Click here for previous

SPECIES		0.0
TUS FARF	87	XXXXXXXXXXX
(, 51)	71	XXXXXXXXXXX
CONV ARV	53	XXXXXXXXXXX
(52)	1.00	XXXXXXXXXXX
MAIZE+S	1.00	XXXXXXXXXXX
(56)	100	XXXXXXXXXXX
MAIZE	100	XXXXXXXXXXX
(57)	100	XXXXXXXXXXX
FHAL MIN	98	XXXXXXXXXXX
(84)	100	XXXXXXXXXXX

METSULFURON-METHYL

.

005 KG/HA		0.002 KG/HA	DFXT	6376	0.008
XXXXXX	0		0		
XXX	0		0		
	124	XXXXXXXXXXXXXXXXXXXXXXXXXX	18	XXXX	
XXXXXXXXX	79	XXXXXXXXXXXXXXXX	1.4	XXX	
XXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	90	XXXXXX	XXXXXX
XXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	93	XXXXXX	XXXXXXX
XXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXX	XXXXXXX
XXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	86	XXXXXX	XXXXXXX
XXXXXXXX	108	XXXXXXXXXXXXXXXXXXXXXXX	94	XXXXXX	XXXXXX
XXXXXXXX	86	XXXXXXXXXXXXXXXXX	50	XXXXXX	XXXX

XXXXXXXX

XXXXXXX

PRE-EMERGENCE SELECTIVITY TEST

TIME OF SOWING weeks after treatment

ACLONIFEN

34

Code number CME 127

Chemical name 2-chloro-6-nitro-3-phenoxy-aniline

Structure

.

.

.

.

Source

Celamerck GmbH & Co. KG Ingelheim Federal Republic of Germany

Information available and suggested uses

Pre-emergence residual control of blackgrass and broad-leaved weeds in winter wheat; grass and broad-leaved weeds in potatoes, peas, field beans and carrots. Doses 2.4 - 2.7 kg a.i./ha.

Formulation used Suspension concentrate 60% w/w a.i.

RESULTS

Full results are given in the histograms on pages 37-42 and potential selectivities are summarised in the following table.

RATE CROPS: vigour reduced by WEEDS: number or vigour (kg a.i./ha) 15% or less reduced by 70% or more ALTER OF A THE ALTER A MARKED AND A DESCRIPTION OF A DESC

wheat ± safener (NA) 4.0 barley maizetsafener (NA)

Festuca rubra Sinapis arvensis Polygonum lapathifolium

35

dwarf bean field bean* pea carrot fenugreek

+ species below

1.0 as above + barley+safener (NA) oat lucerne

Alopecurus myosuroides Poa annua Matricaria perforata Chenopodium album Veronica persica Viola arvensis Phalaris minor + species below

and safes for "a" of "a" of the boundary of the safe of all and all boundary of a log of the safe which and the safe of a log

as above + 0.25

Poa trivialis

kale lettuce onion rape sugar beet radish

Stellaria media Rumex obtusifoliuş Phalaris paradoxa

* but note some stand reduction + not in histograms

Comments on results

the star a shart and a start of an is were reader

Activity experiment data and symptoms were described in a previous report (Richardson and West, 1984). These were very similar to other diphenyl ether herbicides. However, the most striking symptom, common to both pre- and post-emergence treatments, was a pronounced albinism of leaves.

Persistence in the soil

A short to moderate period of persistence in the soil was found with aclonifen. Using perennial ryegrass as the test species, the lower doses of 0.25 and 1.0 kg/ha were undetected after about 5 and 20 weeks respectively. After 44 weeks, shoot fresh weight was reduced by 43% with 4.0 kg/ha however.

Pre-emergence selectivity

Annual broad-leaved and grass weeds were controlled (eight of the former, six of the latter). Most interestingly, Viola arvensis, Veronica persica and Alopecurus myosuroides were susceptible to 1.0 kg/ha. However, Matricaria perforata was the only composite controlled. Perennial weeds were also very resistant. In contrast to many other diphenyl ethers, Stellaria media was very sensitive.

Good tolerance was found with the cereals (especially, wheat, barley and maize), leguminous crops (dwarf bean, field bean, pea, fenugreek) and carrot, all of which withstood the high dose of 4.0 kg/ha. At 1.0 kg/ha oat and lucerne were tolerant as were the brassicas (rape, kale, radish), onion, lettuce and sugar beet at 0.25 kg/ha. Perennial ryegrass and white clover were sensitive.

The potential pre-emergence control of A. myosuroides, V. persica and V. arvensis and several other annual weeds in cereals, especially wheat and barley is the most outstanding and unique feature of aclonifen. However, the high tolerance of several other important broad-leaved crops such as beans and peas is an additional advantage.

SPECIES

0.25 KG/HA

WHEA	T		102	XXXXXXXXXXXX
(1)	100	XXXXXXXXXXXX
WHEA	+T+9	3	100	XXXXXXXXXXXX
(2)	100	XXXXXXXXXXXXX
BARL	EY		102	XXXXXXXXXXXX
(3)	100	XXXXXXXXXXXX
BARL	EY4	-S	100	XXXXXXXXXXXX
(4)	100	XXXXXXXXXXXXX
DAT			104	XXXXXXXXXXXX
(5)	100	XXXXXXXXXXXXX
PER	RYC	SR	69	XXXXXXXXXXXX
(6)	71	XXXXXXXXXXXX
ONIC	NC		110	XXXXXXXXXXXX
(8)	100	XXXXXXXXXXXX
LIWF	BEA	N	100	XXXXXXXXXXXX
(9)	100	XXXXXXXXXXXX
FLD	BEA	NA	63	XXXXXXXXXXXX
(10)	100	XXXXXXXXXXXX
FEA			35	XXXXXX
1	4 4	1	1 00	VVVVVVVVVVV

XXXXXXXXX XXXXXXXXXXXXX 1.02 XXXXXXXXX XXXXXXXXXXXXX 93 XXXXXXXXX 94 XXXXXXXXX XXXXXXXXXXXXXX 100 XXXXXXXXX XXXXXXXXXXXXXX 102 XXXXXXXXX XXXXXXXXXXXXXXX 93 XXXXXXXXX XXXXXXXXXXXXXX 100 XXXXXXXXX 86 XXXXXXXXXXXXXXX XXXXXXXX+ 104 XXXXXXXXXXXXXXXX XXXXXXXXX 86 XXXXXXXXXXXXXXXX XX 20 XXXX XXX XXX 14 XXXXXXXXX+ XXXXXXXXXXXXXXXX 79 XXXXXXXXX 79 XXXXXXXXX 87 XXXXXXXXX 93 X 79 XXXXXXXXX 100 1.24

ACLONIFEN

1.00 KG/HA

XXXXXXX	96	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXX	86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXX	93	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXX	102	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXX	86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXX	79	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXX+	104	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXX	50	XXXXXXXXX
	0	
	0	
XXX	40	XXXXXXX
XXX	50	XXXXXXXXX
XXXX	100	XXXXXXXXXXXXXXX
XXXXXX	93	XXXXXXXXXXXXXXXXX
XXXX	79	XXXXXXXXXXXXXX
XXXXXXX	100	XXXXXXXXXXXXXXXXX
XXXXXXX+	88	XXXXXXXXXXXXXXX
XXXXXXXX	93	XXXXXXXXXXXXXXXXXXX

,4.00 KG/HA

XXXXX XXXXXXX

XXX XXXXXXX

XXXXXXX XXXXXX

XXXXXXX XXXX XXXXXXX XXX XXXXXXX+

XXXXXXX XXXXXX

XXXXXX XXXX

PRE EMERGENCE SELECTIV TY TEST

LUC	ERN	E	89	XXXXXXXXXXXX
(13)	100	XXXXXXXXXXXX
RAFI	E		97	XXXXXXXXXXXX
(14)	93	XXXXXXXXXXXXXX
KALI	*		92	XXXXXXXXXXXXX
(15)	100	XXXXXXXXXXXXXXX
SWE	DE		94	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
(17)	64	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
CARI	ROT		92	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
(18)	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
LET	TUCE		114	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
(20)	86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
FENI	JGRE	EK	87	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
(21)	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
SUG	BEE	T	94	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
(22)	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
BETA	A VL	11_	90	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
(23)	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

XXX

XXXX

SPECIES

W CLOVER 14

(12) 21

0.25 KG/HA

*

.

1.00 KG/HA

KG/HA		1.00 KG/HA		4.00 KG/HA
	0		0	
	0		0	
XXXXXX	105	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	68	XXXXXXXXXXXXX
XXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	71	XXXXXXXXXXXXXX
XXXXXX	86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	54	XXXXXXXXXX
XXXXXX	79	XXXXXXXXXXXXXXXXX	43	XXXXXXXXX
XXXXXX	95	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	64	XXXXXXXXXXXX
XXXXXXX	64	XXXXXXXXXXXX	29	XXXXXX
XXXXXX	51	XXXXXXXXXX	0	
X	36	XXXXXXX	0	
XXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	125	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXX	86	XXXXXXXXXXXXXXXXX	86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXX+	85	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	0	
XXXXX	57	XXXXXXXXXXX	0	
XXXX	104	XXXXXXXXXXXXXXXXXXXXXXXXX	98	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXX	73	XXXXXXXXXXXXXXX	13	XXX
XXXXXXX	79	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	36	XXXXXXX
XXXXX	82	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	45	XXXXXXXX
XXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	71	XXXXXXXXXXXXX

.

*

XXX

• •

PRE EMERCENCE SELECTIVITY TEST

SPECIES	0.25 KG/HA		1.00 KG/HA
BROM STE 10	<pre>xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx</pre>	109	XXXXXXXXXXXXX
(24) 10	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	93	XXXXXXXXXXXXX
FEST RUB 130	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	49	XXXXXXXXX
(25) 8(5 XXXXXXXXXXXXXXXXXX	50	XXXXXXXXX
AVE FATU 12:	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
(26) 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	71	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
ALO MYOS 9	3 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	17	XXX
(27) 8	5 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	14	XXX
FOA ANN 9:	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	26	XXXXX
(28) 7	ZXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	21	XXXX
POA TRIV 1	s xxx	0	
(29)	7 X	0	
SIN ARV 12	7 XXXXXXXXXXXXXXXXXXXXXXXX	77	XXXXXXXXXXXXX
(30) 8	5 XXXXXXXXXXXXXXXX	64	XXXXXXXXXXXXXX
RAPH RAP 10	2 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	97	XXXXXXXXXXXXX
(31) 9:	3 XXXXXXXXXXXXXXXXXXXXXXX	71	XXXXXXXXXXXXXX
CHRY SEG 11	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	106	XXXXXXXXXXXXXXXX
(32) 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	79	XXXXXXXXXXXXXX
MAT PERF 9	7 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	29	XXXXXX
(33) 8	5 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	43	XXXXXXXX

ACLONIFEN

4.00 KG/HA

XXXXXXX+	109	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXX	64	XXXXXXXXXXXX
	24	XXXXX
	29	XXXXXX
XXXXX	64	XXXXXXXXXXXX
XX	43	XXXXXXXXX
	6	X
	7	X
	0	
	0	
	0	
	0	
XXX	3	X
X	14	XXX
XXXXXX	76	XXXXXXXXXXXXXXX
XX	50	XXXXXXXXX
XXXXXXX+	46	XXXXXXXX
XXXX	43	XXXXXXXXX
	21	XXXX
	36	XXXXXXX

.

XXXXXXX+

PRE-EMERGENCE SELECTIVITY TEST

39

.

to avera

SPEC	CIES		0.25
SEN	VULG	99	XXXXXXXXXXX
(34)	86	XXXXXXXXXXXX
GAL	AFAR	110	XXXXXXXXXXX
(38)	100	XXXXXXXXXXXX
CHEN	ALB	89	XXXXXXXXXXXX
(39)	64	XXXXXXXXXXXXX
STEI.	. MED	27	XXXXX
(40)	50	XXXXXXXXX
VER	FERS	37	XXXXXXX
(42)	50	XXXXXXXXXX
VI F	ARVE	118	XXXXXXXXXXX
(43)	100	XXXXXXXXXXXX
RUM	OBTU	11	XX
(44)	14	XXX
EL F	REFEN	103	XXXXXXXXXXXX
<	47)	100	XXXXXXXXXXXX
ALL	VIN	115	XXXXXXXXXXXX
(49)	93	XXXXXXXXXXXX
CIRS	S ARV	117	XXXXXXXXXXXX
(50)	100	XXXXXXXXXXXX

ACLONIFEN

٠

KG/HA		1.00 KG/HA		4.00 KG/HA
XXXXXXXX	85	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	36	XXXXXX
XXXXX	64	XXXXXXXXXXXX	50	XXXXXXXXX
XXXXXXX	81	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	110	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXX	64	XXXXXXXXXXXX	43	XXXXXXXXX
XXXXXX	7	X	0	
X	21	XXXX	0	
	0		0	
	0		0	
	0		0	
	0		0	
XXXXXXXX+	24	XXXXX	0	
XXXXXXXX	43	XXXXXXXXX	0	
	22	XXXX	0	
	14	XXX	0	
XXXXXXXX+	103	XXXXXXXXXXXXXXXXXXXXXX	103	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXX	93	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
(XXXXXXX+	77	XXXXXXXXXXXXXX	89	XXXXXXXXXXXXXX
XXXXXXX	71.	XXXXXXXXXXXXX	50	XXXXXXXXX
XXXXXXX+	117	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	117	XXXXXXXXXXXX
XXXXXXXX	86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	71	XXXXXXXXXXXXX

XXXXXXX+

.

.

.

XXXXXXXX+

XXXXXX

XXXXXX+

EMERGENCE SELECTIVITY TEST

PRE-

40

.

4 3

·

.

SPECIES

0.25

TUS FARF	100	XXXXXXXXXXXXXX
(51)	100	XXXXXXXXXXXXXX
CONV ARV	18	XXXX
(52)	50	XXXXXXXXXX
MAIZE+S	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
(56)	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
MAIZE	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
(57)	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
PHAL MIN	54	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
(84)	50	XXXXXXXXX

.

ACLONIFEN

KG/HA		1.00 KG/HA		4.00 KG/HA
XXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	93	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
	106	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	53	XXXXXXXXXX
	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	64	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	90	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXX	93	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXX	0		0	
	0		Õ	

. .

.

XXXXXXX XXXXXX

. . .

PRE E MERGENCE SELECTIVITY TEST

A

-

100

PERSISTENCE ⁴²OF ACLONIFEN species: perennial ryegrass

TIME OF SOWING weeks after treatment

Orbencarb

Other common name

Orthobencarb (Japan)

Trade name

Lanray

Chemical name S-o-chlorobenzyl diethylthiocarbamate

Source

.

Kumiai Chemical Industry Co Ltd. 4-26 Ikenohata 1-chome Taito-ku Tokyo 110 Japan

Information available and suggested uses

Pre-emergence after sowing until just before emergence of maize, sorghum, wheat, barley, potato, soyabean, carrot, groundnut, cotton, sunflower, sugar beet, kidney beans at 4.0 to 6.0 kg a.i./ha depending on soil type.

Formulation used Emulsifiable concentrate 50% w/v a.i.

Spray volume 373 1/ha

RESULTS

Full results are given in the histograms on pages 46-52 and potential selectivities are summarised in the following table.

RATE	CROPS: vigour reduced by	WEEDS: number or vigour			
(kg a.i./ha)	15% or less	reduced by 70% or more			
6.0	wheat+safener (NA)	Senecio vulgaris			
	barley+safener (NA)	Galium aparine			
	maizetsafener	Chenopodium album			
	field bean	Stellaria media			

44

pea radish + species below

2.0

STATISTICS TO AND THE REPORT OF THE PARTY OF

species above + wheat barley oat dwarf bean lucerne rape swede carrot fenugreek

Festuca rubra Rumex obtusifolius + species below

0.67 species above + kale

Alopecurus myosuroides Poa annua Poa trivialis Veronica persica Phalaris paradoxa

lettuce * sugar beet

* but note some stand reduction
+ not in histograms

Comments on results

Activity experiment

Greatest activity resulted from the pre-emergence treatments to perennial ryegrass, particularly the surface spray. Post-emergence, broad-leaved species recovered from the initial effects of the foliar spray but they were unaffected by the soil drenches. The reverse trend was found on grasses however. Dwarf bean and kale showed considerable tolerance to soil treatments. Activity is thus generally lower than with other thiocarbamates e.g. thiobencarb and

tri-allate (Richardson and Dean, 1973) but otherwise there are many similarities.

Symptoms on susceptible species

Rapid, contact scorch symptoms appeared on broad-leaved species within 24 hours of spraying. New developing leaves, such as trifoliates of dwarf beans often showed abnormally crinkled, darker green and shiny leaf surfaces. These latter symptoms were prominent pre-emergence on grasses as well as broad-leaved species together with a general stunting of growth. Occasionally extra tillering was seen, for example with soil drenches on Avena fatua, but these were also similarly affected. Thus symptoms are reminiscent of those caused by the chemically related tri-allate.

Persistence in the soil

Using perennial ryegrass as the sensitive test species, a short to moderate period of persistence in the soil was found. Doses of 0.67, 2.0 and 6.0 kg/ha were undetectable 7, 16 and 34 weeks after treatment, respectively.

Pre-emergence selectivity

Four annual grasses, including Alopecurus myosuroides, both Poa species and

Phalaris paradoxa were controlled at the lowest dose of 0.67 kg/ha, in addition to Veronica persica. At 2.0 kg/ha, Rumex obtusifolius and Festuca rubra were susceptible. At 6.0 kg/ha, four annual broad-leaved species were controlled; Senecio vulgaris, Chenopodium album, Stellaria media and more interestingly, Galium aparine. The latter species was reduced in number and vigour at 2.0 kg/ha by 37 and 43% respectively. Many weeds were resistant however, including all perennials and cruciferous weeds.

Tolerance was found in cereals, legumes, brassicas and carrots at higher doses, while sugar beet and lettuce withstood 0.67 kg/ha and were only marginally reduced in vigour at 2.0 kg/ha. The tolerance of wheat and barley was very slightly increased by the safener NA. Perennial ryegrass, onion and white clover were sensitive.

The potential control of A. myosuroides, V. persica and G. aparine in cereals (notably wheat and barley) is the most interesting feature of orbencarb, deserving further study. Unfortunately Avena fatua and Bromus sterilis are resistant, in contrast to their response to tri-allate. Thus consideration to mixtures will have to be given, to control these and other weeds. The lack of a need to incorporate would be an advantage.

ACTIVITY EXPERIMENT

ORBENCARB

0.67 kg/ha 2.0 kg/ha

XXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXX

6.0 kg/ha

	F	XXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXX
DWARF BEAN	S	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
	Р	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
	I	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
	F	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
KALE	S	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
	Р	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
	I	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
	F	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
	-	ΛΛΛΛΛΛΛΛΛΛΛΛΛ	AAAAAAAAAAAAAAAAA	XXXXXXXXXXXXX
POLYGONUM	S	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
AMPHIBIUM	Р	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

	I	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
	F	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
PERENNIAL	S	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
RYEGRASS	Р	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXX XXX	XXXXXXXX XX
	I	XXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
	F	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
AVENA FATUA	S	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
AVENA PATOA	P	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
	I	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
	F	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXXX	
XXXXXXXXXXXXXXXX	

S

P

XXXXXXXXXXXX XXXXXXXXXXXX

XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX XXXXXXXXXXXXXX XXXXXXX

KEY: F = post-emergence, foliar application S = post-emergence, soil drench P = pre-emergence, surface film I = pre-planting, incorporated

2012

SPECIES		0.67 KG/HA		2.00 KG/HA
WHEAT	96	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	102	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
(1)	1.00	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXX
WHEAT+S	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	87	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
(2)	100	XXXXXXXXXXXXXXXXXXXXXXXX	1.00	XXXXXXXXXXXXXXXXXXXXXXXX
BARLEY	102	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	102	XXXXXXXXXXXXXXXXXXXXXXXX
(3)	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	86	XXXXXXXXXXXXXXXXXX
BARLEY+S	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
(4)	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	93	XXXXXXXXXXXXXXXXXXXXXXX
DAT	104	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	104	XXXXXXXXXXXXXXXXXXXXXX
(5)	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	. 86	XXXXXXXXXXXXXXXXXX
PER RYGR	61.	XXXXXXXXXXX	69	XXXXXXXXXXXXX
(6)	64	XXXXXXXXXXXX	1.4	XXX
ONION	62	XXXXXXXXXXX	115	XXXXXXXXXXXXXXXXXXXXXX
(8)	71	XXXXXXXXXXXXXX	57	XXXXXXXXXXX
IWF BEAN	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXX
(9)	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	86	XXXXXXXXXXXXXXXXXX
FLU BEAN	79	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	111	XXXXXXXXXXXXXXXXXXXXXX
(10)	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
FEA	106	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	1.06	XXXXXXXXXXXXXXXXXXXXXX
(11)	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

ORBENCARB

.

Mar Contractor

141 14

.

XXXXXXXX	79	XXXXXXXXXXXXXXXX
XXXXX	1.00	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXX	86	XXXXXXXXXXXXXXXXXXX
XXXXXXX	102	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXX	79	XXXXXXXXXXXXXXXXX
XXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXX	86	XXXXXXXXXXXXXXXXXXX
XXXXXXXX+	98	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXX	43	XXXXXXXXX
XX	0	
	0	
XXXXXXXX+	18	XXXX
	36	XXXXXXX
XXXXXXXX	87	XXXXXXXXXXXXXXXXXXX
XXXXXX	71	XXXXXXXXXXXXX
XXXXXXXX	95	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXX	86	XXXXXXXXXXXXXXXXXXX
XXXXXXXX+	124	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXX	86	XXXXXXXXXXXXXXXXXXX

.

102

.

6.00 KG/HA

XXXXXXXX+ XXXXX

XXXXXXX XXXXX

XXXXX Y

XXXXXXXX XXXXX XXXXXXXX

XXXXXXXX XXXX

XXXXXXXX XXXXX

PRE-

EMERGENCE

SELECTIV

H

F

TEST

4

1

SPECIES

W CI	OVE	R	123	XXXXXXXXXXXXXXXXXXXXXXXX
(12	>	50	XXXXXXXXXX
LUCE	ERNE		95	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
(13)	100	XXXXXXXXXXXXXXXXXXXXXXXX
R'AF'E	-		95	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
(14)	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
KAL.E	-		85	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
(15)	93	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
SWEI	DE	•	99	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
(17	>	86	XXXXXXXXXXXXXXXXXX
CARF	TOS		100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
(18)	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
LETT	UCE		72	XXXXXXXXXXXXX
(20)	93	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
FENL	IGRE	ĸ	98	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
(21)	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
SUG	BEE	Т	103	XXXXXXXXXXXXXXXXXXX
(22)	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
BETA	VU	L	89	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
(23)	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

ORBENCARB

0.67 KG/HA

2.00 KG/HA

123	XXXXXXXXXXXXX
43	XXXXXXXXX
95	XXXXXXXXXXXXXXXXX
86	XXXXXXXXXXXXXXX
95	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
55	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
79	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
103	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
108	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
80	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
71	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
87	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
88	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
94	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
79	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
. 74	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
	123 43 43 95 86 95 100 95 79 103 86 108 100 80 71 80 71 80 71 80 71 80 71 80 71 80 71 80 71 80

.

.

6.00 KG/HA

VVVVVVV +	CIE.	VVVVVVVVVVVVVVV
~~~~~	75	XXXXXXXXXXXXXXXX
	29	XXXXXX
XXXXXX	105	XXXXXXXXXXXX
XXXXX	64	XXXXXXXXXXXXX
XXXXXX	92	XXXXXXXXXXXX
XXXXXXX	71	XXXXXXXXXXXXX
XXXXXX	5.6	XXXXXXXXXXXXX
XXXX	64	XXXXXXXXXXXXX
XXXXXXX	90	XXXXXXXXXXXXXXXXX
XXXX	57	XXXXXXXXXX
XXXXXXX+	58	XXXXXXXXXXX
XXXXXXX	57	XXXXXXXXXX
XXX	13	XXX
X	21	XXXX
XXXX	87	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXX	64	XXXXXXXXXXXXX
XXXXXX	81	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXX	57	XXXXXXXXXX
XX	71	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXX	64	XXXXXXXXXXXX

XXXXXXX

*XXXXXXX

XXXXX X

XXXXXXX

XXXXXX

PRE-EMERGENCE SELECTI < ITY TEST

48

XXXXX

XXX

BROM STE 109 XXXXXXXXXXXX XXXXXXXXXXXX 24 ) 86 XXXXXXXXXXXX FEST RUB 65 XXXXXXXXXXX 25 57 XXXXXXXXXXXX AVE FATU 107 XXXXXXXXXXXX 26 ) 100 XXXXXXX ALO MYOS 35 27) 14 XXX XXXXX FOA ANN 23 XXXXXXXXXXXX 28) 57 XXXXX FOA TRIV 24 XXXX 29 ) 21 XXXXXXXXXXX SIN ARV 110 XXXXXXXXXXX 30 ) 100 RAF'H RAF 107 XXXXXXXXXXX XXXXXXXXXXX ) 100 31 XXXXXXXXXXX CHRY SEG 93 XXXXXXXXXXXX 32) 86 MAT FERF 102 XXXXXXXXXXX XXXXXXXXXXXX 33 ) 100

SPECIES

0.

#### ORBENCARB

的 新生生物 学能生

.

57 KG/HA		2.00 KG/HA		6.00 KG/HA
XXXXXXXX+	86 71	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	64 50	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XX	0		0	
XXXXXXXXXX+	114 86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	79 36	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
	0		0	
<	0		0	
	0		00	
XXXXXXXXX+	117 93	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	67 64	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXX+	102	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	107	
XXXXXXXXXX	76 79	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	118	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXX	97 93	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	78 64	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

-

*XXXXXXXX

XXXXXXXX+ XXXXXXXX

PRE E TERGENCE SELECTI V IT K TEST

CONTRACT ALL IN AND ALLY IN THE NAME OF TAXABLE TAXABLE IN

SFECIES	0.67'KG/HA		2.00 KG/HA		6.00 KG/HA
SEN VULG S	9 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	94	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	13	XXX
( 34 ) 10	0 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	64	XXXXXXXXXXXX	14	XXX
GAL AFAR 11	0 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	63	XXXXXXXXXXXX	23	XXXXX
( 38 ) 1.0	0 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	57	XXXXXXXXXXX	29	XXXXXX
CHEN ALB 8	7 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	57	XXXXXXXXXX	0	
( 39) 79	P XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	57	XXXXXXXXXXX	0	
STEL MED 6	4 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	109	XXXXXXXXXXXXXXXXXXXXXXX	0	
( 40 ) 80	5 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	64	XXXXXXXXXXXX	õ	
VER FERS 12	2 XX .	0		0	
( 42 ) 1.	4 XXX	0		õ	
VI ARVE 111	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	95	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	5,5	XXXXXXXXXX
( 43 ) 93	3 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	64	XXXXXXXXXXXX	50	XXXXXXXXXXX
RUM OBTU 189	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	33	XXXXXXX	22	XXXX
( 44 ) 10(	> XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	21	XXXX	14	XXX
EL REFEN 103	3 XXXXXXXXXXXXXXXXXXXXXXXX	84	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	94	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
( 47 ) 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	79	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
ALL VIN 89	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	121	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	45	XXXXXXXX
( 49 ) 79	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	64	XXXXXXXXXXXX	36	XXXXXX
CIRS ARV 117	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	133	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
( 50 ) 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

.

.

ORBENCARB

XXXXXXX

.

•

PRE EMERGENCE SELECTIV VI TY TEST

#### SFECIES

#### 0.6

.

TUS	FAR	F	100	XXXXXXXXXXX
(	51	>	100	XXXXXXXXXXX
CONV	AR	v	106	XXXXXXXXXXX
(	52	)	100	XXXXXXXXXXX
MAIZ	ZE+S		90	XXXXXXXXXXX
(	56	>	100	XXXXXXXXXXX
MAIZ	ZE		90	XXXXXXXXXXX
(	57	)	100	XXXXXXXXXXX
FHAL	MI	N	1.05	XXXXXXXXXXX
(	84	>	79	XXXXXXXXXXX

#### ORBENCARB

57 KG/HA		2.00 KG/
XXXXXXXXX	100	XXXXXXXXXXXXX
XXXXXXXXX	100	XXXXXXXXXXXX
XXXXXXXXX+	106	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXX	100	XXXXXXXXXXXXX
XXXXXXXXX	100	XXXXXXXXXXXXXX
XXXXXXX	100	XXXXXXXXXXXX
XXXXXXXXX	100	XXXXXXXXXXXXX
XXXXXXXXX+	98	XXXXXXXXXXXXX
XXXXX	36	XXXXXXX

۰

1	r	7	1		
	L	Ċ	1	6	

6.00 KG/HA

			1+
XXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	E
XXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	
XXXXXXXX+	106	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	DIVO.
XXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	DIAC
XXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	
XXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	ELE
XXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	TTO
XXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	TTA
XXXXXXXX	90	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	1 1
	36	XXXXXXX	EO

.

•

.

.

51

H



#### 6.0 KG/HA ----

## TIME OF SOWING weeks after treatment

![](_page_21_Figure_0.jpeg)

![](_page_21_Figure_2.jpeg)

# SV HOISTENCE OF SIMAZINE species:Perennial Ryegrass turnip

.

![](_page_21_Figure_4.jpeg)

#### ACKNOWLEDGEMENTS

We are grateful to the joint Letcombe/WRO Statistics Section for processing the experimental data; to Miss J M Heritage and Messrs G P White, R H Webster, R M Porteous and S Burbank for technical and practical assistance; to Mrs L Gawne and Mrs J Wallsworth for the preparation and typing of this report; to Miss N Kiley for the persistence graphs; to Mrs S Cox and her staff for its duplication and to the commercial firms who provided the herbicides and relevant

data.

#### REFERENCES

RICHARDSON, W.G. and DEAN, M.L. (1973) The pre-emergence selectivity of some recently developed herbicides: lenacil, RU 12068, metribuzin, cyprazine, EMD-IT 5914 and benthiocarb. Technical Report Agricultural Research Council Weed Research Organization, 25, pp. 57.

RICHARDSON, W.G., WEST, T.M. and PARKER, C. (1980) The activity and post-emergence selectivity of some recently developed herbicides: R 40244, DPX 4189, acifluorfen, ARD 34/02 (NP 55) and PP 009. Technical Report Agricultural Research Council Weed Research Organization, 61, pp. 57.

RICHARDSON, W.G., WEST, T.M. and WHITE, G.P. (1984) The activity and post-emergence selectivity of some recently developed herbicides: AC 252214, DPX-T 6376 and chlorazifop. Technical Report Agricultural and Food Research Council Weed Research Organization, 74, pp. 33.

RICHARDSON, W.G., WEST, T.M. and PARKER, C. (1981) The activity and pre-emergence selectivity of some recently developed herbicides: UBI S-734, SSH-43, ARD 34/02 (= NP 55), PP 009 and DPX 4189. Technical Report Agricultural Research Council Weed Research Organization, 62, pp. 59.

RICHARDSON, W.G. and WEST, T.M. (1984) The activity and post-emergence selectivity of some recently developed herbicides; MCPA-thioethyl, MT-124, tridiphane, aclonifen and RST 20024H. Technical Report Agricultural and Food Research Council Weed Research Organization, 78, pp. 48.

![](_page_22_Picture_10.jpeg)

## Appendix 1. Species, abbreviations, cultivars and stage of growth at assessment

~ ~

Designation Cultivar and computer or serial source number No Depth of per planting pot (cm) Stage of growth at assessment (untreated controls, leaf numbers exclusive of cotyledons)

Temperate species

	Wheat (Triticum aestivum)	WHEAT (1)	Armada	8	1.0	3.5-4 leaves, 0-1 tiller
	Wheat+safener (Triticum aestivum)	WHEAT+S (2)	Armada	8	1.0	<pre>7 leaves, tillering</pre>
•	Barley (Hordeum vulgare)	BARLEY (3)	Sonja	8	1.0	4 leaves, 0-1 tiller
	Barley+safener (Hordeum vulgare)	BARLEY+S (4)	Sonja	8	1.0	7.5-8.5 leaves, tillering
	Oat (Avena sativa)	OAT (5)	Pennal	8	1.0	4-5 leaves
	Perennial ryegrass (Lolium perenne)	PER RYGR (6)	S 23	15	0.5	5-6 leaves, O-1 tiller
	Onion (Allium cepa)	ONION (8)	Robusta	15	0.5	3-4 leaves
	Dwarf bean (Phaseolus vulgaris)	DWF BEAN (9)	Masterpiece	4	1.5	1.5 trifoliate leaves
	Field bean (Vicia faba)	FLD BEAN (10)	Maris Bead	4	2.0	5 leaves
	Pea (Pisum sativum)	PEA (11)	Dark Skinned Perfection	4	1.5	7 leaves
	White Clover (Trifolium repens)	W CLOVER (12)	Kent Wild White	20	0.5	3 trifoliate leaves
	Lucerne (Medicago sativa)	LUCERNE (13)	Europe	12	0.5	3 trifoliate leaves

Rape	RAPE	Jet Neuf	20	0.5	4 leaves
(Brassica napus oleifera)	(14)				
Kale (Brassica oleracea acephala)	KALE	Green Marrow Stem	15	0.5	2.5-3 leaves
Swede (Brassica napus)	SWEDE (17)	Acme	12	0.5	3.5 leaves
Carrot (Daucus carota)	CARROT (18)	Chantenay Red Core	12	0.5	3.5-4 leaves

Designation and computer serial number

Cultivar or source

.

No Depth of per planting pot (Cm)

*

The Repart of Visites up of the Phone in the state of the

Stage of growth at assessment (untreated controls, leaf numbers exclusive of cotyledons)

.

*

28 R C. 1993

56

Lettuce	LETTUCE	Reskia	15	0.5	6 leaves
(Lactuca sativa)	(20)				
Fenugreek (Trigonella foenumgraecum)	FENUGREK (21)	Paul	10	0.5	2-3 trifoliate leaves
Sugar beet (Beta vulgaris)	SUG BEET (22)	Nomo monogerm	15	1.0	2-4 leaves
Beta vulgaris	BETA VUL (23)	Attleborough 1979	20	0.5	4.5 leaves
Bromus sterilis	BROM STE (24)	WRO 1982	12	0.5	6-8 leaves, 2 tillering
Festuca rubra	FEST RUB (25)	Boreal CDN 86-0192	25	0.25	1-3 tillers

Avena fatua	AVE FATU (26)	WRO 1980	10	1.0	4.5-5 leaves
Alopecurus myosuroides	ALO MYOS (27)	B and S Supplies 1982	25	0.25	2-3 tillers
Poa annua	POA ANN (28)	B and S Supplies 1980	25	0.5	4-5 leaves, 0-1 tiller
Poa trivialis	POA TRIV (29)	B and S Supplies 1981	25	0.25	Up to 10 cm
Sinapis arvensis	SIN ARV (30)	WRO 1981	20	0.5	4-5 leaves

Raphanus	RAPH RAP	Long Black	12	0.5	4 leaves
raphanistrum	(31)	Spanish			
Chrysanthemum	CHRY SEG	WRO 1982	20	surface	5-6 leaves
segetum	(32)				
Matricaria perforata	MAT PERF	WRO 1981	25	surface	6-7 leaves
Senecio vulgaris	SEN VULG (34)	B and S Supplies 1981	40	surface	6-7 leaves
Polygonum lapathifolium	POL LAPA (35)	WRO 1981	20	0.5	1-4 leaves

.

Designation Cultivar and computer or serial source number

Same of A land - Sharles

-

No Depth of per planting pot (cm)

Stage of growth at assessment (untreated controls, leaf numbers exclusive of cotyledons)

57

	Galium aparine	GAL APAR (38)	WRO 1981	12	1.0	8-15 whorls
	Chenopodium album	CHEN ALB (39)	WRO 1979	40	0.5	4 leaves
	<u>Stellaria media</u>	STEL MED (40)	B and S Supplies 1981	40	0.5	Numerous leaves
	Veronica persica	VER PERS (42)	WRO 1981	15	0.5	Several leaves
	Viola arvensis	VI ARVE (43)	B and S Supplies 1982	30	0.5	6 leaves
	Rumex obtusifolius	RUM OBTU (44)	B and S Supplies 1981	25	0.25	2-3 leaves
	Elymus repens	EL REPEN (47)	WRO Clone 31	6*	1.5	4-5 leaves
	Allium vineale	ALL VIN (49)	WRO 1982	12***	1.0	2-3.5 leaves
	Cirsium arvense	CIRS ARV (50)	WRO Clone 1	4**	1.5	4-7 leaves
•	Tussilago farfara	TUS FARF (51)	WRO Clone 1	4*	1.5	2-4 leaves
	Convolvulus arvensis	CONV ARV (52)	B and S Supplies 1979	15	0.5	7-8 leaves

Phalaris paradoxa	PHAL PAR (54)	ADAS 1981	20	0.5	
Maize+safener (Zea mays)	MAIZE+S (56)	LG11	5	1.5	4.5 leaves
Maize (Zea mays)	MAIZE (57)	LG11	5	1.5	4.5 leaves
Phalaris minor	PHAL MIN (84)	Delhi 1978	15	0.25	4-5 leaves

* = one node rhizome fragments
** = 4 cm root fragments
*** = aerial bulbils

BRILLY AND - UND PRIME PER LANSING AND

and to Mander's the forst cents which any Phone sum adult

#### ABBREVIATIONS

2 ----

	angström	R	freezing point	f.p.
	Abstract	Abs.	from summary	F.s.
	acid equivalent*	a.e.	gallon	gal
	acre	ac	gallons per hour	ga1/h
	active ingredient*	a.i.	gallons per acre	gal/ac
	approximately equal to*		gas liquid chromatography	GLC
	aqueous concentrate	a.c.	gramme	g
	bibliography	bibl.	hectare	ha
	boiling point	b.p.	hectokilogram	hkg
	bushe1	bu	high volume	HV
	centigrade	C	horse power	hp
•	centimetre*	cm	hour	h
	concentrated	concd	hundredweight*	cwt
•	concentration concentration x	concn	hydrogen ion concentration*	pH
	time product	ct	inch	in.
	concentration required to kill		infra red	i.r.
	50% test animals	LC50	kilogramme	kg
	cubic centimetre*	cm ³	kilo (x10 ³ )	k
	cubic foot*	ft ³	less than	<
	cubic inch*	in ³	litre	1.
	cubic metre*	m ³	low volume	LV
	cubic yard*	yd	maximum	max.
	cultivar(s)	CV.	median lethal dose	LD50
•	curie*	Ci	medium volume	MV
	degree Celsius*	°c	melting point	m.p.
•	degree centigrade	°c	metre	m
	degree Fahrenheit*	°F	micro (x10 ⁻⁶ )	μ
	diameter	diam.	microgramme*	μg
	diameter at breast height	d.b.h.	<pre>micromicro (pico: x10⁻¹²)*</pre>	ĻЦL
	divided by*	÷ or /	micrometre (micron)*	µm (or µ)
	dry matter	d.m.	micron (micrometre)*†	$\mu m$ (or $\mu$ )
	emulsifiable		miles per hour*	mile/h
	concentrate	e.c.	milli (x10 ⁻³ )	m
	equal to*	-	milliequivalent*	m.equiv.
	fluid	f1.	milligramme	mg
	foot	ft	millilitre	ml

+

kilo (x10	s)	k
less than		<
litre		1.
low volume		LV
maximum		max.
median let	thal dose	LD50
medium vol	ume	MV
melting po	oint	m.p.
metre		m
micro (x10	)-0)	μ
microgramm	ne*	μg
micromicro	-12.	

The name micrometre is preferred to micron and µm is preferred to µ.

millimetre* mm millimicro*  $(nano: x10^{-9})$ n or mu minimum min. minus minute min molar concentration* molecule, molecular mol. more than multiplied by* x normal concentration* not dated oil miscible concentrate organic matter ounce ounces per gallon page pages parts per million parts per million by volume parts per million by weight percent(age) pico (micromicro: x10⁻¹²) pint pints per acre plus or minus* post-emergence pound pound per acre* pounds per minute pound per square inch*

pre-emergence pre-em. quart quart relative humidity r.h. revolution per minute* rev/min second S soluble concentrate S.C. M (small cap) soluble powder s.p. solution soln species (singular) sp. species (plural) spp. specific gravity sp. gr. ft² square foot* in² square inch m² . square metre* square root of* V . sub-species* ssp. summary S. temperature temp. ton ton tonne t ultra-low volume ULV ultra violet u.v. vapour density v.d. vapour pressure v.p. varietas var. volt V volume vol. volume per volume v/v water soluble powder W.S.p. (tables only). watt W weight wt weight per volume* W/V weight per weight* w/w

N (small cap) n.d. O.M.C. (tables only) o.m. OZ oz/gal p. pp. ppm ppmv

-

>

ppmw % p or µµ pint pints/ac + post-em 1b 1b/ac lb/min lb/in²

powder for dry application	p. (tables only)	wettable powder	w.p.
power take off	p.t.o.	yard	yd
precipitate (noun)	ppt.	yards per minute	yd/min

* Those marked * should normally be used in the text as well as in tables etc.

![](_page_28_Picture_0.jpeg)

the second

· with

# (Price includes surface mail; airmail £2.00 extra)

(* denotes Reports now out of print)

6. The botany, ecology, agronomy and control of Poa trivialis L. roughstalked meadow-grass. November 1966. G P Allen. Price - £0.25

.

.

.

.

- 7. Flame cultivation experiments 1965. October 1966. G W Ivens. Price £0.25
- 8. The development of selective herbicides for kale in the United Kingdom.
   2. The methylthiotriazines. Price £0.25
- 10. The liverwort, Marchantia polymorpha L. as a weed problem in horticulture; its extent and control. July 1968. I E Henson. Price - £0.25
- Raising plants for herbicide evaluation; a comparison of compost types. July 1968. I E Henson. Price - £0.25
- *12. Studies on the regeneration of perennial weeds in the glasshouse; I. Temperate species. May 1969. I E Henson. Price - £0.25
  - 13. Changes in the germination capacity of three Polygonum species following low temperature moist storage. June 1969. I E Henson. Price - £0.25
  - 14. Studies on the regeneration of perennial weeds in the glasshouse. II. Tropical species. May 1970. I E Henson. Price - £0.25
- Methods of analysis for herbicide residues. February 1977. (second edition). Price - £5.75
- 16. Report on a joint survey of the presence of wild oat seeds in cereal seed drills in the United Kingdom during spring 1970. November 1970. J G Elliott and P J Attwood. Price - £0.25
- 17. The pre-emergence selectivity of some newly developed herbicides,

Orga 3045 (in comparison with dalapon), haloxydine (PP 493), HZ 52.112, pronamide (RH 315) and R 12001. January 1971. W G Richardson, C Parker and K Holly. Price - £0.25

- 18. A survey from the roadside of the state of post-harvest operations in Oxfordshire in 1971. November 1971. A Phillipson. Price £0.25
- *19. The pre-emergence selectivity of some recently developed herbicides in jute, kenaf and sesamum, and their activity against Oxallis latifolia. December 1971. M L Dean and C Parker. Price - £0.25

* 20. A survey of cereal husbandry and weed control in three regions of England. July 1972. A Phillipson, T W Cox and J G Elliott. Price -  $\pounds 0.35$ 

- 2 -

- An automatic punching counter. November 1972. R C Simmons. 21. Price - £0.30
- The pre-emergence selectivity of some newly developed herbicides: 22. bentazon, BAS 3730H, metflurazone, SAN 9789, HER 52.123, U 27,267. December 1972. W G Richardson and M L Dean. Price - £0.25

- A survey of the presence of wild oats and blackgrass in parts of the 23. United Kingdom during summer 1972. A Phillipson. Price - £0.25
- The conduct of field experiments at the Weed Research Organization. 24. February 1973. J G Elliott, J Holroyd and T O Robson. Price -£1.25
- 25. The pre-emergence selectivity of some recently developed herbicides: lenacil, RU 12068, metribuzin, cyprazine, EMD-IT 5914 and benthiocarb. August 1973. W G Richardson and M L Dean. Price - £1.75.
- 26. The post-emergence selectivity of some recently developed herbicides: bentazon, EMD-IT 6412, cyprazine, metribuzin, chlornitrofen, glyphosate, MC 4379, chlorfenprop-methyl. October 1973. W G Richardson and M L Dean. Price - £3.31
- 27. Selectivity of benzene sulphonyl carbamate herbicides between various

pasture grasses and clover. October 1973. A M Blair. Price - £1.05

- 28. The post-emergence selectivity of eight herbicides between pasture grasses: RP 17623, HOE 701, BAS 3790, metoxuron, RU 12068, cyprazine, MC 4379, metribuzin. October 1973. A M Blair. Price - £1.00
- The pre-emergence selectivity between pasture grasses of twelve * 29. herbicides: haloxydine, pronamide, NC 8438, Orga 3045, chlortoluron, metoxuron, dicamba, isopropalin, carbetamide, MC 4379, MBR 8251 and EMD-IT 5914. November 1973. A M Blair. Price - £1.30
  - Herbicides for the control of the broad-leaved dock (Rumex obtusifolius 30. L.). November 1973. A M Blair and J Holroyd. Price - £1.06
  - Factors affecting the selectivity of six soil acting herbicides against 31. Cyperus rotundus. February 1974. M L Dean and C Parker. Price - £1.10
  - The activity and post-emergence selectivity of some recently developed 32.

herbicides: oxadiazon, U-29,722, U-27,658, metflurazone, norflurazone, AC 50-191, AC 84,777 and iprymidam. June 1974. W G Richardson and M L Dean. Price - £3.62

- A permanent automatic weather station using digital integrators. 33. September 1974. R C Simmons. Price £0.63.
- The activity and pre-emergence selectivity of some recently developed 34. herbicides: trifluralin, isopropalin, oryzalin, dinitramine, bifenox and perfluidone. November 1974. W G Richardson and M L Dean. Price - £2.50

35. A survey of aquatic weed control methods used by Internal Drainage Boards, 1973. January 1975. T O Robson. Price - £1.39

- 3 -

- 36. The activity and pre-emergence selectivity of some recently developed herbicides: Bayer 94871, tebuthiuron, AC 92553. March 1975. W G Richardson and M L Dean. Price - £1.54
- 37. Studies on Imperata cylindrica (L.) Beauv. and Eupatorium odoratum L. October 1975. G W Ivens. Price - £1.75
- 38. The activity and pre-emergence selectivity of some recently developed herbicides: metamitron, HOE 22870, HOE 23408, RH 2915, RP 20630. March 1976. W G Richardson, M L Dean and C Parker. Price - £3.25
- 39. The activity and post-emergence selectivity of some recently developed herbicides: HOE 22870, HOE 23408, flamprop-methyl, metamitron and cyperquat. May 1976. W G Richardson and C Parker. Price £3.20
- 40. The activity and pre-emergence selectivity of some recently developed herbicides: RP 20810, oxadiazon, chlornitrofen, nitrofen, flamprop--isopropyl. August 1976. W G Richardson, M L Dean and C Parker. Price - £2.75.
- 41. The activity and pre-emergence selectivity of some recently developed herbicides: K 1441, mefluidide, WL 29226, epronaz, Dowco 290 and triclopyr. November 1976. W G Richardson and C Parker. Price - £3.40.
- 42. The activity and post-emergence selectivity of some recently developed herbicides: KUE 2079A, HOE 29152, RH 2915, Triclopyr and Dowco 290. March 1977. W G Richardson and C Parker. Price - £3.50
- 43. The activity and pre-emergence selectivity of some recently developed herbicides: dimefuron, hexazinone, trifop-methyl, fluothiuron, buthidazole and butam. November 1977. W G Richardson and C Parker. Price - £3.75.
- 44. The activity and selectivity of the herbicides: ethofumesate, RU 12709 and isoproturon. December 1977. W G Richardson, C Parker, & M L Dean. Price - £4.00
- 45. Methods of analysis for determining the effects of herbicides on soil soil micro-organisms and their activities. January 1978. M P Greaves, S L Cooper, H A Davies, J A P Marsh & G I Wingfield. Price - £4.00
- 46. Pot experiments at the Weed Research Organization with forest crop and weed species. February 1978. D J Turner and W G Richardson. Price - £2.70
- 47. Field experiments to investigate the long-term effects of repeated applications of MCPA, tri-allate, simazine and linuron - effects on the quality of barley, wheat, maize and carrots. July 1978. J D Fryer, P D Smith and J W Ludwig. Price - £1.20.
- 48. Factors affecting the toxicity of paraquat and dalapon to grass swards. March 1978. A K Oswald. Price - £2.90
- 49. The activity and post-emergence selectivity of some recently developed herbicides: NP 48, RH 5205 and Pyridate. May 1978. W G Richardson and C Parker. Price - £2.50

. ...

![](_page_31_Picture_2.jpeg)

- Sedge weeds of East Africa II. Distribution. July 1978. P J Terry. 50. Price - £1.50
- The activity and selectivity of the herbicides methabenzthiazuron, 51. metoxuron, chlortoluron and cyanazine. September 1978. W G Richardson and C Parker. Price - £2.20.
- Antidotes for the protection of field bean (Vicia faba L.) from damage 52. by EPTC and other herbicides. February 1979. A M Blair. Price - £1.35

- 53. Antidotes for the protection of wheat from damage by tri-allate. February 1979. A M Blair. Price - £2.00
- 54. The activity and pre-emergence selectivity of some recently developed herbicices: alachlor, metolachlor, dimethachlor, alloxydim-sodium and fluridone. April 1979. W G Richardson and C Parker. Price - £3.00
- 55. The activity and selectivity of the herbicides carbetamide, methazole, R 11913 and OCS 21693. May 1979. W G Richardson and C Parker. Price - £1.80
- 56. Growing weeds from seeds and other propagules for experimental purposes. July 1979. R H Webster. Price - £1.10
- 57. The activity and pre-emergence selectivity of some recently developed herbicides: R 40244, AC 206784, pendimethalin, butralin, acifluorfen and FMC 39821. December 1979. W G Richardson, T M West and C Parker -Price - £3.55
- 58. The tolerance of fenugreek (Trigonella foenumgraecum L.) to various herbicides. December 1979. W G Richardson. Price - £1.55
- 59. Recommended tests for assessing the side-effects of pesticides on the soil microflora. April 1980. M P Greaves, N J Poole, K H Domsch, G Jagnow and W Verstraete. Price - £2.00
- 60. Properties of natural rainfalls and their simulation in the laboratory for pesticide research. September 1980. R C Simmons. Price - £1.25
- 61. The activity and post-emergence selectivity of some recently developed herbicides: R 40244, DPX 4189, acifluorfen, ARD 34/02 (NP 55) and PP 009. November 1980. W G Richardson, T M West and C Parker. Price - £3.75
- 62. The activity and pre-emergence selectivity of some recently developed herbicides: UBI S-734, SSH-43, ARD 34/02 (= NP 55), PP 009 and DPX 4189. February 1981. W G Richardson, T M West and C Parker. Price - £3.50

63. The activity and post-emergence selectivity of some recently developed herbicides: SSH-41, MB 30755, AC 213087, AC 222293 and Dowco 433. May 1981. W G Richardson, T M West and C Parker. Price - £3.50

64. The activity and pre-emergence selectivity of some recently developed herbicides: chlomethoxynil, NC 20484 and MBR 18337. March 1982. W G Richardson, T M West and C Parker. Price - £3.00

65. A system for monitoring environmental factors in controlled environment chambers and glasshouses. June 1982. R C Simmons. Price - £1.50

66. The activity and pre-emergence selectivity of some recently developed herbicides: AC 213087 and AC 222293. December 1982. W G Richardson, T M West and C Parker. Price - £2.00

- 5 -

- 67. The activity and post-emergence selectivity of some recently developed herbicides: trifopsime, glufosinate, RH 8817, MBR 18337 and NC 20484. December 1982. W G Richardson, T M West and C Parker. Price - £3.25
- 68. The activity and pre-emergence selectivity of some recently developed herbicides: WL 49818, WL 82830, WL 83627, WL 83801 and DPX 5648.

December 1982. W G Richardson, T M West and C Parker. Price - £4.00

- 69. The activity and late post-emergence selectivity of some recently developed herbicides: AC 252925, DOWCO 453, HOE 33171 and HOE 35609. March 1983. W G Richardson, T M West and G P White. Price - £3.25
- 70. The potential of various herbicides for selective control of weed grasses and Stellaria media in newly sown ryegrass/clover leys and ryegrass seed crops. May 1983. F W Kirkham Price - £1.75
- 71. A feasibility study of the use of chemicals for rural amenity areas. Sponsored by the Countryside Commission. September 1983. E J P Marshall Price - £5.00
- 72. The activity and late post-emergence selectivity of FBC 32197. November 1983. W G Richardson, T M West and G P White. Price - £1.25

- 73. Paraquat persistence statistical analysis of the WRO long term trial. January 1984. R J Hance, T H Byast, P D Smith and T M Weight. Price - £1.00
- 74. The activity and post-emergence selectivity of some recently developed herbicides: AC 252214, DPX-T6376, and chlorazifop. February 1984. W G Richardson, T M West and G P White. Price - £2.00.
- 75. The effect of temperature and soil moisture on the activity of isoproturon and chlortoluron on Alopecurus myosuroides and winter wheat. May 1984. A M Blair. Price - £2.00
- 76. A laboratory rainfall simulator for pesticide studies. May 1984. R C Simmons. Price - £2.00

.

.

- 77. Experiments on the effects of the herbivorous fish, grass carp (Ctenopharyngodon idella Val.) on aquatic vascular plants, algae, zooplankton and phytoplankton and the importance of water temperature on the success of weed control. September 1984. M C Fowler. Price - £3.50.
- 78, The activity and post-emergence selectivity of some recently developed herbicides: MCPA-thioethyl, MT-124, tridiphane, aclonifen and RST 20024 H. October 1984. W G Richardson and T M West. Price - £5.40
- 79. A preliminary study on the effect of some agricultural herbicides on a range of field margin flora. November 1984. J E Birnie. Price - £2.50
- 80. The activity and pre-emergence selectivity of some recently developed herbicides: imazaquin, isoxaben, metsulfuron-methyl, aclonifen and orbencarb. December 1984. W G Richardson and T M West. Price - £6.50