

TECHNICAL REPORT No. 93

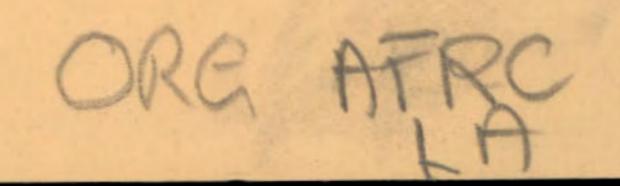
THE PRE-EMERGENCE SELECTIVITY IN WARM-CLIMATE SPECIES OF SOME RECENTLY DEVELOPED HERBICIDES: METAZACHLOR, RST 20024H, ORBENCARB AND DIFLUFENICAN

RST 200024H is trimexachlor

C PARKER and ANITA K WILSON

ROTHAMSTED LIBRARY
Harpenden, Herts, AL5 2JQ

Received 27 JAN1988


Display
Until

February 1986

Price - £2.70

Long Ashton Research Station, Weed Research Division, Begbroke Hill, Yarnton, Oxford, OX5 1PF.

ISSN 0511 4136 ISBN 0 7084 0414 6

CONTENTS

	Page
SUMMARY	1
INTRODUCTION	1
METHODS AND MATERIALS	2
METAZACHLOR α-chloro-N-(1-pyrazolylmethyl)aceto-2',6'-xylidide	4
RST 20024H α-chloroacetic-N-(3,5,5-trimethyl-cyclo-hexen-1-yl)-N-isopropylamide	9
ORBENCARB S-o-chlorobenzyl diethylthiocarbamate	14
DIFLUFENICAN 2',4'-difluoro-2-(α,α,α-trifluoro-m-tolyloxy)nicotinanilide	19
ACKOWLEDGEMENTS	24
REFERENCES	24
APPENDTY	25

NOTE

The content of this publication, in whole or in part, may be quoted or reproduced provided the authors and the Long Ashton Research Station, Weed Research Division are fully acknowledged. The correct bibliographic reference is:

PARKER, C. and WILSON, A.K. The pre-emergence selectivity in warm-climate species of some recently developed herbicides: metazachlor, RST 20024H, orbencarb and diflufenican. Technical Report, Long Ashton Research Station, Weed Research Division, Bristol, No. 93, 26 pp.

THE PRE-EMERGENCE SELECTIVITY IN WARM-CLIMATE SPECIES OF SOME RECENTLY DEVELOPED HERBICIDES: METAZACHLOR, RST 20024H, ORBENCARB AND DIFLUFENICAN

C Parker and Anita K Wilson
Long Ashton Research Station, Weed Research Division
Yarnton, Oxford OX5 1PF

SUMMARY

Four herbicides were evaluated as surface pre-emergence treatments in a glasshouse pot experiment on 28 warm-climate crop and weed species. Maize and sorghum were each included in two sets, with and without seed dressings of safeners, 1,8-naphthalic anhydride (NA) on maize, and CGA 92194 on sorghum.

Metazachlor was very much more active than RST 20024H but both showed the effects and selectivity typical of the anilide herbicide group with excellent selectivity against Amaranthus retroflexus and a range of annual grasses in large-seeded legume crops. Maize and sorghum showed moderate tolerance which was markedly increased by the respective safeners. Cyperus esculentus, Commelina diffusa and Rottboellia cochinchinensis were only controlled at the higher doses of each compound and advantages over the established members of this herbicide group are not clear.

Orbencarb, a thiolcarbamate which does not require pre-planting incorporation was highly selective against Amaranthus and many annual grasses in maize and large-seeded legumes but failed to control R. cochinchinensis or Cyperus species. Maize and sorghum each showed improved tolerance with safeners. Most notable was the control of C. diffusa at a low dose at which a wide range of crops was tolerant including all legumes, cotton, kenaf, aubergine, rice, millet and sorghum.

A. retroflexus and some annual grasses but not Echinochloa crus-galli,

R. cochinchinensis, C. diffusa or Cyperus spp. Highly resistant crops included rice, sorghum, maize and many legumes, while a much wider range including aubergine, jute and sesamum tolerated a dose which controlled A. retroflexus. Phalaris minor and Snowdenia polystachya were controlled at a dose known to be safe in wheat and barley.

INTRODUCTION

Until March 1982, warm-climate crop and weed species were regularly included in the herbicide evaluation programme at the Weed Research Organization (WRO) under funding from HM Overseas Development Administration (ODA), and results were published jointly between the Herbicide and Tropical Weeds Groups in the WRO Technical Report series. After an interval during which funds were not available it was possible in 1985 to resume herbicide evaluation on species of relevance to developing countries under a new project, partially funded by the European Economic Community. This report covers the second of two 'back-log' experiments conducted to evaluate, on warm-climate species, a number of compounds already tested at WRO on temperate species. Relevant reports on the previous tests are Richardson and West (1984, 1985a,b, 1986). Those reports provide information on the relative importance of foliar and soil activity and also on the soil persistence of these compounds.

The objectives of the work reported here are exactly as indicated in previous reports in this series, i.e. to provide a guide to the potential usefulness of new compounds in the crops tested. Owing to the relatively artificial conditions of glasshouse pot experiments it must be emphasized that the results are to be regarded only as a guide, and that further field testing is essential to confirm any of the interesting leads revealed.

This report gives pre-emergence selectivity data for four new herbicides.

METHODS AND MATERIALS

Techniques were as described by Richardson and Dean (1973), all herbicides being applied as surface pre-emergence treatments. Species were sown as detailed in Appendix I, each being replicated twice for each treatment. Soil and environmental details are given in Table 1.

Table 1. Soil and environmental conditions

Date of spraying Main assessment completed	8.7.85
organic matter %	1.3
clay content %	16.0
pH Content %	7.5
ammonium sulphate g/kg	0.5
superphosphate g/kg	1.0
potassium sulphate g/kg	0.6
fritted trace elements g/kg	0.1
A. A. L.	
hydrated magnesium sulphate g/kg	0.4
hydrated magnesium sulphate g/kg	24
hydrated magnesium sulphate g/kg Temperature (°C)	
hydrated magnesium sulphate g/kg Temperature (°C) mean	24
Temperature (°C) mean maximum	24
Temperature (°C) mean maximum minimum	24
Temperature (°C) mean maximum minimum Relative humidity (%)	24 36 13

Pre-planting treatments to improve germination included a) the storage of Cyperus esculentus tubers at 5°C for 2 weeks before planting and b) the soaking of Amaranthus retroflexus seeds in 0.1 M potassium nitrate.

To protect against soil-borne pathogens, most seeds were pre-treated with thiram. Some had been pre-dressed with unknown compounds. Those not treated at all were rice, Snowdenia polystachya and Bromus pectinatus.

Maize and sorghum were each set up with and without a seed treatment of 'safener'. For maize, the seeds were shaken with a quantity of technical 1,8-naphthalic anhydride (NA) equivalent to 0.5% of seed weight. For sorghum, the seeds were shaken with a quantity of 70% CGA 92194 (N-1(1,3-dioxolan-2-yl-methoxy)-imino-benzene acetonitrile) equivalent to 0.2% a.i. of seed weight.

Herbicides were applied using a laboratory sprayer embodying an 8002E Spraying Systems Tee Jet operating at a pressure of 207 kpa (30 lb/in) and moving at 0.54 m/sec 30 cm above the soil. Subsequent watering was from overhead.

Assessment and processing of results

Results were processed as described by Richardson and Dean (1973). Survivors were counted and scored for vigour on a 0-7 scale where 0 = dead and 7 = no different from the untreated control.

Pairs of histograms are presented for each treatment, the upper representing the plant survival and the lower vigour score, both calculated as percentages of untreated controls. Each 'x' represents a 5% increment. A '+' indicates a value in excess of 100%.

A table of observed selectivities, using the criteria specified is presented for each herbicide along with comments to highlight salient points.

The perennial Cyperus spp. were kept for an extra period to observe later effects and/or the recovery from injury.

Metazachlor

Code numbers BAS 47900H BAS 47902H Trade name/s Butisan

Chemical name

α-chloro-N-(1-pyrazolylmethyl)aceto-2',6'-xylidide

Structure

Source

BASF (UK) Ltd
Agricultural Division
Lady Lane
Hadleigh
Suffolk IP7 6BQ

Information available and suggested uses

Pre-emergence control of annual grass and broad-leaved weeds in winter rape at 1.25 kg a.i./ha; swedes at 1.0 to 1.25 kg a.i./ha; transplanted brassicas at 1.0 to 1.25 kg a.i./ha.

Formulation used: 50% a.i. suspension concentrate

Spray volume: 372 1/ha

RESULTS

Full results are given in the histograms on pages 6 to 8 and potential selectivities are summarised in the following table.

(kg	Rate a.i./ha)	CROPS: Vigour reduced by less than 15%	WEEDS: number or vigour reduced by 70% or more
	1.0	groundnut	Rottboellia cochinchinensis Cyperus rotundus + species below
	0.25	as above + maize + safener (NA) chickpea soyabean	Commelina diffusa Cyperus esculentus + species below
	0.0625	as above + maize sorghum + safener (CGA 92194) cowpea mungbean cotton	Eleusine indica Echinochloa crus-galli Digitaria sanguinalis Bromus pectinatus Snowdenia polystachya Phalaris minor Amaranthus retroflexus

Comments on results

Metazachlor caused symptoms typical of the anilide herbicides and a somewhat comparable range of selectivity with large-seeded legumes showing the greatest tolerance, and Amaranthus retroflexus and many annual grasses highly sensitive. As with other members of this herbicide class, Cyperus esculentus was moderately susceptible but C. rotundus rather less so. After 4 months C. esculentus was still completely suppressed at 1 kg/ha but C. rotundus had recovered. Rottboellia was, as expected, relatively resistant. Cotton and maize (unprotected) tolerated only the lowest dose, but both maize and sorghum were protected about 4-fold by their respective safeners allowing maize to tolerate the higher dose of 0.25 kg/ha. Millet was extremely sensitive.

It is not easy to judge from this experiment what advantages this compound might have over the related alachlor or metolachlor in warmer climates, but it should be well worth including in any work on cruciferous crops (cf Richardson & West (1985a).

METAZACHLOR

SPECIES		0.0625 kg/ha		0.2500 kg/ha		1.0000 kg/ha
MILLET (55)	00		00		00	
MAIZE+S	104	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	104	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	96	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
MAIZE (57)	104	xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx	104	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	78 36	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
SORG+S (58)	93	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	73 50	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	00	
SORGHUM (59)	21 50	XXXXXXXXXX	0		00	
PIGEON P	63	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	00		00	
COWPEA	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
CHICKPEA	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	92	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
GRNDNUT (64)	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	107	xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx	107	xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
SOYABEAN (65)	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
COTTON	114	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	67 57	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	95 43	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
JUTE)	00		00		00	

METAZACHLOR

SPECIES		0.0625 kg/ha		0.2500 kg/ha		1.0000 kg/ha
KENAF (68)	84	xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	89	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
SESAMUM (70)	59 57	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	59	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	18	XXXX
RICE (72)	85 57	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	12	XXX XXX	00	
ELEU IND	00		00		00	
ECH CRUS	00		00		00	
ROTT EXA	109	xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx	70	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	30	XXXXXX
DIG SANG	0		00		00	
AMAR RET	22	XXXX	00		0	
BROM PEC	10	XXXXXX	00		00	
SNO POL	00		00		0	
PHAL MIN	00		00		00	
CYP ESCU	147	xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx	29 29	XXXXXX	00	

TRIAL NUMBER 8533

METAZACHLOR

SPECIES		0.0625 kg/ha		0.2500 kg/ha		1.0000 kg/ha
CYP ROTU	187	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	62 79	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	15	XXXXXXXXXXXX
AUBGIN (89)	58 57	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	32 21	XXXXXX	21	XXXX
LENTIL (90)	21 36	XXXXX	00		00	
MUNGB (91)	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	67	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
TEFF (92)	00		00		00	
COMMEL (93)	78 64	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	17	XXX	00	

Code number

RST 20024H

RST 20061H (+ atrazine)

Trade name/s

Atravit rustica (+ atrazine)

Common name

Trimexachlor (proposed)

Chemical name

 α -chloroacetic-N-(3,5,5-trimethyl-cyclo-hexen-1-yl)-N-isopropylamide

Structure

Source

Ruhr-Stickstoff AG

Landwirtschaftliche Forschung

Hanninghof 35 D4408 Dülmen

Federal Republic of Germany

Information available and suggested uses

Broad-spectrum weed control in maize, winter rape, soyabeans etc. pre- and post-emergence.

Formulation used Emulsifiable concentrate 40% a.i.

Spray volume

372 1/ha

RESULTS

Full results are given in the histograms on pages 11-13 and potential selectivities are summarised in the following table.

Rate (kg a.i./ha)	CROPS: vigour reduced by less than 15%	WEEDS: number or vigour reduced by 70% or more
4.0	groundnut	Cyperus esculentus + species below
1.0	as above + maize + safener (NA) sorghum + safener (CGA 92194) cowpea soyabean mungbean kenaf	Rottboellia cochinchinensis Bromus pectinatus Commelina diffusa + species below
0.25	as above + lentil chickpea aubergine	Eleusine indica Echinochloa crus-galli Digitaria sanguinalis Snowdenia polystachya Phalaris minor Amaranthus retroflexus

Comments on results

As with the preceding compound, symptoms and selectivity were generally quite typical for the anilide herbicide class, but the level of activity was very much less. There is again good selectivity against Amaranthus and many annual grasses in larger seeded legumes with additional potential for kenaf, aubergine and lentil, not shown by metazachlor. Cyperus esculentus was relatively more tolerant requiring 4 kg/ha for temporary control (from which there was strong recovery after 3 months). Rottboellia was relatively a little more susceptible but a few plants recovered strongly from 1 kg/ha. Maize showed good tolerance and selective control of Rottboellia might just be possible, especially with the moderate protective effect of the safener NA. The safening effect of CGA 92194 on sorghum was particularly pronounced (well over 4-fold) allowing selective control of a wide range of annual weeds in this crop. Millet, however, was again extremely sensitive.

As for metazachlor it is difficult to judge the potential advantages of this compound over the related alachlor and metolachlor, but it deserves comparison with them in many crops if there is any possibility of a price advantage.

SPECIES		0.2500 kg/ha		1.0000 kg/ha		4.0000 kg/ha
MILLET (55)	00		0		00	
MAIZE+S (56)	104	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	104	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	104	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
MAIZE (57)	104	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	104	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	104	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
SORG+S (58)	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	107	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	93 71	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
SORGHUM (59)	110	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	28	XXXXXXXXXXXX	21	××××
PIGEON P	84	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	32	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	00	
COWPEA (62)	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
CHICKPEA (63)	183	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
GRNDNUT (64)	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	80	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	107	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
SOYABEAN (65)	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
COTTON (666)	95 79	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	105	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	95 57	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
JUTE)	76 50	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	31	XXXXXXX	00	

- 11

RST 20024H

SPECIES		0.2500 kg/ha		1.0000 kg/ha		4.0000 kg/ha
KENAF (68)	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	95 86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	105	xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
SESAMUM (70)	50	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	59	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	24	XXXXXX
RICE (72)	109	xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx	24 36	XXXXXX	00	
ELEU IND	00		0		8	
ECH_CRUS	00		00		00	
ROTT EXA	113	xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx	36	XXXXXXX	00	
DIG SANG	00		00		00	
AMAR RET	22 71	XXXXXXXXXXXX	18 21	XXXX	8	
BROM PEC	63	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	29	XXXXXX	00	
SNO POL	00		0		0	
PHAL MIN	14	×××	0		00	
CYP ESCU	106	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	53	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	00	

- 12

THE PARTY OF THE PARTY OF THE PARTY OF THE PROPERTY OF THE PARTY OF TH

RST 20024H

SPECIES		0.2500 kg/ha		1.0000 kg/ha		4.0000 kg/ha
CYP ROTU	87	xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx	98 79	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	62 79	XXXXXXXXXXXXXXXXXX
AUBGIN (89)	184	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	52	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	0	
LENTIL (90)	103	xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx	00		21	XXXX
MUNGB (91)	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	00	
TEFF (92)	00		00		00	
COMMEL (93)	70 50	xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx	00		00	

Orbencarb

Other common name Orthobencarb (Japan) Trade name Lanray

Chemical name S-o-chlorobenzyl diethylthiocarbamate

Structure

Source

Kumiai Chemical Industry Co Ltd. 4-26 Ikenohata 1-chome Taito-ku Tokyo 110 Japan

Information available and suggested uses

Pre-emergence after sowing until just before emergence of maize, sorghum, wheat, barley, potato, soyabean, carrot, groundnut, cotton, sunflower, sugar beet, kidney beans at 4.0 to 6.0 kg a.i./ha depending on soil type.

Formulation used Emulsifiable concentrate 50% w/v a.i.

Spray volume 372 1/ha

RESULTS

Full results are given in the histograms on pages 16-18 and potential selectivities are summarised in the following table.

Rate (kg a.i./ha)	CROPS: vigour reduced by less than 15%	WEEDS: number or vigour reduced by 70% or more
6.0	maize + safener (NA) groundnut soyabean	All species below
2.0	as above + maize cowpea chickpea mungbean	Bromus pectinatus Phalaris minor + species below
0.67	millet rice sorghum + safener (CGA 92194) pigeon pea lentil cotton kenaf aubergine	Eleusine indica Echinochloa crus-galli Digitaria sanguinalis Snowdenia polystachya Amaranthus retroflexus Commelina diffusa

Comments on results

Although unrelated to the preceding compounds, the pattern of selectivity was somewhat similar, being excellent in the large seeded legumes and in maize. As it is a thiocarbamate, it was a little surprising not to see better control of the Cyperus spp. but this could perhaps be due to the application being to the soil surface (which is possible with this compound) rather than incorporated pre-planting. Rottboellia also showed almost complete resistance but a very interesting strength was the good control of Commelina even at the lowest dose. Although cotton, kenaf and aubergine only tolerated this lowest dose, the selective contol of Commelina may be of particular interest. The selectivities in millet and rice also deserved further study.

There was evidence of some protection of maize by NA, as is to be expected with a thiolcarbamate. There was also moderate protection of sorghum by CGA 92194 but this was rather less than 4-fold.

TRIAL NUMBER 8533

				ORBENCARB		
SPECIES		0.6700 kg/ha		2.0000 kg/ha		6.0000 kg/ha
MILLET (55)		xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx	34	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	0	
MAIZE+S	96	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	104	xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx	104	**************************************
MAIZE (57)	104	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	104	xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx	104	××××××××××××××××××××××××××××××××××××××
SORG+S (58)	93	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	67 57	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	40 36	XXXXXXXX
SORGHUM (59)	76 71	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	41 43	XXXXXXXXX	14	X XXX
PIGEON P	126	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	74	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	74	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
COWPEA (62)	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
CHICKPEA	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	199	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
GRNDNUT (64)	80	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	107	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	107	**************************************
SOYABEAN (65)	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
COTTON (66)	105	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	105	xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx	114	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
JUTE)	93	xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx	43	XXXXXXXX	0	

ORBENCARB

SPECIES		0.6700 kg/ha		2.0000 kg/ha		6.0000 kg/ha
KENAF (68)	105	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	84	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	63	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
SESAMUM (70)	73	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	55 43	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	23 21	XXXXX
RICE (72)	115	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	109	xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx	97	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
ELEU IND	00		0		0	
ECH CRUS	26	X XXXX	00		0	
ROTT EXA	104	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	109	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	113	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
DIG SANG	24	X XXXX	00		00	
AMAR RET	22 71	XXXXXXXXXXXXXXX	25 36	XXXXXX	00	
BROM PEC	63	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	0		00	
SNO POL	114	XXX	0		00	
PHAL MIN	87	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	15	XXXXXX	00	
CYP ESCU	94	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	94 71	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	41 57	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

. 17 -

TRIAL NUMBER 8533

ORBENCARB

SPECIES		0.6700 kg/ha		2.0000 kg/ha		6.0000 kg/ha
CYP ROTU (86)	120	xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx	87	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	91	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
AUBGIN (89)	97	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	97	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	32	XXXXXXXXXXXX
LENTIL (90)	90 86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	62	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	28	XXXXXX
MUNGE (91)	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
TEFF (92)	00		00		0	
COMMEL (93)	26 21	XXXXX	17	XXXX	00	

Diflufenican

Code number MB 38544

Chemical name 2',4'-difluoro-2-(\alpha,\alpha,\alpha-trifluoro-m-tolyloxy)nicotinanilide

Structure

Source May and Baker Limited
Ongar Research Station
Fyfield Road
Ongar

Essex CN5 OHW

Information and available and suggested uses

Control of broad-leaved weeds (Galium, Veronica, Viola spp., Polygonum aviculare, Stellaria media), pre- and early post-emergence in wheat and barley at 0.125 to 0.25 kg a.i./ha. Also pre-emergence in maize for control of Setaria, Digitaria, Amaranthus, Chenopodium, Solanum spp.

Formulation used: Wettable power 50% w/w a.i.

Spray volume: 372 1/ha

RESULTS

Full results are given in the histograms on pages 21-23 and potential selectivities are summarised in the tables.

Rate (kg a.i./ha)	CROPS: vigour reduced by less than 15%	WEEDS: number or vigour reduced by 70% or more
1.0	rice maize + safener (NA) sorghum + safener (CGA 92194) cowpea chickpea groundnut soyabean mungbean	Species below
0.25	as above + pigeon pea cotton kenaf	Eleusine indica Digitaria sanguinalis Snowdenia polystachya Phalaris minor + species below
0.0625	as above + millet lentil jute sesamum aubergine	Amaranthus retroflexus

Comments on results

This herbicide has a totally different type of action to the others in this experiment, causing inhibition of chlorophyll synthesis and complete albinism in susceptible species. Maize, sorghum, rice and the larger seeded legumes were outstandingly tolerant but the range of weeds controlled was limited to the Amaranthus and a few annual grasses which did not include Echinochloa or Rottboellia. The Cyperus species and Commelina were also unaffected. If some other important annual broad-leaved weeds are proved to be susceptible there could be a use for this compound in lentil, kenaf, jute, sesamum and aubergine for which the range of options is still limited but this will require further evaluation.

Another potential use in warm-climate areas could be for control of Phalaris minor and Snowdenia in wheat and barley which have shown high tolerance in other tests (Richardson & West, 1985b). Bromus pectinatus, however, is highly resistant.

DIFLUFENICAN

SPECIES		0.6250 kg/ha		0.2500 kg/ha		1.0000 kg/ha
MILLET (55)	83	xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx	90 71	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	34	XXXXXXX XXXXXXX
MAIZE+S	104	xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx	104	xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx	104	xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
MAIZE (57)	104	xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx	104	xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx	104	xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
SORG+S (58)	100	xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx	93	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	87	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
SORGHUM (59)	103	xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx	103	xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx	110	xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
PIGEON P	126	xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx	126	xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx	74	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
COWPEA (62)	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	83	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
CHICKPEA	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	67	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	92	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
GRNDNUT (64)	107	xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx	107	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	107	xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
SOYABEAN (65)	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
COTTON (666)	76 57	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	95 86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	95 79	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
JUTE)	97	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

- 21 .

DIFLUFENICAN

SPECIES		0.6250 kg/ha		0.2500 kg/ha		1.0000 kg/ha
KENAF (68)	84	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	89	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	89	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
SESAMUM (70)	118	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	123	xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx	50	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
RICE)	115	xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx	103	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	115	xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
ELEU IND	57 50	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	0		0	
ECH CRUS	90	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	93 71	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	48	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
ROTT EXA	96 79	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	117	xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx	9·1 57	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
DIG SANG	57 71	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	00		00	
AMAR RET	86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	18	XXXXX	0	
BROM PEC	98 86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	93	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	93 71	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
SNO POL	52 71	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	22 36	XXXXXXXXX	00	
PHAL MIN	104	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	42	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	00	
CYP ESCU	112	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	124	xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx	118	xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

. 22

TRIAL NUMBER 8533

DIFLUFENICAN

SPECIES		0.6250 kg/ha		0.2500 kg/ha		1.0000 kg/ha
CYP ROTU (86)	100	xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx	109	xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
AUBGIN (89)	97	××××××××××××××××××××××××××××××××××××××	97	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	52	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
LENTIL (90)	1100	xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx	97 71	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	90	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
MUNGB (91)	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
TEFF)	50	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	00		00	
COMMEL (93)	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	104	xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx	122	xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

ACKNOWLE DGEMENTS

We are grateful to Mrs S Barrett for processing the experimental data and to Mr M Kempson for technical assistance. The work was carried out with financial support from the European Economic Community (EEC) under Contract No. TSD.A.198.(UK)H.

REFERENCES

- RICHARDSON, W.G. and DEAN, M.L. (1973) The pre-emergence selectivity of some recently developed herbicides: lenacil, RU 12068, metribuzin, cyprazine, EMD-IT 5914 and benthiocarb. Technical Report Agricultural Research Council Weed Research Organization, 25, pp. 57.
- RICHARDSON, W.G. and WEST, T.M. (1984) The activity and pre-emergence selectivity of some recently developed herbicides: imazaquin, isoxaben, metsulfuron-methyl, aclonifen and orbencarb. Technical Report, Agricultural Research Council, Weed Research Organization, 80, pp. 57.
- RICHARDSON, W.G. and WEST, T.M. (1985a) The activity and pre-emergence selectivity of some recently developed herbicides: metazachlor, butamifos, MT-124, tridiphane, MK 616 and prodiamine. Technical Report, Long Ashton Research Station, Weed Research Division, 86, pp.63.
- RICHARDSON, W.G. and WEST, T.M. (1985b) The activity, pre- and post-emergence selectivity of diflufenican. <u>Technical Report, Long Ashton Research</u> Station, Weed Research Division, 89, pp.30.
- RICHARDSON, W.G. and WEST, T.M. (1986) The activity and pre-emergence selectivity and persistence of some recently developed herbicides: DOWCO 453, quizalofop-ethyl, BAS 517 OOH, cinmethylin, AC 263,499 and RST 20024H. Technical Report, Long Ashton Research Station, Weed Research Division, 91, pp. 62.

Appendix 1. Species, abbreviations, cultivars and stage of growth at assessment

	Designation and computer serial number	Cultivar or source	No. per pot	Depth of planting (cm)	Stage of growth at assessment (untreated controls, leaf numbers exclusive of cotyledons)
Millet (Pennisetum americanum)	MILLET (55)	ex Bornu	10	0.5	6-7 leaves
Maize + safener (Zea mays)	MAIZE + S (56)	LG 11	6	2	4-5 leaves
Maize (Zea mays)	MAIZE (57)	LG 11	6	2	5-6 leaves
Sorghum + safener Sorghum bicolor)	SORG + S (58)	TUB 22	8	1	5-6 leaves
Sorghum (Sorghum bicolor)	SORG (59)	TUB 22	8	1	5-6 leaves
Pigeon pea (Cajanus cajan)	PIGEON P (61)	ICRISAT T	6	1	2-3 trifoliates
Cowpea (Vigna unguiculata)	COWPEA (62)	Blackeye (TRS)	6	1	2 trifoliates
Chickpea (Cicer arietinum)	CHICKPEA (63)	ILC 482	6	1	11-12 leaves
Groundnut (Arachis hypogaea)	GRNDNUT (64)	NC 6	4	2	4-5 leaves
Soyabean (Glycine max)	SOYABEAN (65)	Amsoy	6	1	1-2 trifoliates
Cotton (Gossypium hirsutum)	COTTON (66)	Coker 315	6	1	2-3 leaves
Jute (Corchorus capsularis)	JUTE (67)	India	15	0.5	4-5 leaves
Kenaf (Hibiscus cannabinus)	KENAF (68)	WRO 1981	10	0.5	4-5 leaves
Sesamum (Sesamum indicum)	SESAMUM (70)	Sudan	15	0.5	4-6 leaves
Rice (Oryza sativa)	RICE (72)	IR 36	10	1	5-6 leaves

Eleusine indica	ELEU IND (74)	Zimbabwe 1980	20	0.5	6-7 leaves
Echinochloa crus-galli	ECH CRUS (75)	WRO 1979	20	0.5	5-6 leaves
Rottboellia cochinchinensis (= R. exaltata)	ROTT EXA (76)	Zambia 1978	15	0.5	5-6 leaves
Digitaria sanguinalis	DIG SANG (77)	WRO 1979	20	0.25	5-6 leaves
Amaranthus retroflexus	AMAR RET (78)	WRO 1980	20	0.25	8-9 leaves
Bromus pectinatus	BROM PEC (82)	Tanzania 1981	12	0.5	3-4 leaves
Snowdenia polystachya	SNO POL (83)	Ethiopia 1980	30	0.25	5-6 leaves
Phalaris minor	PHAL MIN (84)	WRO 1979	20	0.25	3-4 leaves
Cyperus esculentus	CYP ESCU (85)	WRO clone 2 (ex S. Africa)	8	2	7-8 leaves
Cyperus rotundus	CYP ROTU (86)	WRO clone 1 (Zimbabwe)	5	2	8-10 leaves
Aubergine (Solanum melongena)	AUBGIN (89)	Money Maker (F.1. hybrid)	8	0.5	2-3 leaves
Lentil (Lens culinaris)	LENTIL (90)	Syrian local	8	1	9-11 leaves
Mungbean (Phaseolus aureus)	MUNGB (91)	CES-ID-21	6	1	1-2 trifoliates
Teff (Eragrostis tef	TEFF (92)	Ethiopia 1981	20	0.25	2-5 leaves
Commelina diffusa	COMMEL (93)	USA	8	1	3-4 leaves

ABBREVIATIONS

angstrom	R	freezing point	f.p.
Abstract	Abs.	from summary	F.s.
acid equivalent*	a.e.	gallon	gal
acre	ac	gallons per hour	gal/h
active ingredient*	a.i.	gallons per acre	gal/ac
approximately equal to*	~	gas liquid chromatography	GLC
aqueous concentrate	a.c.	gramme	g
bibliography	bibl.	hectare	ha
boiling point	b.p.	hectokilogram	hkg
bushe1	bu	high volume	HV
centigrade	C	horse power	hp
centimetre*	cm	hour	h
concentrated	concd	hundredweight*	cwt .
concentration x	concn	hydrogen ion concentration*	pH
time product	ct	inch	in.
concentration required to kill		infra red	i.r.
50% test animals	LC50	kilogramme 3	kg
cubic centimetre*	cm ³	kilo (x10 ³)	k
cubic foot*	ft ³	less than	
cubic inch*	in ³	litre	1.
cubic metre*	m ³	low volume	LV
cubic yard*	yd ³	maximum	max.
cultivar(s)	cv.	median lethal dose	LD50
curie*	Ci	medium volume	MV
degree Celsius*	°c	melting point	m.p.
degree centigrade	°c	metre	m
degree Fahrenheit*	°F	micro (x10 ⁻⁰)	μ
diameter	diam.	microgramme*	μg
diameter at breast height	d.b.h.	micromicro (pico: x10 ⁻¹²)*	μμ
divided by*	e or /	micrometre (micron)*	µm (or µ)
dry matter	d.m.	micron (micrometre)*†	μm (or μ)
emulsifiable		miles per hour*	mile/h
concentrate	e.c.	milli (x10 ⁻³)	m
equal to*	=	milliequivalent*	m.equiv.
fluid	f1.	milligramme	mg
foot	ft	millilitre	m1

t The name micrometre is preferred to micron and μm is preferred to μ .

millimetre*	mm	pre-emergence	pre-em.
millimicro*		quart	quart
(nano: x10 ⁻⁹)	n or mp	relative humidity	r.h.
minimum	min.	revolution per minute*	rev/min
minus		second	8
minute	min	soluble concentrate	s.c.
molar concentration*	M (small cap)	soluble powder	s.p.
molecule, molecular	mol.	solution	soln
more than	>	species (singular)	sp.
multiplied by*	x	species (plural)	spp.
normal concentration*	N (small cap)	specific gravity	sp. gr.
not dated	n.d.	square foot*	ft ²
oil miscible	O.M.C.	square inch	in ²
concentrate	(tables only)	square metre*	m ²
organic matter	O.M.	square root of*	_
ounce	OZ	sub-species*	ssp.
ounces per gallon	oz/gal	summary	8.
page	p.	temperature	temp.
pages	pp.	ton	ton
parts per million	ppm	tonne	t
parts per million by volume	ppmv	ultra-low volume	ULV
parts per million		ultra violet	u.v.
by weight	ppmw	vapour density	v.d.
percent(age)	%	vapour pressure	v.p.
pico		varietas	var.
(micromicro: x10 ⁻¹²)	p or µµ	volt	V
pint	pint -i-t-/	volume	vol.
pints per acre	pints/ac	volume per volume	V/V
plus or minus*		water soluble powder	w.s.p.
post-emergence	post-em		(tables only)
pound *	lb/ac	watt	W
pound per acre*	lb/min	weight	wt
pounds per minute	lb/in ²	weight per volume*	W/V
pound per square inch* powder for dry	D-	weight per weight*	W/W
application	(tables only)	wettable powder	w.p.
power take off	p.t.o.	yard	yd
precipitate (noun)	ppt.	yards per minute	yd/min

^{*} Those marked * should normally be used in the text as well as in tables etc.

WEED RESEARCH ORGANIZATION

TECHNICAL REPORTS (Price includes surface mail; airmail £2.00 extra)

(* denotes Reports now out of print)

- 6. The botany, ecology, agronomy and control of Poa trivialis L. rough-stalked meadow-grass. November 1966. G P Allen. Price £0.25
 - 7. Flame cultivation experiments 1965. October 1966. G W Ivens. Price £0.25
 - 8. The development of selective herbicides for kale in the United Kingdom.
 2. The methylthiotriazines. Price £0.25
- 10. The liverwort, Marchantia polymorpha L. as a weed problem in horticulture; its extent and control. July 1968. I E Henson. Price £0.25
- 11. Raising plants for herbicide evaluation; a comparison of compost types.

 July 1968. I E Henson. Price £0.25
- *12. Studies on the regeneration of perennial weeds in the glasshouse; I. Temperate species. May 1969. I E Henson. Price - £0.25
 - 13. Changes in the germination capacity of three Polygonum species following low temperature moist storage. June 1969. I E Henson. Price £0.25
 - 14. Studies on the regeneration of perennial weeds in the glasshouse. II. Tropical species. May 1970. I E Henson. Price £0.25
 - 15. Methods of analysis for herbicide residues. February 1977. (second edition). Price £5.75
 - 16. Report on a joint survey of the presence of wild oat seeds in cereal seed drills in the United Kingdom during spring 1970. November 1970.

 J G Elliott and P J Attwood. Price £0.25
 - 17. The pre-emergence selectivity of some newly developed herbicides,
 Orga 3045 (in comparison with dalapon), haloxydine (PP 493), HZ 52.112,
 pronamide (RH 315) and R 12001. January 1971. W G Richardson, C Parker
 and K Holly. Price £0.25
 - 18. A survey from the roadside of the state of post-harvest operations in Oxfordshire in 1971. November 1971. A Phillipson. Price £0.25
- *19. The pre-emergence selectivity of some recently developed herbicides in jute, kenaf and sesamum, and their activity against Oxallis latifolia. December 1971. M L Dean and C Parker. Price £0.25

- * 20. A survey of cereal husbandry and weed control in three regions of England. July 1972. A Phillipson, T W Cox and J G Elliott.

 Price £0.35
 - 21. An automatic punching counter. November 1972. R C Simmons. Price £0.30
 - 22. The pre-emergence selectivity of some newly developed herbicides: bentazon, BAS 3730H, metflurazone, SAN 9789, HER 52.123, U 27,267. December 1972. W G Richardson and M L Dean. Price £0.25
 - 23. A survey of the presence of wild oats and blackgrass in parts of the United Kingdom during summer 1972. A Phillipson. Price £0.25
 - 24. The conduct of field experiments at the Weed Research Organization. February 1973. J G Elliott, J Holroyd and T O Robson. Price £1.25
 - 25. The pre-emergence selectivity of some recently developed herbicides: 1enacil, RU 12068, metribuzin, cyprazine, EMD-IT 5914 and benthiocarb. August 1973. W G Richardson and M L Dean. Price - £1.75.
 - 26. The post-emergence selectivity of some recently developed herbicides: bentazon, EMD-IT 6412, cyprazine, metribuzin, chlornitrofen, glyphosate, MC 4379, chlorfenprop-methyl. October 1973. W G Richardson and M L Dean. Price £3.31
 - 27. Selectivity of benzene sulphonyl carbamate herbicides between various pasture grasses and clover. October 1973. A M Blair. Price £1.05
 - 28. The post-emergence selectivity of eight herbicides between pasture grasses: RP 17623, HOE 701, BAS 3790, metoxuron, RU 12068, cyprazine, MC 4379, metribuzin. October 1973. A M Blair. Price £1.00
- *29. The pre-emergence selectivity between pasture grasses of twelve herbicides: haloxydine, pronamide, NC 8438, Orga 3045, chlortoluron, metoxuron, dicamba, isopropalin, carbetamide, MC 4379, MBR 8251 and EMD-IT 5914. November 1973. A M Blair. Price £1.30
 - 30. Herbicides for the control of the broad-leaved dock (Rumex obtusifolius L.). November 1973. A M Blair and J Holroyd. Price £1.06
 - 31. Factors affecting the selectivity of six soil acting herbicides against Cyperus rotundus. February 1974. M L Dean and C Parker. Price £1.10
 - 32. The activity and post-emergence selectivity of some recently developed herbicides: oxadiazon, U-29,722, U-27,658, metflurazone, norflurazone, AC 50-191, AC 84,777 and iprymidam. June 1974. W G Richardson and M L Dean. Price £3.62
 - 33. A permanent automatic weather station using digital integrators. September 1974. R C Simmons. Price £0.63.
 - 34. The activity and pre-emergence selectivity of some recently developed herbicides: trifluralin, isopropalin, oryzalin, dinitramine, bifenox and perfluidone. November 1974. W G Richardson and M L Dean.

 Price £2.50

- 35. A survey of aquatic weed control methods used by Internal Drainage Boards, 1973. January 1975. T O Robson. Price £1.39
- 36. The activity and pre-emergence selectivity of some recently developed herbicides: Bayer 94871, tebuthiuron, AC 92553. March 1975.

 W G Richardson and M L Dean. Price £1.54
- 37. Studies on Imperata cylindrica (L.) Beauv. and Eupatorium odoratum L. October 1975. G W Ivens. Price £1.75
- 38. The activity and pre-emergence selectivity of some recently developed herbicides: metamitron, HOE 22870, HOE 23408, RH 2915, RP 20630.

 March 1976. W G Richardson, M L Dean and C Parker. Price £3.25
- 39. The activity and post-emergence selectivity of some recently developed herbicides: HOE 22870, HOE 23408, flamprop-methyl, metamitron and cyperquat. May 1976. W G Richardson and C Parker. Price £3.20
 - 40. The activity and pre-emergence selectivity of some recently developed herbicides: RP 20810, oxadiazon, chlornitrofen, nitrofen, flamprop-isopropyl. August 1976. W G Richardson, M L Dean and C Parker.

 Price £2.75.
- 41. The activity and pre-emergence selectivity of some recently developed herbicides: K 1441, mefluidide, WL 29226, epronaz, Dowco 290 and triclopyr. November 1976. W G Richardson and C Parker. Price £3.40.
- 42. The activity and post-emergence selectivity of some recently developed herbicides: KUE 2079A, HOE 29152, RH 2915, Triclopyr and Dowco 290.

 March 1977. W G Richardson and C Parker. Price £3.50
- 43. The activity and pre-emergence selectivity of some recently developed herbicides: dimefuron, hexazinone, trifop-methyl, fluothiuron, buthidazole and butam. November 1977. W G Richardson and C Parker. Price £3.75.
- 44. The activity and selectivity of the herbicides: ethofumesate, RU 12709 and isoproturon. December 1977. W G Richardson, C Parker, & M L Dean.

 Price £4.00
- 45. Methods of analysis for determining the effects of herbicides on soil soil micro-organisms and their activities. January 1978. M P Greaves, S L Cooper, H.A Davies, J A P Marsh & G I Wingfield. Price £4.00
- 46. Pot experiments at the Weed Research Organization with forest crop and weed species. February 1978. D J Turner and W G Richardson.

 Price £2.70
- 47. Field experiments to investigate the long-term effects of repeated applications of MCPA, tri-allate, simazine and linuron effects on the quality of barley, wheat, maize and carrots. July 1978.

 J D Fryer, P D Smith and J W Ludwig. Price £1.20.
- 48. Factors affecting the toxicity of paraquat and dalapon to grass swards.

 March 1978. A K Oswald. Price £2.90
- 49. The activity and post-emergence selectivity of some recently developed herbicides: NP 48, RH 5205 and Pyridate. May 1978. W G Richardson and C Parker. Price £2.50

- 50. Sedge weeds of East Africa II. Distribution. July 1978. P J Terry.
 Price £1.50
- 51. The activity and selectivity of the herbicides methabenzthiazuron, metoxuron, chlortoluron and cyanazine. September 1978.
 W G Richardson and C Parker. Price £2.20.
- 52. Antidotes for the protection of field bean (Vicia faba L.) from damage by EPTC and other herbicides. February 1979. A M Blair. Price £1.35
- 53. Antidotes for the protection of wheat from damage by tri-allate. February 1979. A M Blair. Price £2.00
- 54. The activity and pre-emergence selectivity of some recently developed herbicices: alachlor, metolachlor, dimethachlor, alloxydim-sodium and fluridone. April 1979. W G Richardson and C Parker. Price £3.00
- 55. The activity and selectivity of the herbicides carbetamide, methazole, R 11913 and OCS 21693. May 1979. W G Richardson and C Parker. Price £1.80
- 56. Growing weeds from seeds and other propagules for experimental purposes.

 July 1979. R H Webster. Price £1.10
- 57. The activity and pre-emergence selectivity of some recently developed herbicides: R 40244, AC 206784, pendimethalin, butralin, acifluorfen and FMC 39821. December 1979. W G Richardson, T M West and C Parker Price £3.55
- 58. The tolerance of fenugreek (Trigonella foenumgraecum L.) to various herbicides. December 1979. W G Richardson. Price £1.55
- 59. Recommended tests for assessing the side-effects of pesticides on the soil microflora. April 1980. M P Greaves, N J Poole, K H Domsch, G Jagnow and W Verstraete. Price £2.00
- 60. Properties of natural rainfalls and their simulation in the laboratory for pesticide research. September 1980. R C Simmons. Price £1.25
- 61. The activity and post-emergence selectivity of some recently developed herbicides: R 40244, DPX 4189, acifluorfen, ARD 34/02 (NP 55) and PP 009. November 1980. W G Richardson, T M West and C Parker. Price £3.75
- 62. The activity and pre-emergence selectivity of some recently developed herbicides: UBI S-734, SSH-43, ARD 34/02 (= NP 55), PP 009 and DPX 4189. February 1981. W G Richardson, T M West and C Parker. Price £3.50
- 63. The activity and post-emergence selectivity of some recently developed herbicides: SSH-41, MB 30755, AC 213087, AC 2222293 and Dowco 433.

 May 1981. W G Richardson, T M West and C Parker. Price £3.50
- 64. The activity and pre-emergence selectivity of some recently developed herbicides: chlomethoxynil, NC 20484 and MBR 18337. March 1982.

 W G Richardson, T M West and C Parker. Price £3.00
- 65. A system for monitoring environmental factors in controlled environment chambers and glasshouses. June 1982. R C Simmons. Price £1.50

- 66. The activity and pre-emergence selectivity of some recently developed herbicides: AC 213087 and AC 222293. December 1982. W G Richardson, T M West and C Parker. Price £2.00
- 67. The activity and post-emergence selectivity of some recently developed herbicides: trifopsime, glufosinate, RH 8817, MBR 18337 and NC 20484.

 December 1982. W G Richardson, T M West and C Parker. Price £3.25
- 68. The activity and pre-emergence selectivity of some recently developed herbicides: WL 49818, WL 82830, WL 83627, WL 83801 and DPX 5648.

 December 1982. W G Richardson, T M West and C Parker. Price £4.00
- 69. The activity and late post-emergence selectivity of some recently developed herbicides: AC 252925, DOWCO 453, HOE 33171 and HOE 35609. March 1983. W G Richardson, T M West and G P White. Price £3.25
- 70. The potential of various herbicides for selective control of weed grasses and Stellaria media in newly sown ryegrass/clover leys and ryegrass seed crops. May 1983. F W Kirkham Price £1.75
- 71. A feasibility study of the use of chemicals for rural amenity areas.

 Sponsored by the Countryside Commission. September 1983. E J P Marshall Price £5.00
- 72. The activity and late post-emergence selectivity of FBC 32197.

 November 1983. W G Richardson, T M West and G P White. Price £1.25
- 73. Paraquat persistence statistical analysis of the WRO long term trial.

 January 1984. R J Hance, T H Byast, P D Smith and T M Weight. Price £1.00
- 74. The activity and post-emergence selectivity of some recently developed herbicides: AC 252214, DPX-T6376, and chlorazifop. February 1984.

 W G Richardson, T M West and G P White. Price £2.00.
- 75. The effect of temperature and soil moisture on the activity of isoproturon and chlortoluron on Alopecurus myosuroides and winter wheat. May 1984.

 A M Blair. Price £2.00
- 76. A laboratory rainfall simulator for pesticide studies. May 1984.
 R C Simmons. Price £2.00
- 77. Experiments on the effects of the herbivorous fish, grass carp

 (Ctenopharyngodon idella Val.) on aquatic vascular plants, algae, zooplankton and phytoplankton and the importance of water temperature on the success of weed control. September 1984. M C Fowler. Price £3.50.
- 78, The activity and post-emergence selectivity of some recently developed herbicides: MCPA-thioethyl, MT-124, tridiphane, aclonifen and RST 20024 H. October 1984. W G Richardson and T M West. Price £5.40
- 79. A preliminary study on the effect of some agricultural herbicides on a range of field margin flora. November 1984. J E Birnie. Price £2.50
- 80. The activity and pre-emergence selectivity of some recently developed herbicides: imazaquin, isoxaben, metsulfuron-methyl, aclonifen and orbencarb. December 1984. W G Richardson and T M West. Price £6.50

- 81. The side effects of alloxydim sodium, sethoxydim, acifluorfen and fluazifop-butyl on legume growth and nodulation. January 1985. J M Bebb, M P Greaves and W G Richardson. Price £3.00
- 82. An IRGA system for continuous monitoring of CO₂ and H₂O vapour exchange in replicate plants growing in controlled environments. January 1985. C R Merritt and R C Simmons. Price £3.00
- 83. A laboratory pot sprayer for use with controlled environment chambers. February 1985. R C Simmons and J A Drinkwater. Price £2.50
- 84. Maps of the changes in the weeds of Boddington Barn field over twenty years (1961-1981). March 1985. R J Chancellor. Price £4.50
- 85. The use of bentazone and pyridyl herbicides alone and in mixtures for the control of creeping thistle (Cirsium arvense L.) in grassland. April 1985. W G Richardson, A K Oswald and T M West. Price £1.50
- 86. The activity and pre-emergence selectivity of some recently developed herbicides: metazachlor, butamifos, MT-124, tridiphane, MK 616 and prodiamine. May 1985. W G Richardson and T M West. Price £7.00.
- 87. The potential use of grass growth retardants at Sullom Voe terminal,
 Shetland. A report prepared for W J Cairns and Partners,
 16 Randolph Crescent, Edinburgh, Environmental Consultants to BP Petroleum
 Development Ltd as Operators of Sullom Voe Terminal. May 1985.
 E J P Marshall. Price £3.00.
- 88. A further study of the effect of six cereal herbicide treatments on a range of broad-leaved field margin plants. June 1985. J E Birnie.

 Price £2.50
- 89. The activity, pre-and post-emergence selectivity of diflufenican.

 December 1985. W G Richardson and T M West. Price £3.00
- 90. The pre-emergence selectivity in warm-climate species of some recently developed herbicides: imazaquin, AC263 499, cinmethylin and isoxaben January 1986. C Parker and A K Wilson. Price £2.60
- 91. The activity, pre-emergence selectivity and persistence of some recently developed herbicides: DOWCO 453, Quizalofop-ethyl, BAS 517 00H, cinmethylin, AC263,499 and RST 20024H. W G Richardson and T M West. Price £6.20
- 92. The activity and post-emergence selectivity of some recently developed herbicides: SMY 1500, PPG 884, PPG 1259 and DPX-M 6316. W G Richardson and T M West. February 1986. Price £4.20.
- 93. The pre-emergence selectivity in warm climate species of some recently developed herbicides: metazachlor, RST 20024H, orbencarb and diflufenican. C Parker and A K Wilson. February 1986. Price £2.70.