AGRICULTURAL RESEARCH COUNCIL

 WEED RESEARCH ORGANISATION

Technical Report No. 9.

The post-emergence selectivity of some newly developed herbicides NC 6627
NC 4780
NC 4762
BH 584
BH 1455
by
K. Holly and Mrs. A.K. Wilson

Evaluation Section, Department of Weed Science
December, 1967

UK and Overseas Surface Mail 4s. 3d.
Price
Overseas Air Mail 10s. Od.

BEGBROKE HILL, KIDLINGTON, OXFORD

CONTENTS

Introduction

For many years the Evaluation Section of the Weed Research Organization has investigated the selectivity of new herbicides which are in the process of commercial development by industry. This has involved application, both pre-emergence and post-emergence, to a wide range of crop and weed species grown in pots, as a preliminary stage of this process. The objectives have been to discover selectivities additional to those pinpointed by the firm which originally discovered the herbicidal properties of the chemical; to obtain experience of the type of effects produced by the chemical; and to provide a source of information on the relative susceptibility of species which may subsequently prove useful in considering problems such as the cropping of land contaminated with the herbicide.

Essentially the main value of this experimentation is as a guide in the planning of further experiments both in pots and in the field. For this reason the results of such experiments were not written up for publication but recorded in the form of Internal Reports for the information of V.R.O. staff. However, many individuals other than W.R.O. staff were in a position to make use of the information in these Reports and a restricted distribution was started to such people. The distribution list has grown very considerably during the last few years and these Internal Reports now reach specialist weed research workers in 22 countries. The recipients regard these reports as of value to them and many requests are received for addition to the mailing list. It has been decided therefore that there is no longer any justification for retaining the status as an 'Internal Report, Not for Publication'.

Hence the reports on this type of experiment will, in future, appear in a published and readily available form as Weed Research Organization Technical Reports. The format will be based on that of the earlicr Internal Reports. The present report is the first of this new series of W.R.O. Technical Reports (there have been earlier I.R.O. Technical Reports on other topics).

Attention is drawn particularly to the fact that the experiments described herein are only a preliminary guide to the relative resistance or susceptibility of the species included. Pot experiments of this sort are not a reliable gride to the dose levels needed to produce the same effects in the field. Further, the experiments are conducted on only one widely grown variety of each crop plant or on weed material from one readily available source. Large variations in response can occur between different varieties of the same crop, or between different strains or clones of weed species. In a few instances a cultivar attributed to the same species as the weed has been used for ease of propagation and there are a number of cases where a species has been included which is a crop in some circumstances and a weed in others. The pre-emergence experiments are conducted only on one soil type and the post-emergence experiments at one growth stage. These important variables can have a profound effect on response.

For the above reasons it must be emphasised that the data reported should be regarded prinarily as a source of ideas for further work. The results are presented in full to enable the reader to extract information on particular species in which he may be interested, and to facilitate rapid production of the report on completion of computer processing of the data.

The Weed Research Organization only accepts herbicides for inclusion in its research programme if the chomical nature is disclosed. Homever in some cases this disclosure is confidential for a limited period of time. Hence there may be occasional instances in these reports where the chemical composition of a herbicide is not stated but marked as confidential. In general, recipients of these reports will find that information on this point becomes available from other sources in a relatively short period of time.

This Report is presented in such a way that it can be sub-divided into portions dealing with individual herbicides, which can then be filed separately.

Experimental Procedure

Plant growing and treatment

Plants were grown in 3.5 inch diametor plastic pots, generally in University of California no. IIC mix as a standard peat-sand potting compost. Exceptions werc the soft fruit and rice which were grown in a sandy loam soil from Begbroke Hill Farm, and groundnut which was grown in John Innes no. 2 potting compost. The annual species were grown from seed and the sowing dates staggered with the intention that the majority of plants should have roached the 2- to 4-leaf stage by the time of spraying. Actual stages of growth at spraying are recorded in Table 1. For each species the number of plants in each pot at the time of spraying is constant, this being achieved by thinning. Many of the perennial species were propagated vegetatively: Agropyron repens from rhizome sections, Cynodon dactylon and Agrostis stolonifera from stolon sections, Cyperus rotundus from tubers, strawberry from runners and blackcurrant from cuttings. However Rumex crispus, Eupatoriun odoratum, and all the other perennial crop species were grown from seed. The tropical species, together with maize and dwarf bean, were grown in a heated greenhouse; the romaining plants were raised outside.

The plants were sprayed using a specially built laboratory sprayer embodying a 'Teejet' fan nozzle moving at constant speed along a track above a spray bench. The application rate was equivalent to $30.9 \mathrm{gal} / \mathrm{ac}$. Generally the herbicide was applied in the formulation supplied by the manufacturer for field testing. In the case of BH 1455 technical material was dissolved in a 4:1 mixture of acetone and water by volume. Each treatment was replicated twice on each species. The full list of treat. ments and doses is given in Table 2.

After spraying the plants were protected from rainfall for 24 hours and then given a heavy overhead watering to wash any residues off the foliage. The pots were then returned to their original position in the greenhouse or the open. Additional fertiliser in solution and insecticide and fungicide were applied to individual species as needed.

Assessment and processing of results

Before spraying the number of plants per pot for each species was recorded. Between 2 and 3 weeks after spraying, when control plants had reached a size where further maintenance was a problcm, a final assessment was made directly onto punched cards. For annuals and seedlings a record was made of the number of survivors from each treatment. In addition their vigour was expressed on a 0 to 7 subjective scoring scale, on which 7 indicates that they wore indistinguishable from the controls. Bach step in the scale was defined. For the perennials established from vegetative material only a vigour score was taken and punched card recording was not used. These latter species were retained for a further period of several months to observe later effects or the degree of recovery from injury.

The punched cards were processed by the ORION computer at Rothamsted Experimental Station. The computer output was produced direct on to duplicating stencils used in the preparation of this Report. These give rise to the main diagramatic presentation of the data, given separately for each herbicide, in the Results Section which follows. On each diagram there is an indication of species, herbicide, and dose applied (the species abbreviations used are listed in Table 1). For each species at cach dose of herbicide there is a pair of figurcs. The upper figure of the pair gives mean plant survival as a percentage of the original number present, corrected for any control mortality. The lowor figure shows mean vigour score as a percentage of control. Directly to the right of each figure is the same information prosented as a horizontal histogram. Each 'x' in the histogram represents a 5% incroment in the value being plotted. The single figures and histograms against the perennial species indicate vigour as a percentage of control vigour and have been added later.

In the considcration of the results arbitrary levels of vigour reduction of 15% or less compared with control in respect of crops, and vigour reduction of 85% or more as compared with control in respect of weeds have been taken to indicate responses of major interest. It should be borne in mind that certain species can be considered as both crops and weeds. A serics of individual coments are made on the results for each herbicide but these are not intended to be an exhaustive survey of the results. They are provided merely to highlight a number of points of interest, but are not intended to replace carefui consideration of the histograms with reference to the readers' own interests.

Table 1
Species abbreviations，varieties and stage of growth at time of spraying and assessment

Species A	Abbreviation	Variety	Stage of grow th when sprayed＊	Stage of growth of controls when assessed＊
Wheat （Triticum aestivum）		Jufy	3－32	5－6 leaves，tillering
Barley （Hordeum vulgare）		Proctor	3－32	up to 6 leaves，tiller－ ing
Oat （Avena sativa）		Blenda	3 leaves	5－6 leaves，tillering
$\begin{aligned} & \text { Maize } \\ & \text { (Zea mays) } \end{aligned}$		Inra 200	$2 \frac{1}{2}-3$ leaves	up to $7 \frac{1}{2}$ leaves
Perennial ryegrass （Lolium perenne）	PRYGRS	S 23	2－2 $\frac{1}{2}$ leaves	4－5 leaves，tillering
Cocksfoot （Dactylis glomerata）	）CKFOOT	S 143	3 leaves	4－5 leaves
Timothy （Phleum pratense）	TIMTHY	S 50	3 Ieaves	$\begin{aligned} & 5-6 \text { leaves, } \\ & \text { tillering freely } \end{aligned}$
Lucerne （Medicago sativa）	LUCERR	Provence	2－3 tri－ foliate leaves	up to $6 \frac{1}{2}$ trifoliate leaves
Red clover （Trifolium pratense）	）RCLOVR	S 123	1咅－2 $\frac{1}{2}$ tri－ foliate leaves	4－5 trifoliate leaves
Thite clover （Trifolium repens）	WCLOVR	S 100	$2 \frac{1}{2}-3 \frac{1}{2}$ tri－ foliate leaves	up to $6 \frac{1}{2}$ trifoliate leaves
Ficld bean （Vicia faba）	FDBEAN	Blue Rock	5－5 $\frac{1}{2}$ leaves （axcluding primary leaf）	$6 \frac{1}{2}-7 \frac{1}{2}$ leaves
$\begin{aligned} & \text { Pea } \\ & \text { (Pisum sativum) } \end{aligned}$		Big Ben	7 leaves	8 $\frac{1}{2}$ leaves
Sugar beet （Beta vulgaris）	SGBEET	Klein E	2 Ieaves	32 leaves
Swede （Brassica napus）		Bengholm	I砍－2 leaves	$3 \frac{1}{2}-4 \frac{1}{2}$ leaves
$\begin{aligned} & \text { Kalc } \\ & \text { (Brassica oleracea } \\ & \text { acephala) } \end{aligned}$		Marrowstem	2－2 2 leaves	$3 \frac{1}{2}-4 \frac{1}{2}$ leaves
Carrot （Daucus carota）		Chantenay Red Core		up to 5 leaves
Parsnip （Pastinaca sativa）	PRSNIP	Hollow Crown	1－1零 leaves	up to $3 \frac{1}{2}$ leaves
Dwarf bean （Phaseolus vulgaris）	DWBEAN	The Prince	$\begin{aligned} & 2 \text { primary } \\ & \text { leaves } \end{aligned}$	I老 trifoliate leaves
Lettuce （Lactuca sativa）	LETTCE	Trocadero Improved	$2 \frac{1}{2}-4$ leaves	up to $7 \frac{1}{8}$ leaves
Onion （Allium cepa）		Bedfordshir Champion	2－2\％leaves	3 leaves
Cabbage	CABBGE	Primo	I ${ }_{2}-2$ leaves	31－4 ${ }^{\frac{1}{2}}$ leaves

Species Ab	Abbreviation	Variety		Stage of growth of controls when assessed＊
Avena fatua	A fatu		4－5 Ieaves	5－6 leaves beginning to tiller
Poa annua	P annu		5－7 leaves	4－5 leaves，tillering vigorously
$\frac{\text { Alopecurus }}{\text { myosuroides }}$	A MYOS		$2 \frac{1}{2}-3 \frac{1}{2}$ leaves	up to 4 leaves， tillering freely
$\frac{\text { Tripleurospernum }}{\frac{\text { maritimum }}{\text { ssp. inodorum }}}$	T MARI		5－6 Ieaves	11－12 leaves
Senecio vulgaris	S S vulg		4－4考 leaves	9 leaves，beginning to flower
Galium aparine	G APAR		4 whorls	$6-7$ whorls
Sinapis arvensis	3 SI ARV		3－31．Ieaves	6 leaves，flowering
Raphanus raphanistrum	R RIPH B 	Black Spanish Radish	1老－2 leaves	$3 \frac{1}{2}$ leaves
Papaver rhoeas	P RHOE ${ }^{\text {S }}$	Shirley Poppy	4－6 leaves	up to $8 \frac{1}{2}$ leaves
Chenopodium albun	un C ALbu		6 leaves	up to 13 leaves， axillary growth beginning
$\frac{\text { Polygonum }}{\text { Iapathifolium }}$	P LAPA		$2 \frac{1}{2}$ leaves	up to $7^{\frac{1}{3}}$ leaves， axillary growth beginning
Rumex crispus	R CRIS		3－4 leaves	5－6 leaves，some axillary growth
Stellaria media	S MEDE		4－10 leaves	5－6 pairs of leaves on main shoot，axillary shoots growing vigorously beginning to flower
Spergula arvensis	is SP ARV		4 leaves	up to 5 whorls of leaves，flowering
Sorghum （Sorghum valgar	are） SRGHMM	SB 68	3－3 ${ }^{\frac{1}{2}}$ leaves	$6 \frac{1}{2}$ leaves
Rice （Oryza sativa）		Dickwee 328	2－2 2 Ieaves	up to 5 leaves， tillering vigorously
Cotton（Gossypiun hirsutum）		Samaru 26J	1 leaf	$3 \frac{1}{2}$ leaves
Groundnut （Arachis hypoga	$\text { ogeea) }_{\text {GRDNUT }}$	Natal Common	1－2 ${ }^{\frac{1}{2}}$ leaves	up to $6 \frac{1}{2}$ leaves， tillering from base
Tobacco （Nicotiana	tobcco	$\begin{aligned} & \text { Yellow } \\ & \text { Maminoth } \end{aligned}$	2震 leaves	4管－5 $\frac{1}{2}$ leaves
Mleusine indica	INDI		5 leaves	$7 \frac{1}{2}-8 \frac{1}{2}$ leaves， tillering vigorously

Species	Abbreviation	Variety	Stage of growth when sprayed＊	Stage of growth of controls when assessed＊
$\frac{\text { Eupatorium }}{\text { odoratum }}$	E ODOR		2－2⿳亠丷厂犬 Ieaves	3l pairs of leaves
Strawberry （Fragaria sp．）	STRIBY	Cambridge Favourite	10 leaves	13－14 leaves，with long runners
Blackcurrant （Ribes nigrum）	BKCURR	Hilltop Baldwin	14 leaves	16－17 leaves，axillary shoots beginning to grow
Digitaria sanguinalis	D S．ING		$2 \frac{1}{2}-3$ loaves	up to 5 leaves， tillering vigorously
$\frac{\text { Portulaca }}{\text { oleracea }}$	P OLAC		$2-<\frac{1}{4}$ Ieaves	6 $\frac{1}{2}$ pairs of leaves， axillary buds shooting
Agropyron repens			3－4 leaves per shoot	up to 6 leaves per shoot，tillering
Agrostis stoloni	fora		5－7 leaves per shoot	up to 12 internodes per shoot，with nodes rooting
Cyperus rotundus			$\begin{aligned} & 9 \text { leaves } \\ & \text { per shoot } \end{aligned}$	up to 16 leaves per shoot，with profuse development of new shoots
Cynodon dactylon			8雭 leaves por shoot	up to 9 extended inter－ nodes per shoot

[^0]
Table 2

Herbicide Treatments

Chemical	Accession no.	Doses ($\mathrm{Ib} / \mathrm{ac}$)
```NC }662 (confidential)```	163	0.33, 1.0, 3.0
```NC 4780 (2-trifluoromethyl-6= chloroimidazo [4,5,6]pyridine)```	164	$0.11,0.33,1.0$
$\begin{aligned} & \text { NC } 4762 \\ & (\text { confidential }) \end{aligned}$	167	0.5, 1.5, 4.5
BH 584 (5-chloro-2-isopropylbenzimidazole)	158	0.5, 1.5, 4.5
$\begin{aligned} & \text { BH } 1455 \\ & \text { (confidential) } \end{aligned}$	159	0.66, 2.0, 6.0

(confidential)
Received: April, 1967
Accession no. 163

Expt. no: G. 67.14
Formulation used: wettable powder 20\% a.i. w/w

Doses: $0.33,1.0,3.0 \mathrm{lb} / \mathrm{ac}$
Spray volume: $30.9 \mathrm{gal} / \mathrm{ac}$
Experiment treatod: 11.7 .67
Assessment completed: 26.7 .67
Sumriary of results
Full results are given in the histograms overleaf and are summarised in the table below

Horbicide	$\begin{aligned} & \text { Dose } \\ & \text { (Ib/ac) } \end{aligned}$	Crops: vigour reduced by less than 15\%	Weeds: number and/or vigour reduced by nore than 85%
NC 6627	3.0	strawberry	$\begin{aligned} & \text { Trioleurospernum naritimum } \\ & \text { Sinapis arvonsis } \\ & \text { Raphanus raphanistrum } \\ & \text { Polysonum lapathifolium } \\ & \text { Stellaria media } \\ & \text { + species below } \end{aligned}$
	1.0	As above + barley maize sorghum рез	Papaver rhoeas Eupatorium odoratum Portulaca oleracea

Comments on results:

1. Although the manufacturers original suggestion was for pre-emergence application, NC 6627 appears to have a considerable activity on emerged seedling plants at the higher doses tested. The Initial Activity Test had indicated this type of response earlier but suggested that much but not all of this effect occurred as a result of uptake by the root system.
2. In general NC 6627 seemed to have a much lower activity than NC 4780 .
3. The resistance of some of the graminaccous crops to this herbicide is shared by the related herbicides which are of greater activity on broad leaved species and hence NC 6627 is unlikely to be of interest in this context.
4. At $0.33 \mathrm{Ib} /$ ac Portulaca oleracea was the nost susceptible species of any tested. At the time of spraying the plants were small, but had reached the two-leaf stage.
5. In the case of strawberry the selectivity as shown by the main series of observations two weeks after treatment was greater than with the related compounds. Up to this point no appreciable effects on stramberry foliage had been noted. However inspection of the plants $3 \frac{1}{2}$ months after treatment showed that at $3 \mathrm{lb} / \mathrm{ac}$ there was some retardation of runnor growth and a little faint marginal chlorosis of the leaves. It $1 \mathrm{lb} / \mathrm{ac}$ the plants were indistinguishable from controls. If this herbicide became available for pre-emergence use the possible resistance of stramberry would warrant further investigation.

TREATMENTS

NC 6627 1.00 IW/AC

71 xxxxxxxyxxxxxx
100 xxxxxxxxaxxxxxxxxyxx

$100 \operatorname{xxxxxxx\times x\times x\times x\times x\times x\times xx}$ xxyxxxxyxxxxxyxxx
 93 xxycxxxxxexxxxxxxxx
 57 xxxxxxxxxxx
 79 xxuxxxxuxxxxxxxx
 xxxxxyxxyxxxxxxx
 71 xxxxxxxxxxxxxx
 xxxxxxxxxxxxx

100 mxxxxxyxxxyxuxyexzex xxxyxxyxxxxxx
$100 \quad$ xxxxxxxxxxxxyxxxxzxxx 57 xxxxxxxxxxx

100 xxxxxyxxxxxyxyxxxxxy
36 xxxxxxxxxxxxxxxx
100 xxxyxxyxxyxyxxyxxyx yxxxxxxxyxxxxxxxx

zxxyyx

 $x \times x$NC $6527 \quad 3.00 \quad \mathrm{LB} / \mathrm{AC}$

88 mxxxxxxxxxyxxxyxxx
43 xxx:xxxxx
100
 xyxocxxxxxxxyx

64

 jxxxxoxyxyexixx
 xxxxxy
xyxxyxxxyxxxyzx xxaxxix
xxxxxxxxxxxxx $x x x \times x x x x x$
 $\operatorname{xxzxxxxcxyxyxx}$
 xxxxxxxyxy
xxxxxx 9 xxxxxx
${ }_{0}$
100
 xxxxyoxxyxxxyx

7 xxx
21 xxxx
C

TRIAL MUMER SPRCIES	34	NC 6627 O.33. LJ/AC
KALE	100	
(15)	71	x $\mathrm{x} \times \mathrm{xx} \times \mathrm{xx} \times \mathrm{x}$
Caiziot	100	
(16)	86	
PRisilf	100	
(17)	71	zxyxxxxxxxyx
DWSEAT	100	
(18)	71	xxxxxxyoxxyxxx
LETTCE	100	
(19)	64	
Onions	92	
(20)		
CAtisge	90	
(21)	64	
A FAMU	100	
$22)$	100	xxxxxxxxoxexxyxxxexxx
AINIU	100	
$23)$	100	
A MMOS	100	
(24)	93	
MARI	94	
(28)	86	mxxxdxxxxxdxxxxxx
S. VULG	100.	
(2))	86	xxxxyxxxxxxxxyxux
G APAR	100	
(30)	36	
SI ARV	100	
(37)	64	xxxxxxxocexxi

	$\begin{aligned} & \text { TREATMEITS } \\ & \text { NC } 6627 \quad 1.00 \quad \mathrm{I} / \mathrm{AC} \end{aligned}$		NC $6627 \quad 3.00 \mathrm{LJ} / \mathrm{AC}$
90		0	
57	xxyzxxyxxyx	0	
100		0	
64	xxxxxxyxxxxyx	0	
83		8	xX
57	xxyxxxxixxx	7	x
100		100	
57		24	xxx
0		0	
0		0	
92		75	
71		57	xxyxxxxxxxx
10	$x \times$	0	
24	xxx	0	
100		200	
93	mxxyxxyxxxxxxyzxyxx	71.	xxixexxxxxxxyxx
100		38	zxxaxxix
43	xxxxxexxy	21.	xxax
200		29	xxxxxx
57.		21	xexx
100		13.	xxx
71		14	xxx
100		36	xxxxxxx
71	zxyxxyxxyxyxxx	36	xxxyxxy
100		100	
71	xxxxyxxxxxyxxx	50	x $x \times x y x x y x x$
73		0	
27.	saxx	0	

TRIAI NUMEER SPECIES		NCC $6627 \quad 0.33 \quad \mathrm{LJ} / \mathrm{AC}$		$\begin{aligned} & \text { TREATMENTS } \\ & \text { WC } 6627 \quad 1.00 \quad \mathrm{~L} / \mathrm{AC} \end{aligned}$		NC 6627 3.00 IS/AC
R RAPH	100		90		0	
(32)	36		57	xxxxxxxxxxx	c	
P R RHOE	75		0		0	
(33)	57	xxxxxxxxyxx	0		0	
C ALJU	100		100		58	xxxxzxixxxxxx
	71		57	xxxxxxxxxxx	21	xxxx
P LAPA	100		94		19	xxxx
(35)	79		64	xxxxyxyxxxxxx	14	xxx
R CRIS	100		100		45	xxxxxxxxx
(36)	23		71	xxxxyxxyxxxxyx	36	xxyxyxx
S MEDE	94		100		13	xxx
(37)	79	xxxxxxxyxxyxxxxx	57	x x xxxxxxxxx	14	xxx
SP ARV	100		100		38	
(38)	86		71		50	xxxxxxyxx
SRGHMM	100		100		100	
(39)	100		100		79	
RICE	100		100		88	zxyxxyxxxxxxyxxyxxx
(40)	71		57	xxxxxxxxxxx	21	xxxx
COTHON	100		100		100	
(41)	71		43	xxxxxxxxx	29	xxxxx
Girdnvur	100		100		100	
(42)	79	xxxxxxxxxxxyxxx	64	xxxxxxxxxxxxx	50	xxxxxxxxxx
Toucco	53	$\underline{x x x x x x x x x x x ~}$	0		O	
(44)	50	xxxxxxxxxx	0		c	
E INDI	100		100		100	
(45)	100		93	mxxxxyxxyxxyxxyxxx	64	
E ODOR	100		9	xx	0	
(47)	43	xxxxxyxxx	14	xxx	0	

TRIAL NUNER SPECIES		THC $6627 \quad 0.33 \mathrm{LJ} / \mathrm{AC}$
STRWSY	100	
(49)		
BKCURR	100	
(51)	93	
D SAifg	100	
52)	100	
P OLAC		xxxxxyx
(54)	21	$x x x x$
$\frac{\text { Arrostis }}{\text { stolonifera }}$	100	
$\frac{\text { Agropyron }}{\text { repens }}$	100	
$\frac{\text { Cyperus }}{\text { rotundus }}$	100	xxxysxyxxzxyxyxxyxxz
$\frac{\text { Cynodon }}{\text { dactylon }}$	100	xxxxxxxxyxxxxxxyxxyx

Manufacturer: Fisons Pest Control Itd.	
Chesterford Park Research Station,	
	Nr. Saffron Walden, Essex.

Latest Technical Information:
Tnpublished technical data sheet (undated)
Manufacturers' suggestions for principle uses:
Pre-emergence applicaiion in maire and aoya bean and perennie] crops.

Prior T.R.O. experiments:
Initial Activity Test G.67.13
STATDAPD POST-GMERCHCD S TEOTVITY TEST

Expt. no.:G.67.14.

Doses: $0.11,0.33,1.0 \mathrm{IL} / \mathrm{ac}$
Experiment treated: 11.7.67

Foumulation used: aqueous solution 25\% a.i. w/v

Spray volume: $\quad 30.9 \mathrm{gal} / \mathrm{ac}$
Assessment completed: 26.7 .67

Summary of results

Full results are given in the histograms overleaf and summarised in the table below.

Herbicide	$\begin{aligned} & \text { Dose } \\ & (I b / a c) \end{aligned}$	Crops: vigour redused by less than 15%	Weeds: number and/or vigour reduced by more than 85%
NC 4780	1.0	No crops tolerant	
	0.33	maize sorghum Iucerne red clover pea	Tripleunospermum maritimum Senecio vulgaris Raphanus raphanistrum Papaver rhoeas Cheropodium album Polygonum lapathifolium Punex crispus Stollaria media Spergula arvensis Galiun aparine + species below
	0.11	as above + Wheat berley oat perennial ryegrass cocksfoot timothy groundnut blackcurran \ddagger	Sinapis arvensis Eupatorium odoratum Pontulaca oleracea

Comments on results

1) NC 4780 was the nost active compound in the present experiment and also appears to be mone active than chlorflunazole if comparison is made with the results for the latter compour: in a similar experiment (G.65.14; Internal Report 22). A wide range of seedling weed species were controlled at $0.33 \mathrm{Ib} / \mathrm{ac}$.
2) Results of the earlier Initial Activity Test suggest that both foliar and root entry may play a part in producing the above results, with some variation between species in the relative importance of the two routes of entry.
3) The resistance of maize pre-emergence indicated by the manufacturer extends also to post-energence application and to sorghum.
4) In general the grasses are more resistant than other species. This includes the temperate cereals (wheat, oats and barley) but the sclectivity in this instance is less than with chlorflurazole。
5) The resistance of certain small seeded legunes, particularly lucerne, seans worthy of further investigation in relation to use for weed control in the early stages of establishnent of these legunes alone, or in mixture with sone grasses. Red clover but not white clover is also resistant; this difference between the two clovers is not shown by the related compounds.
6) Chlorflurazole has been suggested earlior for post-energence weed control in peas (Fisons Tech. Inf. Bull. 1966). NC 4780 appears to have greater selectivity in this situation and may be worth field investigation in this crop. It should be noted however that there was a steep dose-response relationship with NC 4780, leading to a complete kill at the top dose.
7) Groundnut showed a moderate resistance though insufficient to appear in the main table.
8) NNC 4780 because of its broad-spectruan of broad-leaved weed control should be considered for possible use in perennial crops. In view of its soil activity the resistance of each crop to presence of the herbicide in the soil will need to be established. Blackcurrant cuttings showed an appreciable resistance; inspection $3 \frac{1}{2}$ months after treatment showed no distinguishable effect at $0.33 \mathrm{lb} / \mathrm{cc}$ but a suppression of terminal growth at $1.0 \mathrm{lb} / \mathrm{ac}$.

TRIAL MUMDER SPECIES		WC $4780 \quad 0.11 \mathrm{LB} / \mathrm{AC}$		TREATMENTS INC $4780 \quad 0.33 \quad \mathrm{LJ} / \mathrm{AC}$		NCC $4780 \quad 1.00 \quad \mathrm{LJ} / \mathrm{AC}$
Wheat	100		100		0	
(I) .	100.		64	xxxxxxxxxyzxx	0.	
RARLEY	100		100			xxxyxxyxxx
(2)	93		71			xxxxxx
OAT	100		100		0	
(3)	93		79		0	
MAIZE	100		100			
(4)	100		93		79	
PRYGRS	94		50	xxixixyxixix	0	
(5)	93		29	xxxxxx	0	
CKFOOT	100		100		0	
(6)	100		79		0	
				xxxxx		
(7)	93		36	xxxxxxx	0	
LUCERTI	100		100		94	xxxyxxyxxxyxyxyx
(8)	86		36	mxyxyxxxxyxxxxxxx		xxxyxxyxxxyxyxxx
RCLOVR	100		100		69	
(9)	86			mxxxxxxxxxxxyxxxx		
WCLOVR	83		13	xxx	0	
(10)	57	xxxxxxxxyxx	C		0	
FDEEAFI	100		0		0	
(11)	43	xxxxxxx x x	0		0	
PEA	100		100		0	
(12)	93		86	xxxxxxxxxxxxxxxxx	c	
SGBEET	25	xxxxx	0		0	
(13)	21	$x x x x$	0		0	
SWEDE	10	xx	0		0	
(14)	14	$\mathrm{x} x \times$	0		\bigcirc	

TRIAL TUUCI
SPECIES

$\left(\begin{array}{c} \text { KALE } \\ (15) \end{array}\right.$	$\begin{aligned} & 70 \\ & 71 \end{aligned}$	xxyxxyxxyxyxyx
Cariot	33	
(16)	57	xxxxxxxxxxx
PISIIP	3	$\mathrm{x} \times$
(17)	29	xxxoxx
dHoEAT	100	
(18)	71	xxxxcxx
LIETTCE	0	
(19)	0	
Onion	75	
(20)	86	
CATtas	10	$x \times$
(21)	29	xyoxxx
A FATU	100	
(22)	100	
P AINMU	100	
(23)	100	
A MYOS	100	
(24)	79	
T MARI	63	xxyxzxxxxyxxy
(28)	64	
S VUIG	32	
(2)	50	xxxoxaxaxx
G APAR	100	
(30)	71	
SI AivV	0	
(31)	0	

```
TMEATMEMTS
NC LT3C 0.33 L/AC
NTC 4780
1.00
II/AC
NC \(\quad 473 \mathrm{C} \quad 0.33 \mathrm{~L} / \mathrm{AC}\)
```

0	\cdots	0
0		0
0		0
0		0
0		0


```
xxyxx
x
```

0
7 xxxyxexxaxxxx
79 xxxxxxxxxxxxxxxx 0
0
C xxxyyxyxxx
$\mathrm{x} \times \mathrm{x} \times$
xxxxxx:x
xxx
0

0
0
$\mathrm{x} \times \times \mathrm{K} \times \times \times \mathrm{x} \times \mathrm{X}$
0
$\begin{array}{ll}0 & 0 \\ 0\end{array}$
100 x $10 \times x$
xxoxxxxxxxxxxyoxx

$x \times x \times$
$x \times x \times \times x \times x \times 2 \times x \times x \times x x$
xXXXXxXxXxX.
0
0
0
0
$\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}$
8 xx
29 xxxxxx
$8 \mathrm{x} x$
29 xxxxxx

-20
 NC 4762
 (confidontial)

Received: May, 1967 Accession no. 167

Manufacturer:	Fisons Pest Control Ltd., Chesterford Park Rescarch Station, Nr. Saffron Talden, Essex.
Latest Technical Information:	
	Unpublished technical information sheet (undated)
Manufacturers' suggestions for principle uses:	
	Post-mergence applications in wheat, barley and and peas.

Prior V.R.O. Experiments:
Initial Activity Test G. 67.13
STAVD IRD POST- MMRGENCE SELECTIVITY TEST
Expt. no: G. 67.14
Formulation used
aqueous solution
Na salt 20\% a.e.w/v

Doses: $0.5,1.54 .5 \mathrm{Ib} / \mathrm{ac}$
Spray volume: 30.9 gal/ac
Experiment treated: 11.7 .67
Assessment completed: 26.7 .67
Full results are given in the histograns overleaf and sumnarised in the table below.

Herbicide	$\begin{aligned} & \text { Dose } \\ & \text { (lb/ac) } \end{aligned}$	Crops: vvigour reduced by less than 15\%	Weeds: number and/or vigour reduced by more than 85\%
NC 4762	4.5	oat cocksfoot	$a . l l$ species below
	1.5	```above species + wheat barley maize perennial ryegrass timothy pea sorghun groundnut```	Tripleurospermuna naritimun Sonecio vulgaris Galium aparine Sinapis arvensis Raphanus raphanistrun Chenopodium alburn Polygonum lapathifolium Rumex crispus Spergula arvensis + species below
	0.5	above species + lucerne white clover onion rice	Stellaria media Mupatorium odoratun Portulaca oleracea

Comnents on results

1) NC 4762 shows activity on a wide range of species comparable with NC 4780 but requiring higher doses to do so. The carlier Initial Activity Test indicatod that this activity on broad-leaved species arose largely through foliar uptake.
2) The present experiment confirms the nanufacturers suggestion for selective annual broad-leaved woed control in wheat, barley and oat. The range of weed specios controlled includes some of those more resistant to other herbicides.
3) In addition maize and sorghum show resistance and possible post-emergence use in maize should be investigated wherever grass weeds are not a major problen and there is a need to supersede other possible post-energence herbicides such as atrazine + surfactant in this crop.
4) Selectivity for broad-leavod weed control in peas appears greater than with NC 4780, but higher doses aro required. Hovever some action through the soil is involved with NC 4780 whereas performance of NC 4762 should not vary with soil factors.
5) Sclectivity in groundnut appears comparable with that given by NC 4780 but again higher doses are needod.
6) Very few weed species were controlled at the lowest dose of $0.5 \mathrm{lb} / \mathrm{ac}$ but a possibility for selective control of Stellaria media in onions is indicated.
7) Later observation, $3 \frac{1}{2}$ months after treatmont, showed recovery from the initial effects on strawberry at $1.5 \mathrm{lb} / \mathrm{ac}$ 。
8) In addition to normal selective use the range of seedling broad-leaved weeds controlled coupled with the lower activity through the soil preand post-emergence (as compared with NC 4780) suggests consideration for use as contact herbicide in situations where crop foliage is not directly or fully cxposed to the spray.

SPECIES		NCC $4762 \quad 0.50 \mathrm{LJ} / \mathrm{AC}$
WHEAT	200	
(I)	100	
I3ARLEY	100	
2)	93	
DAT	100	
3)	100	
MAIZE	100	
(4)	36	zxxxyxxxxxxyzxyxx
PRYGIRS	100	
5)	100	
CKFOOP	100	
(6)	93	
TTMTHY	100	
7)	100	
LUCERIT	100	
(8)	86	
RCLOVR	100	
9)	71	xexxexxixaxaxix
WCLIOVR	100	
(10)	36	
FDSEART	50	xxxxxxxxxx
(11)	14	xxx
PEA	100	
(12)	100	
SGIEEET	50	xxxxyxyxzx
(13)	29	xxxxxx
SWEDE	10	xx
(24)	14	x $6 \times$

THEATMENTS
ITC 4762 1.50 ID/AC
INC 4762
4. 50

IJ/AC

88
-

 xxxxxxyxyxxxyxuxx
xyxxxxxxxxxxxxxxxxxxx
mxxxyxxyxxyxxxyxxyx
 maxxyxxyxyxxxxyxu
 zxyxxyxyxyxuxxyxy

xyxyexaxxxxyexyxxex
 yxxyxxxxxxyxyxx

yxxxxxxyxx
100
 xxxxxxxxyxxxxyx

0

100 xxxxxxyxxyxxyxyxyxxx 86

71 xxxyxxxxyxyxxx
100 xxxxxyxxxxxxxyxxyxxx 79 xxxxxxxxxxxxuxxxx

93 xxxxxxxoxxxyxxyxxxx
100 xxxxx<xxxxxxxxxxxxxxx
79 x:cxx<xxxxxxxxxxx
81 xxxxxxxxxxyxoxxx 6!: xyxycuxxxxxyx

100 xxxxxxxxxxxxxxxxxxxx
xxxxyxyxyxyxyxyx

79 xxxxxoxarxxxxxxxx
38 xxxxxxyx
29 xxxxxx
63 xxxxexyxxxxxx
36 xxxxxxx
44 xxyxxxxxx
36 xxxxxxx
0
0
100 xixxyxyxyxxxyxyxyxyx xxxxxxx<xxxxx

BH 584

(5-chloro-2-isopropylbenzimidazole)
Received: March, 1967
Accession no:
158

Manufacturer:	U.S. Borax Chemical Corporation.
Samples supplied by:	Borax Consolidated Itd. Corax Houslisle Place, Iondon S.W. I.

Latest Technical Information
Preliminary technical data sheet dated
Murch, 1967. Technical Report no. AR-67-1
Manufacturers suggestions for principlo uses
Selective post-mergonce in soyabeans
Prior T.R.O. experiments
Initial Activity Test G. 67.13

STAITARD POST-MERGINCE SELECTIVITY TEST

Expt. no: G. 67.14
Formulation used:
aqueous solution 41.5\% a.i. v / v

Doses: $0.5,1.5,4.5 \mathrm{Ib} / \mathrm{ac}$
Spray volune: 30.9 gal/ac
Experiment treated: 11.7 .67
Assessment completed: 26.7 .67
Sunmary of results
Full results are given in the histograms overleaf and summarised in the table below.

Herbicide	$\begin{aligned} & \text { Dose } \\ & (\mathrm{lb} / \mathrm{ac}) \end{aligned}$	Crops: vigour reduced by less than 15%	Weeds: number and/or vigour reduced by more than 85%
BH 584	4.5	oat strowb erry	$\begin{aligned} & \text { Tripleurospermum maritimum } \\ & \frac{\text { Senecio vulgaris }}{\text { Sinapis arvensis }} \\ & \frac{\text { Raphanus raphanistrum }}{\text { Spergula arvensis }} \\ & \frac{\text { Portulaca olcracca }}{\text { + species below }} \end{aligned}$
	1.5	```crops above + wheat barley maize sorghum perennial ryograss cocksfoot```	Papaver rhoeas Stellaria nedia Eupatorium odoratum
	0.5		no weeds controlled

Coments on rosults

1) A higher dose of BH 584 was needed to produce effects comparable with NC 4762, NC 4780 and NC 6627. Symptoms caused by this herbicide wore similar to those obtained with the $\mathbb{N C}$ compounds.
2) In general the grasses were more rosistant than the broad-leaved species. The Initial Activity Test had indicated an appreciable amount of root uptake by omerced plants of both groups.

3）A wide range of seedling broad－leaved weeds were controlled at $4.5 \mathrm{lb} / \mathrm{ac}$ ， However a major point of difference from the NC compounds lies in the resistance of the Polygonaceous species（R．crispus and P。lapathifolium in the present experiment；Polygonum amphibium in the Initial Activity Test）。

4）The resistance of strawberry is outstanding．Reinspection of the plants 3交 months after treatment showed them to be indistinguishable from controls at all doses．

5）The range of weeds controlled at doses selective in most cereal crops is restricted and does not indicate any advantage over some existing cereal herbicides．

6）Soyabean，the main crop in which use of this herbicide is suggested，was not included in the present experiment．

7）Data from elsewhere has suggested that some other big－seeded crops may be resistant．Big－seeded crops in the present experiment，such as groundnut，cotton and dwarf bean suffered some danage．This may have occurred because conditions favour movement to the root system and experiments elsewhere may have been under conditions more conducive to depth protection．

TRIAL NUMBER SPECIES		137 $584+0.50 \quad 13 / A C$		TREATMENTS $331581 \mathrm{~L} \quad 1.50 \mathrm{IB} / \mathrm{AC}$		BH 584 4.50 LB/AC
WEEAT	100		100		100	
(I)	100		36		64	xxxxxyxx
J3ARLEY	100		100		100	
(2)	100		36	mxyxxxxyxxxyxxxxx	71	
OAT	100		100		100	
(3)	100		100	mxxxxxyxxxyxxyxxxxxx	86	xxxxxxxxxxxxyxxyx
MAIZE	100		100		100	
(4)	100	xxyxxyxxxxxxxxxxxxxxx	93		79	
PRYGRS	100		100		88	
(5)	100		93		50	xxxxxxyxxx
CKFOOT	94		100		25	xxxxx
(6)	100		86		36	xxxx<xx
TIMTHY	100		94		69	mxxyexxyxxxyxis
(7)	36		79		50	xxixisixyxx
IUCERRN	100		100		81	
(8)	71	mxxxyxxyxxyxxx	57	zxxxxxxxxxx	43	xxxxxxxxx
RCLDVR	100		100		56	xxxxxxxxxxx
(9)	71		50	xxxxxxxxxx	29	xxxxxx
WCIOVR	100		94		38	xxxxxxxx
(10)	71		50	x $x \times x \times x \times x \times x$	29	xxxxx
FDBEEAT	100		50	xxxxxxxxx	0	
(11)	71		29	xxxxxx	0	
PEA	100		100		100	
(12)	36		71	mxxzxxzxixxxxx	36	xxxxxxx
SGBEEET	100		100		8	x \times
(13)	79		50	xxxxxxyxx	14	xxx
SWEDE	100		30	xxxxxx	0	
(14)	57	xxxxxyxxxxx	27	xxxx	0	

TRIAL MUATBER SPECIES	14	121584 C. $50 \mathrm{LJ} / \mathrm{AC}$
KALE	700	
(15)	86	
CARror	100	
(16)	79	
Pissinip	100	
(17)	86	xxxxxoxxxxxx
DWCEAT	100	
(18)	64	mxxyxxyxxxxxx
LETTICE	100	
(19)	71	xxxxyxxxyxxyxx
OivION	92	
(20)	36	
Caizige	100	
(23)	86	xxxxoxxyyurxxaxxx
A paTu	100	
(22)	100	
P Allive	100	
(23)	93	xxxxxyxxxxxoxxyyxxxx
A MYOS	100	
$24)$	93	
T MARI		
(23)	36	xxxxxxxxyxxxxxyxx
S VULG	100	
(29)	71	xxxxxxxxxxxxxx
G APAR	200	
(30)	86	
SI ARV	J.00	
(33)	5 ?	x xaxxoxxyox

TREATMEITS
OHI 584 1.50 IJ/AC
$100 \quad \mathrm{xxx} \times x \times$
50 xxxxxxxxxx
75 xxxxxxxxxxxxxxx
IH 584
$\therefore .50$
L. AC
$\begin{array}{ll}10 & \mathrm{xx} \\ 14 & \mathrm{xxx}\end{array}$ 0

0
0
43 xxxxxxxxx 0
0
29 xxxxxx

100 xxxxxxxxxxxyexxxxxxxx
43 xxxxxxxxx
42 xxxxxxyx
14 xxx
$x \times x$
33 xxxxyoxxxxxxxxyxx
T1 $x \times x \times x \times x \times x \times x x x x$
60 xxxxxxxxxxxx
36 xxxxxxy

86 xxxxxxxxxxxxxoxxxx
100 exxxxoxxoxyxxxxxyxyxx
79 xxxxxxxxxyxxxxyx

71 xwoxxxxxxxxxxx

71 xyxxxxxxxxxxxx
18 xxxx
xxxx
xxyx

64 xxxxxxxxxxxxx
33

xxxxxxx

$x x x x$

45 xxxxxxxxx
21. xaxct

TRIAL NUMEER SPECIES		Whis 584 0.50 LT/AC		TYeATMENTS iif $584 \quad 1.50$ I/AC		H 534 4.5C IJ/AC
R. $\mathrm{A} A \mathrm{PH}$	100		80		0	
(32)	79	mxydxxxxxxyxxxxxy	36	yxxxxxx	O	
P 12TOE	63		0		c	
(33)	50		0		0	
C ALJU	100		100		33	xxxxxxx
(34)	79		57	xxyxxxxxxxx	21	xxxx
P IAPA	100		100		100	
(35)	100		100		86	xxxxxyxyxxxxxxyxx
1 RCRIS	100		100		100	
(36)	86		86		79	xxxyxxyxyxyxxxyxx
S MEDE	100		25	xxxxx	0	
(37)	64	zxxyxxxxxxyxxx	7	x	0	
SP ARV	100		100		6	x
(38)	36		71	dxxxyxxyxxyxxy	7	x
SIRGIIUM	100		100		100	
(39)	100		100		71	
IICE	100		100		83	
(40)	36		71		43	xxxxoxxxx
compon	100		100		75	mxyxxyxxxxxyxyx
(41)	79		50	xoxixxexexx	14	$x \mathrm{xx}$
Girdive	100		100		200	
(42)	79		64	xxxyxxyxxxxxy	43	mxxyxyxxx
TOSTCCO	67	zxyxxyxxyzxix	0		0	
(44)	50	xxxyxxycyex	0		0	
E IIIDI	100		100		100	
(45)	100		79		64	mxxyxxxxxxyxx
E ODOR	100		c		0	
(47)	50	yoxomoxyex	0		0	

TRIAL NMBAR SPECIP		BH $584 \quad 0.50 \mathrm{LB} / \mathrm{AC}$		TREATMENTIS BH 584 I. 50 LB/AC		BHi 584 4.50 LB/AC
STRTJBY	100		- 100		100	
(49)	100		93	mxxxxxxxxxxxxxyxxxx	86	mxxxyxxxyxxyxxxxy
BKCURR	100	xxxxxxxxxxxxxxxxxxxx	100	xxxxxxxxxxxxxxxxxxxx	100	
(51)	100		79		79	
D SANG	100		100		92	
(52)	93	xxxxxxxxxxxxxxxxxx	100	xxxxxxxxxxxxxxxyxxyx	79	
P OLAC	100	xxxxxxxxxxxxxxxxyxxx	100		11	XX
(54)	100		71	xxxxxxxxxxxxxx	21	xxxx
$\frac{\text { Agrostis }}{\text { stolonifera }}$	100	mxxxyxxxxxxxyxxxxxxxy	93	mxxxxxxxxxxxxxyxxyx	71	mxxxxxxxxxxxxx
$\frac{\text { Agropyron }}{\text { repens }}$	100	xxxxxxxxxxxxxxxxxxxxx	100	mxxxxxxxxxyxxxxxxxyx	86	mxxxxxxxxxxxxxxxxx
$\frac{\text { Cyperus }}{\text { rotundus }}$	100	mxxxxxxxxxxyxxxxxyxx	100	xxxxxxxxxxxxxxxxyxxy	100	mxxxxxxxxxxxxxxxxxyxx
$\frac{\text { Cynodon }}{\text { dactylon }}$	100	mxxxyxxxxxxxxxxxxxxx	86	myxxxxxxxxxxxxxxx	86	mxxyxxxxxxxxxxxxx

Manufacturer:	U.S. Borax Chenical Corporation
Samples supplied by:	Borax Consolidated Limited, Borox House, Carlisle Place, Iondon S.W. 1.
Latest Technical Inf	ornation: Prelininasy Technical Data Sheet dated Fobruary, 1967 Technical Report no. AR-66-5. Deconber, 1966
Manufacturer's sugge	stions for principle uses: Post-mergence against wild oats in cereals at 2-5 1b/ac.

Prior I.R.O. experinents:
None
STANDARD POST-MRERGENCE SELECTIVITY TEST
Bxpt. no: G. 67.14
Formulation used: technical material (assumed 95\% a.i. W/V)
dissolved in 80% acetone in water mixture

Doses: $0.66,2.0,6.0 \mathrm{Ib} / \mathrm{ac}$
Spray volune: 30.9 gel/ac
Experinont treated: 11.7 .67
Lissossmont completed: 26.7 .67

Sumnary of results

Full results are given in the histograms overleaf.

Comments on results

1) Even at $6 \mathrm{Ib} / \mathrm{ac}$ this herbicide showed little or no effect on any species, including Avena fotua.
2) The Avena fatua was at the 4- to 5-leaf stage at the time of application. This might have been too advanced a stage of growth to secure maximum effect. The original cmulsifiable concentrate supplied by the manufacturen was in unsatisfactory condition and therefore technical material was dissolved in an acetone-water mixture. This dricd very rapidly on application and thus may have reduced opportunity for penctration. The time interval between spraying and assessment was relatively short due to the good growing conditions prevailing at the time. In case this herbicile was very slow acting the Avene fatua pots were retained for several weoks afterwards but no symptons developed.
3) In ordor to olucidate whether the first two points roferred to under (2) above, accounted for the lack of effect on 1 . fatua, a subsidiary experinent was conducted. A comparison was made of the performance of technical naterial dissolved in acetone-water as before with an emulsifiable concentrate made up by dissolving technical matorial in an aromatic solvent with emulsifier. Application was made to 4 . fatua at the I咅-leaf stage. Even at $6 \mathrm{lb} / \mathrm{ac}$ there was no nortality. In the case of the emulsifiable concentrate there was a considerable amount of foliar scorch attributable to the solvont (a solvent-enulsifier control was included). However $6 \mathrm{lb} / \mathrm{ac}$ in mulsion reduced the fresh woight to 54% of the appopriate control 15 days aftor application, wheroas there was no reduction with $6 \mathrm{Ib} / \mathrm{ac}$ in acetone-wator. Barban at the recommended dose
of $5 \mathrm{oz} / \mathrm{ac}$ in the same experiment gave no approciable effect; this was presumably due to the absence of competition from a crop and this experiment doës not rule out the possibility that BH 1455 might perforn better under competitive conditions. A field oxperiment conducted at J.R.O. during 1967 does not indicate this to be a likely possibility however.

SPECTES		BH 245550.66 IJ3/AC
WHEAT	100	
(I)	100	
BARLEY	100	
(2)	100	xxxxxxyxxxxxxxxxyxxxx
OAT	100	xxxxxxxyxxyxxxxxyxxx
3)	100	
MAIZE	100	
$4)$	100	
PIPYGRS	100	
(5)	100	
CKFOOT	100	
$6)$	100	
TIMMPY	100	
(7)	100	
LUCERNT	100	yxxyocexxyoxoxaxyxyxx
(8)	100	
RCIOVR	100	
(9)	100	
WCLOVR	100	
(10)	100	
FDJSEAN	100	
(11)	100	
PEA	100	
(12)	100	
SG3EET	100	
(13)	100	
SWEDE	100	
(14)	100	

TRFMMENTS
DH I 1455 2,00 \quad /IAC
DHif $1455 \quad 6.00 \mathrm{LB} / \mathrm{AC}$

10		1.00	
100	xxxxxxxxxxymixxzuxxm	100	mxxxyxxxxxxxxxxxxxxx
100		100	
100	zxxxxxyxxxyxxyxxyxyxx	100	
100		100	mxxxxxxxxxxxxxxxxx
100	xxyyxxyxxyxxxxxyxxxx	100	xxxxxxxxxxxxxxxxxxxx
100		100	xxxxxxxxxyxxyx
100		100	
100		100	
200	xxxyxxxxxxxxxxxxxxxxx	100	xxxxyxxxxxxxxxxxx
100		100	
100	xxxxyxxxxxxxxxyxxxxxy	86	xxxyxxxxxxxxxxyxx
94		100	
100		100	zexxxxxax ${ }^{\text {a }}$
100		100	
93		86	xxxxxxxxxxxxxxxxx
100		100	
200		86	
100		100	
100		36	mxxxxxxxxxxxxxxxx
100		100	
100		93	
100		100	
93		93	
100		100	
100		100	
100		100	
93	mxxyxxyxxxyxxxxxyxx	86	

TRIAL MUMBER SPECIES	14	III $14550.66 \mathrm{LI} / \mathrm{AC}$
KALE	100	
(15)	100	
CAiriow	100	
$16)$	100	
PISSITP	100	
17)	100	
DWISEAM	100	
(18)	93	
LIETCE	100	
(19)	100	
OHION	92	
(20)	100	XXXXXXXXXXXXXXXXXXXXX
CAzbge	100	
(21)	93	
A FAIU	100	
(22)	200	
P AdISU	100	
23)	100	
A MYOS	100	
$24)$	100	
T MARI	100	
(28)	93	
5 VULG	100	
(29)	100	
	100	
(30)	100	
SI ARV	100	
(31)	100	

$$
3111455 \quad 0.66 \quad \mathrm{LJ} / \mathrm{AC}
$$

TLEATMENS
$311455 \quad 2.00 \quad$ IT/AC
TH $1455 \quad 6.00 \mathrm{ID} / \mathrm{AC}$

SPECIES		3111455 0.66 LJ/AC
R RAPM	100	
$32)$	100	
P inioe	100	
(33)	93	
C ALJU	100	
$34)$	93	
P LAPA	100	
35)	100	
R CRIS	100	
$36)$	100	
S 1REDE	100	
37)	86	
SP AIV	100	
38)	100	
SRGHM	100	
(39)	100	
RICE	100	zxyxxxxxxxxyxxxxxxxx
(40)	100	
COMTON	100	
(41)	100	
GRDNUT	100	
(42)	100	
Toncco	100	
(44)	100	
E IIMDI	100	
(45)	100	
E DDOR	100	
(47)	100	

$\begin{array}{r} 100 \\ \quad 93 \end{array}$	
94	xxxxxxxyxxxxxxyxxyx
79	
100	
93	
100	
100	mxxyxxyzxyxxyxxyxyzxy
100	
93	
100	
100	
100	
100	xxxxxxxyxxxxxxxxxxxyx
100	
100	xxxxxxxxxxxxxxxxxexxy
100	
93	
100	mxxxxxxxxxxxxxixxyxix
100	
100	
100	
100	
100	
100	
100	
100	
100	

100 . xxyyxxayxxxxyxxxx
 79. $x \times x \times x \times x x x x y x x y x$

100 xxxxxxxxxyxxxyxxxyxx 86 xxyxxyxxxxxxyxyxy

100 mxxxyxxyxxxxyxyxyxyx

$100 x^{x x x y x x x x y x x x y x y x y x x}$ 93 xxxxxxxxxxxxxxxx<xx

93 xxxxxxxxxxxxxxxxxxx

100 nxyxxyxyxyxxyyxyxyxx
100 xxxxxxxxxxxxxxxxxxxx mxxxyxxxxxxxyxyxx

100 xxxxxxxyxxyxxyxxxxxx
100 xxxxxxxxxxxxxxxxxxxxx

100 xxxxxxxxxxxxxyxxxxxx

$100 x^{x x x x x x x x x x x x x x x x x x x}$
mxxxxxxxxxxxxxyxyxx
100 xxxxxxxxxxxxxxxxxxxx

TMIAL NUMBER SPECIES		BH $24550.66 \mathrm{~L} / \mathrm{AC}$		$\begin{aligned} & \text { TREAM EIVIS } \\ & \text { SH } 1455 \quad 2.00 \quad \mathrm{~L} / \mathrm{AC} \end{aligned}$		III $1455 \quad 5.00 \quad \mathrm{~L} / \mathrm{AC}$
.STIWIY	100		100		100	
(49)	100		100		93	
TKCURR	100		100		100	
(51)	100		100		93	
D SAITG	100		100		100	
(52)	100		93		93	
3 OLAC		xyxxxxxyxyxyxyxyxyxx			100	
(54)	100		93		93	xxyxuxxxyxxyxyxxyxy
$\frac{\text { Arrostis }}{\text { Stolonifera }}$	100		100		100	
$\frac{\text { Acropyron }}{\text { ropens }}$	100	xxyxxyxxyxxxyxyxzyxy	100		93	
$\frac{\text { Cyperus }}{\text { rotundus }}$	100		100		100	
$\frac{\text { Cynodon }}{\text { dactylon }}$	100		100		100	

Acknowledgements

Many thanks are due to the Statistics Department at Rothamsted Experimental Station who handle the computer processing of the data, and in particular to $\mathbb{M r}$. H.D. Patterson, formerly of that Department, who organised the development work on the processing, and to Miss B.I. Lowe. Mr. S.D. Hocombe, formerly of the Teed Research Organization, contributed substantially to the success of this research programme and thanks are due to him and others of $\mathrm{T} \cdot \mathrm{R}, \mathrm{O}$. staff who have participated. The help of the commercial firms concerned in the ready supply of chemicals and information is willingly acknowledged.

AGRICUIITURAL RESEARCH COUNCIL

TEED RESEARCH ORGANIZATION

Technical Reports

1. Susceptibility of ornamental plants to simazine and other chemicals. Trees and shrubs. November, 1964. G.T. Ivens. Price - 5s. Od.
2. 3,5-Di-iodo-4-hydroxybenzonitrile. A progress report on experimental work by the A.R.C. Teed Research Organization. May-October, 1963. K. Holly and J. Holroyd. No charge.
3. Chemical control of bracken. 1964. G.I. Hodgson. Out of print.
4. Susceptibility of ornamental plants to simazine and other chemicals. Annuals, biennials and herbaceous perennials. April, 1965. Gov. Ivens. Price - 2s. 6d.
5. A survey of the problem of aquatic weed control in England and Wales. October, 1967. T.O. Robson. Price - 5s. Od.
6. The botany, ecology, agronomy and control of Poa trivialis L. - roughstalked meadow-grass. November, 1966. G.P.Allen. Price - 5s. Od.
7. Flame cultivation experiments 1965. October, 1966. G.T. Ivens. Price - 3s. Od.
8. The development of selective herbicides for kale in the United Kingdom. 2. The methylthiotriazines. Price - 5s. Od.
9. The post-emergence selectivity of some newly developed herbicides (NC 6627, NC 4780, NC 4762, BH 584, BH 1455). December, 1967. K. Holly and Mrs. A.K. Wilson. Price - U.K. and overseas surface mail - 4s. 3d.; overseas airmail - 10s. Od.

[^0]: ＊$\frac{1}{2}$－leaf is used to refor to leaves in early stages of expansion．

