO	TTO	N	103	XXX
(68)	93	
JU (TE 69)	77 79	XXX

PPG 1

0.2500 kg/ha		0.5000 kg/ha
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	75 71	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 93	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
xxxxxxxxxxxxxxx+	106	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXX	79	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	95 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	98	****
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	102 86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	00	AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
XXXXXXX	47	XXXXXXXXX
XXXXXXXXXXXXXXXX	86	XXXXXXXXXXXXXXXXXXX
XXXXXXXXXXX	97	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	136	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	93	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
xxxxxxxxxxxxxxx+	103	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXX	86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

.

XXXXXXXXXXXXX XXXXXXXXXXXXXX

XXX 79 XXXXXXXXXXXXXXXXX

17

2	50	
4	22	

# 1.0000 kg/ha

•

.

XXXXX	42	XXXXXXXX
XXXX	71	XXXXXXXXXXXXXX
XXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXX	93	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
xxxxxxxx+	106	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXX	93	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXX	95	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXX	93	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXX	78	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXX	93	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXX	73	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXX	79	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
	55	XXXXXXXXXXX
XXXXXXX	93	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXX	97	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXX+	136	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXX	93	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXX	93	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXX	109	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXX	79	XXXXXXXXXXXXXXXXX
XXXXXXXXX+	83	XXXXXXXXXXXXXXXXXX
XXXXXXX	86	XXXXXXXXXXXXXXXXXX
	0	
XXXXXX	0	

XXX XX

XXX+ XX

XX XXX

XXX+ XX

XXX XX

+XXXX

(19)

# SPECIES

KENAF	121	xxxxxxxxxxxxxxxxxxxx+	89	XXXXXXXX
(70)	86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	71	XXXXXXXX
SESAMUM	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	64	XXXXXXXX
(72)	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	79	XXXXXXXX
RICE	93	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	120	XXXXXXXX
(74)	93	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	86	XXXXXXXX
ELEU IND	122	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	122	XXXXXXXX
(76)	93	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	86	XXXXXXXX
ECH CRUS	95	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	112	XXXXXXXX
(77)	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	86	XXXXXXXX
ROT COCH	129	xxxxxxxxxxxxxxxxxxx+	111	XXXXXXXX
(78)	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXX
DIG SANG	94	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	82	XXXXXXXX
(79)	93	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	86	XXXXXXXX
AMAR HYB	0		0	
(80)	0		0	
BROM PEC	86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	75	XXXXXXXX
(84)	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	86	XXXXXXXX
SNO POL	94	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	13	XXX
(85)	93	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	50	XXXXXXXX
PHAL MIN	124	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	72	XXXXXXX
(86)	79	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	71	XXXXXXXX
CYP ROTU	78	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	87	XXXXXXXX
(88)	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXX
LENTIL	104	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	59	XXXXXXXX
(92)	86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	79	XXXXXXXX

.

535

0.2500 kg/ha

0		-	5	0	0
0	1	5	0	0	0
~	٠	-	~	v	v

- PPG 1259
  - 1.0000 kg/ha kg/ha 38 XXXXXXXX XXXXXXXXXX 50 XXXXXXXXXX XXXXXX 55 XXXXXXXXXXX XXXXXX 71 XXXXXXXXXXXXXX XXXXXXXXX
  - 113 XXXXXXXXXXXXX+ XXXXXXXXXX
  - XXXXXXXXXXXXX+ XXXXXXXXX
  - XXXXXXXXXXXX+ XXXXXXXXXX
  - XXXXXXXXXXXXX+ XXXXXXXXXXXX
  - XXXXXXXXX XXXXXXXXXX
  - XXXXXXXX XXXXXXXXXX
  - XXX
  - XXXXXXX XXXXXXX
  - XXXXXXXXXX XXXXXXXXXXXXX
  - XXXXX XXXXXXXXX

- 71 XXXXXXXXXXXXXX 56 XXXXXXXXXXX 64 XXXXXXXXXXXXX 85 XXXXXXXXXXXXXXXXXXX 79 XXXXXXXXXXXXXXXXXX 60 XXXXXXXXXXXX 79 XXXXXXXXXXXXXXXXX
- 103 86
- 48 XXXXXXXXXX 64 XXXXXXXXXXXXX
- 18 XXXX

0

0

- 57 XXXXXXXXXXX
- 76 XXXXXXXXXXXXXXX 71 XXXXXXXXXXXXXX
- 74 XXXXXXXXXXXXXXX 93
- 91 XXXXXXXXXXXXX 64

(20)

### SPECIES

MUNGB	100
(93)	100
TEFF	91
( 94 )	93
COMMEL	107
(95)	93
EUPHOR	110
( 96 )	100
ORY BATH	109
(97)	93

in the

.

## 535

.

0.2500 kg/ha		0.5000 kg/ha		1.0000 kg/ha
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	83 79	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	65 57	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	000	
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	114 79	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	102 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	132 93	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	115 79	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	102 64	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

. .

# PPG 1259

.

.

## d

.

.

XXXX XXX

XXXXXXX XXXX

XXXXXXX+ XXXXXX

XXXXXXX

.

18.

(21)



DPX-M6316

# Code number

### DPX-M6316

# Trade name

Harmony

.

Common name

thiameturon-methy1

Chemical name

Methyl 3-(3-(4-methoxy-6-methyl-1,3,5-triazin-2-yl) ureidosulphonyl) thiophene-2-carboxylate

## Structure



Source

Du Pont (UK) Ltd., Wedgwood Way, Stevenage, Herts, SG1 4QN

Information available and suggested uses

Post-emergence in cereals c. 0.06 kg/ha.

Formulation used 75% a.i. water dispersible granules

Spray volume 372 1/ha

### RESULTS

Full results are given in the histograms on pages 24-26 and potential selectivities are summarised in the following table.

# (23)

### DPX-M6316

Dose (kg ai/ha) Crops: Vigour reduced by less than 15% Weeds: number or vigour reduced by 70% or more

0.20

maize + safemer sorghum + safener cowpea soyabean jute teff Bromus pectinatus Oryza barthii Euphorbia heterophylla plus species below

0.05

plus crops above millet sorghum groundnut kenaf mungbean

specie below

0.0125

plus crops above tomato pigeon pea lentil Amaranthus retroflexus

Comments on results

The manufacturer's suggested use for DPX-M6316 is for post-emergence applications in cereals. When applied pre-emergence the cereals maize and sorghum (both with safener) and teff were tolerant of the larger dose of 0.20 kg ai/ha, but the more sensitive millet and sorghum without safener tolerated only 0.05 kg ai/ha.

However, the range of weed species controlled by DPX-M6316 even at the highestdose of 0.20 kg ai/ha is very small, including only the annual grasses, <u>Bromus pectinatus</u> and <u>Oryza barthii</u>, and the broad-leaved weed <u>Euphorbia</u> <u>heterophylla</u>. <u>Amaranthus retroflexus</u> is the only weed to be controlled at the two lower doses. In view of this limited activity, probably due to rapid loss of activity in the soil, there is not likely to be much interest in its use as a pre-emergence treatment on tropical species.

SPECIES		0.0125 kg/ha
MILLET ( 57 )	100 93	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
MAIZE+S (58)	92 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
MAIZE ( 59 )	106 86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
SORG+S ( 60 )	95 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
SORGHUM (61)	104 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
TOMATO (62)	102 93	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
PIGEON P (63)	95 93	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
COWPEA ( 64 )	88 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
CHICKPEA (65)	68 71	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
GRNDNUT (66)	100 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
SOYABEAN (67)	100 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
COTTON ( 68 )	72 71	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
JUTE ( 69 )	94 93	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

# DPX M6316

# 0.0500 kg/

XXXXX XXXX	83 93	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
CXXX	100 93	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXX+	106 86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXX	102 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXX+	98 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXX	110 71	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXX	0 0	
XXX	97 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
•	55 43	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXX	100 93	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXX	100 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
	72 79	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXX	80 79	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

.

.

.

1	1	1	2	2
/	-	-	C	L.

# 0.2000 kg/ha

XXXXXX XXXXXXX	100 79	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 93	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXX+ XXXXXXX	97 86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	109 86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	104 64	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXX+ XXX	88 21	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
	0 0	
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	106 86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
	14 29	XXX XXXXXXX
XXXXXXXXX	100 71	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	91 93	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXX XXXXX	52 64	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXX XXXXX	98 86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX



.

SPECIES		0.0125 kg/ha		0.0500 kg/ha		0.2000 kg/ha
KENAF ( 70 )	102 86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	121 86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	96 50	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
SESAMUM (72)	86 71	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	27 50	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	23	XXXXX
					7.4	<b>AAA</b>
RICE (74)	93 71	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	87 64	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	87 50	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
ELEU IND ( 76 )	119 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	111 93	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	89 79	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
ECH CRUS (77)	89 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	112 93	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	92 86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
ROT COCH	69	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	94	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	69	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
( 78 )	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	71	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	79	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
DIG SANG (79)	106 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	103 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	112 64	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
AMAR HYB (80)	22 50	XXXX XXXXXXXXXX	000		000	
BROM PEC	112	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	75	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	11	XX
(84)	93	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	71	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	29	XXXXXX
SNO POL	94	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	71	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	64	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
(85)	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	71	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
PHAL MIN	93	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	97	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	72	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
( 00 )	80	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	19	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	64	XXXXXXXXXXXXX
CYP ROTU	117	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	109	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	109	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
(88)	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
LENTIL (92)	91 86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	91	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	59	XXXXXXXXXXXX
1 22 1	00	AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	04	XXXXXXXXXXXXX	43	XXXXXXXXX

.

.

# DPX M6316

.

.

CX

+XXX

(25)

XX+

### SPECIES

MUNGB (93)	100 100	XX
TEFF (94)	113 100	XX
COMMEL (95)	100 100	XXX
EUPHOR (96)	95 100	XXX
ORY BATH (97)	109 93	XXX

•

1.1

# 535

# DPX M6316

0.0125 kg/ha		0.0500 kg/ha
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXX	104	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	114	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	95	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	64	XXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	89	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	79	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

.

# 0.2000 kg/ha

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	92 79	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXX+ XXXXXXXXXX	109 86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXX+ XXXXXXXX	93 71	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	15 50	XXX XXXXXXXXXX
XXXXXXXX	19 43	XXXX XXXXXXXXX

.

.

.

xx

xxxx+

(26)

. .

.

XXX

# (27)

### FMC 57020

Code number	FMC 57020	Trade name	Command
Common name	Clomazone (proposed)		
Chemical name	2-(2-chlorophenyl)methyl-	4,4-dimethy1-3-i	soxazolidinone

### Structure



Source

FMC Corporation Avenue Louise 523 Box 1 1050 Brussels Belgium

# Information available and suggested uses

Pre-emergence or pre-plant incorporated in soyabeans for control of many broad-leaved and grass weed species. Doses 0.56 to 1.4 kg ai/ha depending on soil type. Trials in potatoes, tobacco, cotton, beans, established alfalfa and in fallow land is also recommended.

Formulation used 50% ai emulsifiable concentrate

Spray volume 372 1/ha (pre-emergence selectivity)

### RESULTS

Full results are given in the histogram on pages 29-31 and potential selectivities are summarized in the following table:

# (28)

### FMC 57020

Dose Crops: vigour reduced Weeds: nu (kg ai/ha) by less than 15% reduced by

Weeds: number or vigour reduced by 70% or more

0.20 maize + safener pigeon pea groundnut soyabean kenaf species below

0.10

plus crops above maize sorghum + safener cowpea jute

Digitaria sanguinalis Bromus pectinatus Amaranthus retroflexus plus species below

0.05 plus crops above sorghum

Eleusine indica Echinochloa crus-galli Snowdenia polystachya

### Comments on results

A limited range of annual grasses and the broad-leaved weed <u>Amaranthus</u> <u>retroflexus</u> were well controlled by the top and intermediate doses of 0.10 and 0.20 kg ai/ha of FMC 57020. A good range of crops including maize <u>+</u> safener, sorghum <u>+</u> safener, some large-seeded legumes, kenaf and jute were also tolerant giving selectivity at both these doses. However, a number of important weeds including <u>Rottboellia cochinchinensis</u> and several broad-leaved species were not controlled. The range of selectivities achieved in this experiment are of particular interest in kenaf, jute and pigeon pea. Cotton and tobacco did not tolerate even the lowest dose of 0.05 kg ai/ha.

There was a small but consistent effect of safener, on both maize and sorghum and at the higher doses of herbicide recommended by the manufacturer this may increase the range of weeds controlled in maize to include some of the more difficult- to-control annual grasses and a wider range of broad-leaved weeds as suggested by the manufacturers.

SPECIES		0.0
MILLET ( 57 )	50 64	XXXXX
MAIZE+S ( 58 )	100 100	XXXXXX
MAIZE ( 59 )	106 100	XXXXXX
SORG+S ( 60 )	89 86	XXXXXX
SORGHUM ( 61 )	78 86	XXXXXX
ТОМАТО (62)	95 64	XXXXXX
PIGEON P (63)	63 86	XXXXXX
COWPEA ( 64 )	79 93	XXXXXXX
CHICKPEA (65)	136 64	XXXXXX
GRNDNUT (66)	100 86	XXXXXX
SOYABEAN (67)	109 100	XXXXXXX
COTTON (68)	103 71	XXXXXXX
JUTE ( 69 )	73	XXXXXX

1. 1. 1

# FMC 57020

# )500 kg/ha

.

.

# 0.1000 kg/ha

XXXXX	58	XXXXXXXXXXXXX	25	YYYYY
XXXXXXXX	64	XXXXXXXXXXXXX	50	XXXXXXXXXX
XXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	86	XXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXX+	106	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	106	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXX	86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	79	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXX	109	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	102	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXX	86	XXXXXXXXXXXXXXXXX	71	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXX	85	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	98	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXX	71	XXXXXXXXXXXXXX	57	XXXXXXXXXXX
XXXXXXXXXXXXX	102	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	117	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXX	43	XXXXXXXXX	29	XXXXXX
XXXXXXX	87	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	79	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXX	93	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	93	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXX	97	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	88	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	79	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXX+	95	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	82	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXX	57	XXXXXXXXXXX	29	XXXXXX
XXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXX	86	XXXXXXXXXXXXXXXXX	86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXX+	109	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXX+	72	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	93	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXX	79	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	71	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXX	101	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	66	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXX	86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	79	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

# 0.2000 kg/ha

.

X+ (29) + .

SPECIES		0.0500 kg/ha		0.1000 kg/ha		0.2000 kg/ha
KENAF ( 70 )	89 93	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	96 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	89 86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
SESAMUM (72)	100 79	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	86 64	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	36 43	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
RICE ( 74 )	127 79	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	120 71	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 50	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
ELEU IND (76)	000		000		000	
ECH CRUS (77)	37 29	XXXXXXX XXXXXX	000		0 0	
ROT COCH (78)	77 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	111 93	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	60 93	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
DIG SANG (79)	33 43	XXXXXXX XXXXXXXXX	9 21	XX XXXX	3 14	X XXX
AMAR HYB (80)	44 57	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	000		000	
BROM PEC (84)	91 50	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	59 29	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	16 21	XXX XXXX
SNO POL (85)	000		000		0 0	
PHAL MIN (86)	93 71	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 57	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	48 36	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
CYP ROTU (88)	100 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	113 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	109 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
LENTIL (92)	91 79	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	72 57	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	98 57	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

# FMC 57020

.

1	L	-	
1	n	2	
/ •		5	

.



.

.

SPECIES		0.0500 kg/ha		0.1000 kg/ha		0.2000 kg/ha
MUNGB (93)	83 71	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	92 64	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	50 50	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
TEFF ( 94 )	000		000		000	
COMMEL ( 95 )	100 79	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	107 79	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	86 43	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
EUPHOR (96)	139 86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	198 86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	139 79	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
ORY BATH (97)	96 86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	102 71	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	121 79	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

# FMC 57020

.

•

.

XX+

XX+

.

(31)

### (32)

### AC KNOWLEDGEMENTS

We are grateful to Mrs S. Barrett for processing the experimental data. The work was carried out with financial support from the European Economic Community (EEC) under Contract No. TSD. A. 198. (UK) H.



RICHARDSON, W.G. and DEAN, W.L. (1973). The pre-emergence selectivity of some recently developed herbicides : lenacil, RU 12068, metribuzin, cyprazine, EMD-IT 5914 and benthiocarb. <u>Technical Report, Agricultural</u> <u>Research Council, Weed Research Organization, 25, pp.57.</u>

RICHARDSON, W.G. and WEST, T.M. (1986) The activity and post-emergence selectivity of some recently developed herbicides: SMY 1500, PPG 884, PPG 1259 and DPX-M6316. <u>Technical Report, Long Ashton Research Station, Weed</u> Research Division, Bristol, UK. No. 92, pp.42.

RICHARDSON, W.G. and WEST, T.M. (1987) The activity, pre-emergence

selectivity and persistence of some recently developed herbicides: SMY 1500, PPG 884, PPG 1259, DPX-M6316 and FMC 57020. <u>Technical Report, Long</u> Ashton Research Station, Weed Research Division, Bristol, UK. No.98.pp.47.

WILSON, A. K. and PARKER, C.(1987.) The post-emergence selectivity in warm climate species of some recently developed herbicides: SMY 1500, PPG 884, PPG 1259 and DPX-M6316. <u>Technical Report, Long Ashton Research Station,</u> Weed Research Division, Bristol, UK, No.97. pp.27.



# (33)

APPENDIX 1. Species, abbreviations, cultivars and stage of growth at assessment

> Designation and computer serial number

.

٠

Cultivar or source

No. Depth of Stage of growth per planting at assessment pot (cm) (untreated controls, leaf numbers exclusive of cotyledons)

1

Millet (Pennisetum americanum)	MILLET (57)	Ex Bornu	10	0.5	5-7 leaves
Maize + safener (Zea mays)	MAIZE + S (58)	LG 11	6	2	5-6 leaves
Maize (Zea mays)	MAIZE (59)	LG 11	6	2	5-6 leaves
Sorghum + safener (Sorghum bicolor)	SORG + S (60)	TUB 22	8	1	4-6 leaves
Sorghum (Sorghum bicolor)	SORG (61)	TUB 22	8	1	5-6 leaves
Tomato (Lycopersicon esculentum)	TOMATO (62)	Moneymaker	8	0.5	3-5 leaves
Pigeon pea (Cajanus cajan)	PIGEON P (63)	ICRISAT	6	1	1-3 trifoliates
Cowpea (Vigna unguiculata)	COW PEA (64)	Blackeye (TRS)	6	1	2 trifoliates
Chickpea (Cicer arietinum)	CHICKPEA (65)	ILC 482	6	1	11-13 leaves
Groundnut (Arachis hypogaea)	GROUNDNUT (66)	NC 6	4	2	5-6 leaves
Soyabean (Glycine max)	SOYABEAN (67)	Amsoy	6	1	2-3 trifoliates

Cotton (Gossypium hirsutum)	COTTON (68)	Coker 315	6	1	2-4 leaves
Jute (Corchorus capsularis)	JUTE (69)	India	15	0.5	4-7 leaves
Kenaf (Hibiscus cannabinus)	KENAF (70)	Sudan	10	0.5	3-4 leaves
Sesamum (Sesamum indicum)	SESAMUM (72)	Sudan	15	0.5	3-4 leaves

# APPENDIX 1 continued

.

Designation	Cultivar	No.	Depth of planting	Stage of growth
and computer	or	per		at assessment
serial number	source	pot	(cm)	(untreated controls, leaf numbers exclusive of cotyledons)

Rice

(34)

.

.

.

Rice (Oryza sativa)	RICE (74)	IR 36	10	1	4-6 leaves
Eleusine indica	ELEU IND (76)	Zimbabwe 1980	20	0.5	4-7 leaves
Echinochloa crus- galli	ECH CRUS (77)	South Africa	20	0.5	5-6 leaves
Rottbellia cochinchinensis (= R. exaltata)	ROTT COCH (78)	Zimbabwe 1978	15	0.5	4-6 leaves
Digitaria sanguinalis	DIG SANG (79)	USA	20	0.25	4-7 leaves
Amaranthus retroflexus	AMAR RET (80)	India	20	0.25	9-13 leaves

Bromus pectinatus	BROM PEC (84)	Tanzania 1981	12	0.5	4-5 leaves
Snowdenia polystachya	SNO POL (85)	Ethiopia 1980	30	0.25	4-6 leaves
Phalaris minor	PHAL MIN (86)	WRO 1979	29	0.25	4-6 leaves
Cyperus rotundus	CYP ROTU (88)	WRO clone 1 (Zimbabwe)	5	2	8-15 leaves
Lentil (Lens culinaris)	LENTIL (92)	Syrian local	8	1	8-10 leaves
Mungbean (Phaseolus aureus)	MUNGB (93)	CES-ID-21	6	1	2 trifoliates

Teff (Eragrostis tef)	TEFF (94)	Ethiopia 1981	20	0.25	6-7 leaves
Commelina diffusa	COMMEL (95)	USA	8	1	6-7 leaves
Euphorbia heterophylla	EUPHOR (96)	Brazil 1980	20	0.5	5-7 leaves
Oryza barthii	ORY BATH (97)	Senegal 1981	10	1	3-4 leaves



(Price includes surface mail; airmail £2.00 extra)

(* denotes Reports now out of print)

- 6. The botany, ecology, agronomy and control of Poa trivialis L. roughstalked meadow-grass. November 1966. G P Allen. Price - £0.25
- 7. Flame cultivation experiments 1965. October 1966. G W Ivens. Price £0.25
- 8. The development of selective herbicides for kale in the United Kingdom.
   2. The methylthiotriazines. Price £0.25
- 10. The liverwort, <u>Marchantia polymorpha L. as a weed problem in</u> horticulture; its extent and control. July 1968. I E Henson. Price - £0.25
- 11. Raising plants for herbicide evaluation; a comparison of compost types. July 1968. I E Henson. Price - £0.25
- *12. Studies on the regeneration of perennial weeds in the glasshouse; I. Temperate species. May 1969. I E Henson. Price - £0.25
  - 13. Changes in the germination capacity of three <u>Polygonum</u> species following low temperature moist storage. June 1969. I E Henson. Price - £0.25
  - 14. Studies on the regeneration of perennial weeds in the glasshouse. II. Tropical species. May 1970. I E Henson. Price - £0.25
  - Methods of analysis for herbicide residues. February 1977. (second edition). Price - £5.75
- 16. Report on a joint survey of the presence of wild oat seeds in cereal seed drills in the United Kingdom during spring 1970. November 1970. J G Elliott and P J Attwood. Price - £0.25
- 17. The pre-emergence selectivity of some newly developed herbicides, Orga 3045 (in comparison with dalapon), haloxydine (PP 493), HZ 52.112, pronamide (RH 315) and R 12001. January 1971. W G Richardson, C Parker and K Holly. Price - £0.25
- 18. A survey from the roadside of the state of post-harvest operations in Oxfordshire in 1971. November 1971. A Phillipson. Price - £0.25
- *19. The pre-emergence selectivity of some recently developed herbicides in jute, kenaf and sesamum, and their activity against Oxallis latifolia. December 1971. M L Dean and C Parker. Price - £0.25

- * 20. A survey of cereal husbandry and weed control in three regions of England. July 1972. A Phillipson, T W Cox and J G Elliott. Price - £0.35
  - 21. An automatic punching counter. November 1972. R C Simmons. Price - £0.30
  - 22. The pre-emergence selectivity of some newly developed herbicides: bentazon, BAS 3730H, metflurazone, SAN 9789, HER 52.123, U 27,267.

December 1972. W G Richardson and M L Dean. Price - £0.25

- 23. A survey of the presence of wild oats and blackgrass in parts of the United Kingdom during summer 1972. A Phillipson. Price - £0.25
- 24. The conduct of field experiments at the Weed Research Organization. February 1973. J G Elliott, J Holroyd and T O Robson. Price -£1.25
- 25. The pre-emergence selectivity of some recently developed herbicides: lenacil, RU 12068, metribuzin, cyprazine, EMD-IT 5914 and benthiocarb. August 1973. W G Richardson and M L Dean. Price - £1.75.
- 26. The post-emergence selectivity of some recently developed herbicides: bentazon, EMD-IT 6412, cyprazine, metribuzin, chlornitrofen, glyphosate, MC 4379, chlorfenprop-methyl. October 1973. W G Richardson and M L Dean. Price - £3.31
- 27. Selectivity of benzene sulphonyl carbamate herbicides between various pasture grasses and clover. October 1973. A M Blair. Price £1.05
- 28. The post-emergence selectivity of eight herbicides between pasture grasses: RP 17623, HOE 701, BAS 3790, metoxuron, RU 12068, cyprazine, MC 4379, metribuzin. October 1973. A M Blair. Price - £1.00
- *29. The pre-emergence selectivity between pasture grasses of twelve herbicides: haloxydine, pronamide, NC 8438, Orga 3045, chlortoluron, metoxuron, dicamba, isopropalin, carbetamide, MC 4379, MBR 8251 and EMD-IT 5914. November 1973. A M Blair. Price - £1.30
  - 30. Herbicides for the control of the broad-leaved dock (Rumex obtusifolius L.). November 1973. A M Blair and J Holroyd. Price £1.06
  - 31. Factors affecting the selectivity of six soil acting herbicides against Cyperus rotundus. February 1974. M L Dean and C Parker. Price - £1.10

- 32. The activity and post-emergence selectivity of some recently developed herbicides: oxadiazon, U-29,722, U-27,658, metflurazone, norflurazone, AC 50-191, AC 84,777 and iprymidam. June 1974. W G Richardson and M L Dean. Price - £3.62
- 33. A permanent automatic weather station using digital integrators. September 1974. R C Simmons. Price £0.63.
- 34. The activity and pre-emergence selectivity of some recently developed herbicides: trifluralin, isopropalin, oryzalin, dinitramine, bifenox and perfluidone. November 1974. W G Richardson and M L Dean. Price - £2.50

- A survey of aquatic weed control methods used by Internal Drainage 35. Boards, 1973. January 1975. T O Robson. Price - £1.39
- The activity and pre-emergence selectivity of some recently developed 36. herbicides: Bayer 94871, tebuthiuron, AC 92553. March 1975. W G Richardson and M L Dean. Price - £1.54
- Studies on Imperata cylindrica (L.) Beauv. and Eupatorium odoratum L. 37. October 1975. G W Ivens. Price - £1.75
- The activity and pre-emergence selectivity of some recently developed 38.

herbicides: metamitron, HOE 22870, HOE 23408, RH 2915, RP 20630. March 1976. W G Richardson, M L Dean and C Parker. Price - £3.25

- The activity and post-emergence selectivity of some recently developed 39. herbicides: HOE 22870, HOE 23408, flamprop-methyl, metamitron and cyperquat. May 1976. W G Richardson and C Parker. Price - £3.20
- The activity and pre-emergence selectivity of some recently developed 40. herbicides: RP 20810, oxadiazon, chlornitrofen, nitrofen, flamprop--isopropyl. August 1976. W G Richardson, M L Dean and C Parker. Price - £2.75.
- The activity and pre-emergence selectivity of some recently developed 41. herbicides: K 1441, mefluidide, WL 29226, epronaz, Dowco 290 and triclopyr. November 1976. W G Richardson and C Parker. Price - £3.40.
- 42. The activity and post-emergence selectivity of some recently developed

herbicides: KUE 2079A, HOE 29152, RH 2915, Triclopyr and Dowco 290. March 1977. W G Richardson and C Parker. Price - £3.50

- The activity and pre-emergence selectivity of some recently developed 43. herbicides: dimefuron, hexazinone, trifop-methyl, fluothiuron, buthidazole and butam. November 1977. W G Richardson and C Parker. Price - £3.75.
- 44. The activity and selectivity of the herbicides: ethofumesate, RU 12709 and isoproturon. December 1977. W G Richardson, C Parker, & M L Dean. Price - £4.00
- 45. Methods of analysis for determining the effects of herbicides on soil soil micro-organisms and their activities. January 1978. M P Greaves, S L Cooper, H.A Davies, J A P Marsh & G I Wingfield. Price - £4.00
- 46. Pot experiments at the Weed Research Organization with forest crop and weed species. February 1978. D J Turner and W G Richardson. Price - £2.70

- Field experiments to investigate the long-term effects of repeated 41. applications of MCPA, tri-allate, simazine and linuron - effects on the quality of barley, wheat, maire and carrots. July 1978. J D Fryer, F D Smith and J W Ludwig. Frice - £1.20.
- 48. Factors affecting the toxicity of paraquat and dalapon to grass swards. March 1978. A K Oswald. Price - £2.90
- The activity and post-emergence selectivity of some recently developed 49. herbicides: NP 48, RH 5205 and Pyridate. May 1978. W G Richardson and C Parker. Price - £2.50

- 50. Sedge weeds of East Africa II. Distribution. July 1978. P J Terry. Price - £1.50
- 51. The activity and selectivity of the herbicides methabenzthiazuron, metoxuron, chlortoluron and cyanazine. September 1978. W G Richardson and C Parker. Price - £2.20.
- 52. Antidotes for the protection of field bean (Vicia faba L.) from damage by EPTC and other herbicides. February 1979. A M Blair. Price - £1.35
- 53. Antidotes for the protection of wheat from damage by tri-allate. February 1979. A M Blair. Price - £2.00
- 54. The activity and pre-emergence selectivity of some recently developed herbicices: alachlor, metolachlor, dimethachlor, alloxydim-sodium and fluridone. April 1979. W G Richardson and C Parker. Price - £3.00
- 55. The activity and selectivity of the herbicides carbetamide, methazole, R 11913 and OCS 21693. May 1979. W G Richardson and C Parker. Price - £1.80
- 56. Growing weeds from seeds and other propagules for experimental purposes. July 1979. R H Webster. Price - £1.10
- 57. The activity and pre-emergence selectivity of some recently developed herbicides: R 40244, AC 206784, pendimethalin, butralin, acifluorfen and FMC 39821. December 1979. W G Richardson, T M West and C Parker -Price - £3.55
- 58. The tolerance of fenugreek (Trigonella foenumgraecum L.) to various herbicides. December 1979. W G Richardson. Price - £1.55
- 59. Recommended tests for assessing the side-effects of pesticides on the soil microflora. April 1980. M P Greaves, N J Poole, K H Domsch, G Jagnow and W Verstraete. Price - £2.00 (Amended version to be printed in 1986).
- 60. Properties of natural rainfalls and their simulation in the laboratory for pesticide research. September 1980. R C Simmons. Price - £1.25
- 61. The activity and post-emergence selectivity of some recently developed herbicides: R 40244, DPX 4189, acifluorfen, ARD 34/02 (NP 55) and PP 009. November 1980. W G Richardson, T M West and C Parker. Price - £3.75
- 62. The activity and pre-emergence selectivity of some recently developed herbicides: UBI S-734, SSH-43, ARD 34/02 (= NP 55), PP 009 and DPX 4189. February 1981. W G Richardson, T M West and C Parker. Price - £3.50

- 63. The activity and post-emergence selectivity of some recently developed herbicides: SSH-41, MB 30755, AC 213087, AC 222293 and Dowco 433. May 1981. W G Richardson, T M West and C Parker. Price - £3.50
- 64. The activity and pre-emergence selectivity of some recently developed herbicides: chlomethoxynil, NC 20484 and MBR 18337. March 1982. W G Richardson, T M West and C Parker. Price - £3.00

65. A system for monitoring environmental factors in controlled environment chambers and glasshouses. June 1982. R C Simmons. Price - £1.50

- 66. The activity and pre-emergence selectivity of some recently developed herbicides: AC 213087 and AC 222293. December 1982. W G Richardson, T M West and C Parker. Price - £2.00
- 67. The activity and post-emergence selectivity of some recently developed herbicides: trifopsime, glufosinate, RH 8817, MBR 18337 and NC 20484. December 1982. W G Richardson, T M West and C Parker. Price - £3.25
- 68. The activity and pre-emergence selectivity of some recently developed herbicides: WL 49818, WL 82830, WL 83627, WL 83801 and DPX 5648.

December 1982. W G Richardson, T M West and C Parker. Price - £4.00

- 69. The activity and late post-emergence selectivity of some recently developed herbicides: AC 252925, DOWCO 453, HOE 33171 and HOE 35609. March 1983. W G Richardson, T M West and G P White. Price £3.25
- 70. The potential of various herbicides for selective control of weed grasses and Stellaria media in newly sown ryegrass/clover leys and ryegrass seed crops. May 1983. F W Kirkham Price - £1.75
- 71. A feasibility study of the use of chemicals for rural amenity areas. Sponsored by the Countryside Commission. September 1983. E J P Marshall Price - £5.00
- 72. The activity and late post-emergence selectivity of FBC 32197. November 1983. W G Richardson, T M West and G P White. Price - £1.25

73. Paraquat persistence - statistical analysis of the WRO long term trial.

- January 1984. R J Hance, T H Byast, P D Smith and T M Weight. Price £1.00
- 74. The activity and post-emergence selectivity of some recently developed herbicides: AC 252214, DPX-T6376, and chlorazifop. February 1984. W G Richardson, T M West and G P White. Price - £2.00.
- 75. The effect of temperature and soil moisture on the activity of isoproturon and chlortoluron on <u>Alopecurus myosuroides</u> and winter wheat. May 1984. A M Blair. Price - £2.00
- 76. A laboratory rainfall simulator for pesticide studies. May 1984. R C Simmons. Price - £2.00
- 77. Experiments on the effects of the herbivorous fish, grass carp (<u>Ctenopharyngodon idella Val.</u>) on aquatic vascular plants, algae, zooplankton and phytoplankton and the importance of water temperature on the success of weed control. September 1984. M C Fowler. Price - £3.50.
- 78, The activity and post-emergence selectivity of some recently developed herbicides: MCPA-thioethyl, MT-124, tridiphane, aclonifen and RST 20024 H. October 1984. W G Richardson and T M West. Price - £5.40
- 79. A preliminary study on the effect of some agricultural herbicides on a range of field margin flora. November 1984. J E Birnie. Price £2.50
- 80. The activity and pre-emergence selectivity of some recently developed herbicides: imazaquin, isoxaben, metsulfuron-methyl, aclonifen and orbencarb. December 1984. W G Richardson and T M West. Price - £6.50

- 81. The side effects of alloxydim sodium, sethoxydim, acifluorfen and fluazifop-butyl on legume growth and nodulation. January 1985. J M Bebb, M P Greaves and W G Richardson. Price - £3.00
- 82. An IRGA system for continuous monitoring of CO₂ and H₂O vapour exchange in replicate plants growing in controlled environments. January 1985. C R Merritt and R C Simmons. Price - £3.00
- 83. A laboratory pot sprayer for use with controlled environment chambers. February 1985. R C Simmons and J A Drinkwater. Price - £2.50
- 84. Maps of the changes in the weeds of Boddington Barn field over twenty years (1961-1981). March 1985. R J Chancellor. Price £4.50
- 85. The use of bentazone and pyridyl herbicides alone and in mixtures for the control of creeping thistle (Cirsium arvense L.) in grassland. April 1985. W G Richardson, A K Oswald and T M West. Price £1.50
- 86. The activity and pre-emergence selectivity of some recently developed herbicides: metazachlor, butamifos, MT-124, tridiphane, MK 616 and prodiamine. May 1985. W G Richardson and T M West. Price - £7.00.
- 87. The potential use of grass growth retardants at Sullom Voe terminal, Shetland. A report prepared for W J Cairns and Partners, 16 Randolph Crescent, Edinburgh, Environmental Consultants to BP Petroleum Development Ltd as Operators of Sullom Voe Terminal. May 1985. E J P Marshall. Price - £3.00.
- 88. A further study of the effect of six cereal herbicide treatments on a range of broad-leaved field margin plants. June 1985. J E Birnie. Price £2.50
- 89. The activity, pre-and post-emergence selectivity of diflufenican. December 1985. W G Richardson and T M West. Price - £3.00
- 90. The pre-emergence selectivity in warm-climate species of some recently developed herbicides: imazaquin, AC263 499, cinmethylin and isoxaben January 1986. C Parker and A K Wilson. Price - £2.60
- 91. The activity, pre-emergence selectivity and persistence of some recently developed herbicides: DOWCO 453, Quizalofop-ethyl, BAS 517 00H, cinmethylin, AC263,499 and RST 20024H. W G Richardson and T M West. Price £6.20
- 92. The activity and post-emergence selectivity of some recently developed herbicides: SMY 1500, PPG 884, PPG 1259 and DPX-M 6316. W G Richardson and T M West. February 1986. Price - £4.20.
- 93. The pre-emergence selectivity in warm climate species of some recently developed herbicides: metazachlor, RST 20024H, orbencarb and diflufenican. C Parker and A K Wilson. February 1986. Price £2.70.
- 94. Screening strawberries for tolerance to 96 herbicides and growth regulators applied to the foliage and roots. D V Clay. February 1986. Price £5.00.

- 95. Grass Growth Retardant use at Sullom Voe Terminal, Shetland 1985 Programme Report. (A report prepared for W.J. Cairns & Partners, 16 Randolph Crescent, Edinburgh, Environmental Consultants to BP Petroleum Development Limited as Operators of Sullom Voe Terminal). E.J.P. Marshall. August 1986. Price - £2.50
- 96. Studies of the flora in Arable Field Margins. E.J.P. Marshall. October
  1986. Price £3.50.
- 97. The post-emergence selectivity in warm climate species of some recently developed herbicides: SMY 1500, PPG 884, PPG 1259 and DPX-M6316. A.K. Wilson and C. Parker. February 1987. Price - £3.75.
- 98. The activity, pre-emergence selectivity and persistence of some recently developed herbicides: SMY 1500, PPG 884, PPG 1259, DPX-M 6316 and FMC 57020. T.M. West and W.G. Richardson. November, 1987. Price -£6.00.

NNaccess 8528 LACC. No. And the second sec consideration and an entertained and and an entertain an entertain of the spectrum. SUPPL. Via Karder

PRICE Construction of the second s

ORDER NO. 

DATE

1

# WV. NO.

The material and the second and the

.

. .