

WEED RESEARCH ORGANIZATION

TECHNICAL REPORT No.74

THE ACTIVITY AND POST-EMERGENCE SELECTIVITY OF SOME RECENTLY DEVELOPED HERBICIDES: AC 252214, DPX-T6376, AND CHLORAZIFOP

NB: AC 252214 is imazaquin, DPX-T6376 is metsulfuron-methyl

W G Richardson, T M West and G P White

February 1984

Price - £2.00

Agricultural and Food Research Council Weed Research Organization, Begbroke Hill, Yarnton, Oxford OX5 IPF

ISSN 0511 4136 ISBN 0 7084 0292 5

An Q6

CONTENTS

	Page
SUMMARY	2
INTRODUCTION	2
METHODS AND MATERIALS	3
RESULTS	
AC 252214 2-(4-isopropyl-4-methyl-5-oxo-2-imidazolin-2-yl) -3-quinolinecarboxylic acid	6
DPX-T6376 Methyl 2-[3-(4-methoxy-6-methyl-1,3,5-triazin-2-yl) ureidosulphonyl]benzoate	14
CHLORAZIFOP 2-[4-(3,5-dichloro-2-pyridyloxy)-phenoxy]-propionic acid, -2-propynylester	22
ACKNOWLEDGEMENTS	30
REFERENCES	30
APPENDIX	31

NOTE

The content of this publication, in whole or in part, may be quoted or reproduced provided the authors and the ARC Weed Research Organization are fully acknowledged. The correct bibliographical reference is:-

RICHARDSON, W.G., WEST, T.M. and WHITE, G.P. The activity and post-emergence selectivity of some recently developed herbicides: AC 252214, DPX-T6376, and chlorazifop. Technical Report Agricultural Research Council Weed Research Organization, 1984, 74, pp. 33.

THE ACTIVITY AND POST-EMERGENCE SELECTIVITY OF SOME RECENTLY DEVELOPED HERBICIDES: AC 252214, DPX-T6376 AND CHLORAZIFOP

W.G. Richardson*, T.M. West* and G.P. White*

Agricultural Research Council Weed Research Organization Begbroke Hill, Yarnton, Oxford OX5 1PF, UK.

SUMMARY

Three herbicides were examined for post-emergence selectivity on 43 crop and weed species. The route of action of these herbicides was determined on six selected species in a separate test. The safener 1,8 naphthalic anhydride (NA) was used as a seed dressing on wheat, barley and maize to see if herbicide effects could be reduced.

AC 252214 was effective on a wide spectrum of weeds, especially pre-but also post-emergence. Soyabean showed outstanding tolerance, as did dwarf bean to a slightly lesser degree.

DPX-T6376, is one of the most phytotoxic chemicals yet tested, both preand post-emergence. Control of mainly broad-leaved weeds such as <u>Veronica</u> <u>persica</u>, <u>Viola arvensis</u>, composite, cruciferous and caryophyllaceous weeds was achieved post-emergence at rates which did not affect temperate cereals (wheat, barley, oat). Maize was protected to some extent by NA.

Chlorazifop was active pre- and post-emergence on certain annual and perennial grass weeds and selective in many broad-leaved crops, notably legumes. All broad-leaved weeds were resistant however while Poa annua was only moderately susceptible. The possibility of selective control of Avena fatua and Alopecurus myosuroides in wheat and barley however is of major interest.

INTRODUCTION

The pre- and post-emergence selectivities and effects of new herbicides are investigated at WRO on a large number of pot-grown crop and weed species. The limitations of these investigations are that only one crop variety or source of weed species is used and growth is in one particular soil type, at only one depth of sowing without interspecific competition. Consequently, as plant responses in pot experiments can be very different to those in the field the results should only be used as a guide for further work.

This report gives indications of the post-emergence selectivity of three new herbicides. Results of activity experiments are also included to provide information on levels of phytotoxicity, type and route of action.

^{*} Herbicide Performance Group

METHODS AND MATERIALS

(a) Activity experiments (AE 1 and 2)

These were carried out on six selected species as described previously (Richardson and Dean, 1974). Three annual species and perennial ryegrass were raised from seeds and two perennials from rhizome fragments. There were two replicates for each treatment. Herbicides were applied by four different methods:-

- (i) post-emergence spray to the foliage only, avoiding contact with the soil,
- (ii) post-emergence to the soil only, as a drench avoiding foliage contact,
- (iii) pre-emergence spray to the soil surface,
- (iv) pre-emergence with thorough incorporation, before planting.

Experimental details are summarised in Tables 1 and 2.

(b) Post-emergence selectivity experiment

The experimental details were as previously described (Richardson and Parker, 1977). Plants were raised in 9 or 10 cm diameter plastic pots in a soil/peat/sand medium (4:1:1 v/v) the soil being taken from a field near Begbroke Hill (Yarnton). Planting dates were staggered so that the majority of species would reach a pre-determined stage (2-4 leaves) by the time of spraying. However, as noted in Appendix I, several species were at a more advanced stage of growth. All species were raised in the open.

Table 1. Plant data for activity experiments

Species	Cultivar/ source	No. per pot at spraying		Depth	Stage of growth at:			
precres	Source	pre-	post-	planting (cm)	Spraying post-em	pre-em	ssment post-em	
Dwarf bean (Phaseolus vulgaris	Masterpiece	3-4	2	2.0	2 uni- foliate leaves	1.5-2.5 tri- foliate leaves	2-3 tri- foliate leaves	
Kale (Brassica oleracea acephala	Marrowstem	10	5	0.5	2-2.5 leaves	4-5 leaves	4-5 leaves	
Polygonum amphibium	WRO Clone 1	6	4-5	1.0	4.5-5.5 leaves	6-8 leaves	9-10 leaves	
Perennial ryegrass (Lolium perenne	S23	15	8-10	0.5	2-3 leaves	4-5 leaves, tiller- ing	2-6 tillers	
Avena fatua	WRO 1978 WRO 1980	10-	5	1.0	2.5-3 leaves	3.5-4.5 leaves, 0-2 tillers	tillers	
<u>repens</u>	WRO Clone 31	6	4-5	1.0	2.5-3 leaves	3.5-5 leaves, 0-3 tillers	1-2 tillers	

Table 2. Soil and environmental conditions

Experiment number, type and herbicides included	DPX-T6376	AE 2 AC 252214 Chlorazifop	Post-emergence selectivity test AC 252214, DPX-T637 Chlorazifop
Date of spraying	13.10.82	20.5.83	7&12.7.83
Main assessment completed	16.11.82	21.6.83	5.8.83
Organic carbon (%)	2.2	2.2	1.3
Clay content (%)	15.0	15.0	16.0
pH (in water;			
1:2 soil:water ratio)	7.5	7.5	7.5
Superphosphate (g/kg)	2.0	2.0	
Vitax QS fertilizer (g/kg)	2.5	2.5	2.5
Hydrated Mg SO ₄ 7H ₂ O (g/kg)	0.8	0.8	
Temperature (°c)	Glasshou	se	Outdoors
Mean	19	19	19
Maximum	26	33	30
Minimum	12	11	9
Relative humidity (%)			
Mean	60	60	50
Maximum	85	90	86
Minimum	32	20	12

In some cases plant material was pre-treated to improve establishment:seeds of Chenopodium album were soaked in 0.1 M potassium nitrate solution and
kept in the light for two days prior to planting; seeds of Alopecurus
myosuroides were soaked in distilled water and kept in the light for 24 hours;
Rumex obtusifolius seeds were dehusked; Veronica persica and Agrostis
stolonifera were sown in a tray of peat compost and seedlings (1-2 leaves)
transplanted into the potting medium.

For protection from soil-borne pathogens all seeds except wheat, barley, oat, sugar beet, Avena fatua and those soaked in potassium nitrate solution were pre-treated with one of the following: thiram, Harvesan organomercury, thiram + benomyl (onion). Root fragments of Cirsium arvense were washed in a colloidal copper solution (2ml litre⁻¹) prior to planting. As dwarf bean, field bean and certain brassicas (kale, rape, cabbage, radish) are susceptible to "damping off" diseases, 6% gum arabic solution was included with the thiram fungicide seed dressing to improve adhesion.

A series of treatments was included to investigate possible uses for the safener NA (1,8-naphthalic anhydride). Maize, wheat and barley were treated with NA at 0.5% a.i. w/w of seeds. Before spraying, each species was thinned to constant number per pot.

Herbicides were applied using a laboratory sprayer operating at a pressure of 207 kPa (30 lb/in²) with a Spraying Systems 8002 TeeJet spray nozzle moving at 0.5 m sec⁻¹, 45 cm above the stationary plants and delivering a volume of 370 l/ha. There were two replicates for each treatment. Stages of growth at spraying and assessment are summarised in Appendix I. After spraying, the plants were protected from rainfall for 24 hours and then watered overhead to wash any residues off the foliage, using a rose at the end of a trigger hose attached to the mains water supply. The pots were then returned to their original position in the open. Watering throughout the experiment was from overhead. Additional fertilizer in solution was applied to all species at one week intervals after spraying (5 ml litre⁻¹ Vitafeed 301). Insecticide and fungicide solutions were applied to individual species as required.

(c) Assessments and processing of results

Results were assessed and processed as before (Richardson and Dean, 1974). Survivors were counted and scored for vigour on a 0-7 scale as previously, where 0 = dead and 7 = as untreated control. Histograms are presented for the results of each treatment, the upper of each pair represents mean plant survival and the lower, mean vigour score, both calculated as percentages of untreated controls. Actual percentage figures are displayed to the left of each row of x's (in selectivity test only). The same information is displayed in the histograms, each 'x' representing a 5% increment, but in the activity experiment each 'x' represents a 7% increment. A '+' indicates a value in excess of 100%. A value of 100 = as untreated control and 0 = a complete kill. 'R' indicates results based on one replicate only.

A table of observed selectivities, using the criteria specified, is presented below for each compound along with comments to highlight salient points. Radish (Raphanus raphanistrum) which was included because it is easy to propagate), may be regarded as a crop or a weed.

Several species, notably the perennials, were kept for extra periods to observe later effects, or the degree of recovery from injury. Results for Cirsium arvense were not included in the histograms because plant growth was variable, but some observations were possible and are referred to in the text where relevant.

AC 252214

Code number AC 252214

Trade name -

Common name Imazaquin (BSI proposed)

Chemical name

2-(4-isopropyl-4-methyl-5-oxo-2-imidazolin-2-yl)-3-quinolinecarboxylic acid.

Structure

Source

Cyanamid International Limited
Fareham Road
Gosport
Hants PO13 OAS; UK.

Information available and suggested uses

Broad spectrum weed control in soyabean pre-plant incorporated, pre- and post-emergence; beans and cowpeas pre-emergence; lucerne, clover, tobacco post-emergence. Addition of a non ionic surfactant for post-emergence applications at 0.1 to 0.5% v/v final concentration is recommended.

Formulation used 70% w/w a.i. water dispersible granules + 0.1% v/v Agral 90 surfactant.

Spray volume 370 1/ha for both experiments.

RESULTS

Full results are given in the histograms on pages 9-13 and potential selectivities are summarised in the following table.

RATE (kg/ha)	CROPS: vigour reduced by 15% or less	WEEDS: number or vigour reduced by 70% or more
0.8	soyabean	Bromus sterilis Avena fatua Poa annua Matricaria perforata Galium aparine Spergula arvensis Viola arvensis Phalaris paradoxa Solanum nigrum + species below
0.2	species above + dwarf bean	Alopecurus myosuroides Chrysanthemum segetum Phalaris minor Elymus repens * + species below
0.05	species above + oat field bean	Beta vulgaris Festuca rubra Poa trivialis Sinapis arvensis Raphanus raphanistrum Stellaria media

* controlled at late assessment

Comments on results

Activity experiment

Activity was generally greater in the soil applied treatments, especially pre-emergence. Effects of the foliar spray were apparent on all species however even at the lower doses. The perennials, Polygonum amphibium and Elymus repens were the most sensitive species while dwarf bean showed some degree of tolerance. The soil drench treatments did not affect dwarf bean but all other species were highly susceptible. There was little difference between surface and incorporated pre-emergence applications.

Symptoms on susceptible species

symptoms took several days to develop with post-emergence treatments being more prominent on newly developing leaves. These were usually small, stunted and chlorotic, necrosis of tissues developing later. The new leaves of certain species were also sometimes distorted. A patchy chlorosis developed later on older, sprayed leaves of some broad-leaved species. Plants often failed to

emerge at higher doses in the pre-emergence treatments. Those which succeeded were inhibited severely at an early growth stage, grasses dying back from the one to two leaf stage while broad-leaved species sometimes failed to develop beyond the cotyledon leaf stage. Necrosis and death was usually preceded by a pronounced chlorosis.

Post-emergence selectivity

Six annual weeds were controlled at the lowest dose of 0.05 kg/ha including two grasses (Poa trivialis and Festuca rubra), both crucifers (Sinapis arvensis and Raphanus raphanistrum), Beta vulgaris and Stellaria media. At higher doses a further 13 weeds were controlled including several grasses (Poa annua, Alopecurus myosuroides, Avena fatua, Bromus sterilis, Phalaris spp., E. repens) and several broad-leaved species (Chrysanthemum segetum, Matricaria perforata, Galium aparine, Viola arvensis, Solanum nigrum, Spergula arvensis). Chenopodium album was quite resistant but this was probably due to its rather advanced growth stage (14 leaves) when sprayed. The other perennials, although not adequately controlled, were severely suppressed at higher doses.

Soyabean showed outstanding tolerance, being unaffected at the highest dose of 0.8 kg/ha. Tolerance was found in other legume crops, notably dwarf bean which was reduced in vigour by only 21% at 0.8 kg/ha while field bean withstood 0.05 kg/ha.

The potential control or suppression of nearly all broad-leaved and grass weeds in soyabean was impressive. The unexpected tolerance of dwarf bean, found in both experiments was also of considerable interest and worth further investigation.

ACTIVITY EXPERIMENT

AC 252214

		0.0625 kg/ha	0.25 kg/ha	1.0 kg/ha
	F	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
DETART DELAM	S	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
DWARF BEAN	P	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
	I	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
	F	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
	S	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
KALE	P	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
	I	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
	F	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
DOT WOONIIIM	S	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
POLYGONUM AMPHIBIUM	P	0	0	0
	I	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	0	8
	F	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
PERENNIAL	S	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
RYEGRASS	P	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XX XX	XX
	I	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXX
	F	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
	S	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
AVENA FATUA	P	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
	I	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
	F	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
ELYMUS	S	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
REPENS	P	X	0	8
	Г	0	0	0
	I	O	0	0

KEY: F = post-emergence, foliar application

S = post-emergence, soil drench

P = pre-emergence, surface film

I = pre-planting, incorporated

57 XXXXXXXXXXXXXX

79 XXXXXXXXXXXXXXXXXXX

75 XXXXXXXXXXXXXXXXXX

21 XXXX

PEA

(11)

(12)

RAPE

(14)

W CLOVER

50 XXXXXXXXXXX

43 XXXXXXXXXXX

50 XXXXXXXXXX

14 xxx

80 XXXXXXXXXXXXXXXXXXXX

43 XXXXXXXXX

29 XXXXXX

25 XXXXX

7 x

70 XXXXXXXXXXXXXXXX

Species

0.05 kg/ha

0.2 kg/ha

50 XXXXXXXXXX

43 XXXXXXXXXX

1.00 xxxxxxxxxxxxxxxxxxxxx

14 xxx

0	XXXXXXXXXXXXXXXX
9	XXXXXX
	XXXXXXXXXXXXX
9	XXXXXX
0	
	XXXXXXXXXX
6	XXXXXXXX
0	400000000000000000000000000000000000000
	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
3	XXXXXXXXXX
5	XXXXXXXXXXXXXXXXXXX
	XXXXXXX
7	AAAAA
8	XXXXXXXXXXXXXXX
	XXXXXX
0	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
1	XXXX
8	XXXXXXXXXXXXXX
4	XXX

37 жжжжж

29 XXXXXX

0.8 kg/ha

KALE	100	XXXXXXXXXXXXXXXXXXXXXXX
(15)	43	XXXXXXXXXX
CABBAGE	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
(16)	36	XXXXXXX
CARROT	114	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
(18)	36	XXXXXXX
DADCNITD	02	

CABBAGE	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
(16)	36	XXXXXXX
CARROT	114	xxxxxxxxxxxxxxxx+
(18)	36	XXXXXXX
PARSNIP	83	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
(19)	43	XXXXXXXXX
LETTUCE	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
(20)	57	XXXXXXXXXXX
FENUGREK	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
(21)	57	XXXXXXXXXXX
SUG BEET	92	XXXXXXXXXXXXXXXXXXX
(22)	29	XXXXXX
BETA VUL	67	XXXXXXXXXXXXXXXXX
(23)	21	XXXX

(18)	36	XXXXXXX
PARSNIP	83	XXXXXXXXXXXXXXXXXXXXX
(19)	43	XXXXXXXXX
LETTUCE	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
(20)	57	XXXXXXXXXXX
FENUGREK	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
(21)	57	XXXXXXXXXXXX
SUG BEET	92	XXXXXXXXXXXXXXXXXXX
(22)	29	XXXXXX
BETA VUL	67	XXXXXXXXXXXXXXXX
(23)	21	XXXX
BROM STE	100	XXXXXXXXXXXXXXXXXXXXXXXX
(24)	71	XXXXXXXXXXXXXXX
FEST RUB	87	XXXXXXXXXXXXXXXXXXX
(25)	29	XXXXXX
AVE FATU	100	XXXXXXXXXXXXXXXXXXXXXXXXX
(26)	86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

90	XXXXXXXXXXXXXXXXXXXXX	80	XXXXXXXXXXXXXXXXX
29	XXXXXX	29	XXXXXX
90	XXXXXXXXXXXXXXXXXXX	70	XXXXXXXXXXXXXXX
29	XXXXXX	29	XXXXXX
105	xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx	48	XXXXXXXXXXX
43	XXXXXXXXXXX	36	XXXXXXXX
100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	1.00	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
4.3	XXXXXXXX	43	XXXXXXXXXX
100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	75	XXXXXXXXXXXXXXXX
43	XXXXXXXX	29	XXXXXX
100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	58	XXXXXXXXXXXXXX
50	XXXXXXXXXX	36	XXXXXXX
83	XXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
29	XXXXXX	21	XXXX
67	XXXXXXXXXXXXX	58	XXXXXXXXXXXXXX
14	XXX	14	XXX
100	XXXXXXXXXXXXXXXXXXXXXXXX	30	XXXXXX
36	XXXXXXX	14	XXX

0.8 kg/ha 0.2 kg/ha 0.05 kg/ha Species ALO MYOS XXXXXXXXXXXXX XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXX 14 XXX 27) XXXX XXXXXXXXXXXXXX POA ANN XXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXX 28) XXXXXXX XXXXXXX XXXXXXXXXXXXXXXXXX POA TRIV XXXXXXXX XXXXXX XXXXXXXXXX 14 XXX (29) 21 XXXX SIN ARV XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXX 30) XXXXXXX XXXX XXXXXXX RAPH RAP 10 xx XXXXXX 14 xxx 31) XXXXXX CHRY SEG XXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXX 14 xxx 32) 29 XXXXXX XXXXXXXXX MAT PERF XXXXXXXXXXXX XXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXX 33) 36 XXXXXXXX 29 XXXXXX XXXXXXXXXXXXXXXXX GAL APAR XXXXXXXXXXXXXXXXXX 14 38) XXX XXXXXXXXXX XXXXXXXXXXXXXXX CHEN ALB XXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXX 39) 71 XXXXXXXXXXXXXXXX 86 XXXXXXXXXXXXXXXXXXXXX 86 XXXXXXXXXXXXXXXXXXXX 75 XXXXXXXXXXXXXXXX 100 XXXXXXXXXXXXXXXXXXX STEL MED 14 xxx (40) 2.9 XXXXXX 29 XXXXXX 86 XXXXXXXXXXXXXXXXXXX SPER ARV XXXXXXXXXXXXXXXXXX 29 XXXXXX (41) XXXXXXXXX 64 XXXXXXXXXXXXXXXX

	I
1	ME
- (15
- 1	I
1	H
-	~
-1	43
-1	MERGENCE
- 1	-
-1	4
- 1	CE
-1	-
1	F-7
- 1	
-1	CO
1	
- 1	[T]
-1	
1	SELECTIV
-	F-3
-	()
1	H
1	-
-1	
1	<
	-
-	
1	
1	K
1	

Species	0.05 kg/ha			0.2 kg/ha		0.8 kg/ha	
VER PERS	100	XXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXX	80	XXXXXXXXXXXXXX	
(42)	86	XXXXXXXXXXXXXXX	71	XXXXXXXXXXXXXX	36	XXXXXXX	
VI ARVE	120	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	1.00	XXXXXXXXXXXXXXXXX	80	XXXXXXXXXXXXXXXXX	
(43)	100	XXXXXXXXXXXXXXXXX	71	XXXXXXXXXXXX	29	XXXXXX	
RUM OBTU	100	XXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXX	
(44)	57	XXXXXXXXX	43	XXXXXXXX	43	XXXXXXXX	
EL REPEN	100	XXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXX	
(47)	57	XXXXXXXXXX	36	XXXXXX	43	XXXXXXXX	
AG STOLO	100	XXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXX	
(48)	93	XXXXXXXXXXXXXXXXX	64	XXXXXXXXXXXXX	36	XXXXXX	
PHAL PAR	100	XXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXX	80	XXXXXXXXXXXXXXX	
(54)	86	XXXXXXXXXXXXXXXX	57	XXXXXXXXXXX	29	XXXXXX	
MAIZE+S	100	XXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXX	83	XXXXXXXXXXXXXXXX	
(56)	43	XXXXXXXX	29	XXXXXX	14	XXX	
MAIZE	100	XXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXX	
(57)	36	XXXXXXX	29	XXXXXX	29	XXXXXX	
SOYABEAN	100	XXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXX	
(65)	100	XXXXXXXXXXXXXXXXXXX	1.00	XXXXXXXXXXXXXXXXXX	1.00	XXXXXXXXXXXXXXXXXX	
SOL NIG	100	XXXXXXXXXXXXXXXXXXXXXX	92.	XXXXXXXXXXXXXXXXX	75	XXXXXXXXXXXXXX	
(81)	64	XXXXXXXXXXX	43	XXXXXXXXX	29	XXXXXX	
PHAL MIN	100	XXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXX	
(84)	57	XXXXXXXXXXX	29	XXXXXX	14	xxx	

DPX-T6376

Code number DPX-T6376

Trade name

Common name

Metsulfuron-methyl (BSI proposed)

Chemical name

Methyl 2-[3-(4-methoxy-6-methyl-1,3,5-triazin-2-yl)

ureidosulphonyl]benzoate

Structure

Source

Du Pont (UK) Ltd Wedgwood Way Stevenage SG1 4QN Herts.

Information available and suggested uses

Control of broad-leaved weeds in cereals.

Formulation used 70% w/w a.i. dry flowable dispersible granules + 0.1% v/v Agral 90 surfactant.

Spray volume 370 1/ha for both experiments.

RESULTS

Full results are given in the histograms on pages 17-21 and potential selectivities are summarized in the following table.

RATE	CROPS: vigour reduced	WEEDS: number or vigour
(kg/ha)	by 15% or less	reduced by 70% or more
0 000		
0.008	wheat ± safener (NA)	Poa trivialis
	barley±safener (NA)	Chenopodium album
	maize+safener (NA)	Solanum nigrum
	oat	+ species below
0.002	as above	Beta vulgaris
		Matricaria perforata
		Stellaria media
		Spergula arvensis
		Veronica persica
		Viola arvensis
		+ species below
0.0005	species above +	Sinapis arvensis
	maize	Raphanus raphanistrum
		Chrysanthemum segetum

Comments on results

Activity experiment

DPX-T6376 is one of the most active herbicides yet tested. It was two to three times more active than chlorsulfuron (Richardson et al., 1980 and 1981) to which it is chemically related. Though pre-emergence activity and selectivity was apparent, as indicated by the manufacturers, its activity as a foliar spray on dwarf bean and Polygonum amphibium was considerable and the tolerance of grasses and kale suggested selectivity post-emergence. Activity pre-emergence was greater as a surface spray rather than incorporated into the soil.

Symptoms

Wilting and collapse of the unifoliate leaves of dwarf bean resulted within 24 hours of spraying. Scorch and necrosis of leaves usually developed on other broad-leaved species within a few days of treatment, accompanied by severe chlorosis, retardation or cessation of growth. With pre-emergence treatments broad-leaved plants usually died back soon after emergence, the growth of the main bud being virtually stopped. At high doses P. amphibium was killed just before or after emergence. At lower doses a pronounced yellowing of this species was evident with all four application methods. Rumex obtusifolius however showed an intense reddening of leaves. All three grasses treated pre-emergence assumed a dart-like appearance, with needle shaped leaves, a symptom common with root-inhibiting herbicides. Later examination showed that roots were severely retarded being much shortened and often swollen. These symptoms were very similar to those reported earlier for the chemically related chlorsulfuron (Richardson, et al., 1980).

Post-emergence selectivity

Even at a dose as low as 0.0005 kg/ha (0.5 g/ha) many annual broad-leaved weeds were severely affected while crucifers (Sinapis arvensis, Raphanus raphanistrum) and Chrysanthemum segetum were controlled. Six more weeds were susceptible at 0.002 kg/ha (2 g/ha) including Veronica persica, Viola arvensis, Matricaria perforata, Beta vulgaris and the caryophyllaceae (Stellaria media, Spergula arvensis). Galium aparine was resistant however as were all grass weeds, except Poa trivialis which was controlled at the high dose.

All temperate cereals (wheat, barley, oat) were highly tolerant. Maize was the only other tolerant crop but only to the lowest dose. NA produced an outstanding safening effect on this species such that it was able to tolerate the highest dose of 0.008 kg/ha. Perennial ryegrass and all broad-leaved species were very sensitive.

The potential selective control of weeds as important as <u>Veronica</u> spp., <u>Viola</u> spp. and composites, in wheat and barley was interesting. However, in <u>view</u> of the resistance of <u>Galium</u> and grass weeds, consideration should be given to mixing with other herbicides. Post-emergence activity was higher than had been indicated by the manufacturer and appears to extend to established broad-leaved, perennial weeds as well (West and Richardson, unpublished data). The safening of maize with NA needs verification, especially as untreated and NA treated plants were sprayed at different growth stages and on different days. Even so, this safening effect is not altogether surprising as it also occurs with chlorsulfuron (Parker et al., 1980).

ACTIVITY EXPERIMENT

DPX-T6376

		0.0005 kg/ha	0.002 kg/ha	0.008 kg/ha
	F	XXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXX	0
DWARF	S	XXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXX
BEAN	P	XXXXXXXXXXXXXXXX	XXXXXXXXXXXXXX	XXXXXXXXXX
	I	XXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
	F	XXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXX
KALE	S	XXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXX	XXXXXXXXXXXXXX
	P	XXXXXXXXXXXXX	XXXXXXXXX	XXXXXXXXXXXXXXXX
	I	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
	F	XXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXX	XX
POLYGONUM AMPHIBIUM	S	XXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXX	XXXXXXXXXXXXXX
	P	XXXXXXXXXXXXXXXX	XXXXXXXXX	0
	I	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXX
	F	XXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXX
PERENNIAL	S	XXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXX	XXXXXXXX
RYEGRASS	P	XXXXXXXXXXXXXXX	XXXX	XXX
	I	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXX
	F	XXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXX
AVENA	S	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
FATUA	P	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXX	XXXXXXXXXXXXX
	I	XXXXXXXXXXXXXX	XXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXX
	F	XXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXX
ELYMUS	S	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXX
REPENS	P	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXX
	I	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

KEY: F = post-emergence, foliar application

S = post-emergence, soil drench

P = pre-emergence, surface film

I = pre-planting, incorporated

50 XXXXXXXXXXX

29 XXXXXX

W CLOVER

(12)

RAPE

(14)

				DPX-T6376		
Species		0.0005 kg/ha		0.002 kg/ha		0.008 kg/ha
WHEAT	1.00	XXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXX
(1)	93	XXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
WHEAT+S	100	XXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXX	1.00	XXXXXXXXXXXXXXXXXXXXXXXXX
(2)	100	XXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXX
BARLEY	100	XXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXX
(3)	1.00	XXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXX
BARLEY+S	100	XXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXX
(4)	100	XXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXX
OAT	100	XXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXX
(5)	100	XXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXX	93	XXXXXXXXXXXXXXXXX
PER RYGR	56	XXXXXXXXXXX	50	XXXXXXXXX	69	XXXXXXXXXXXXXXX
(6)	43	XXXXXXXXX	43	XXXXXXXX	36	XXXXXXX
ONION	92	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	8	XX	8	XX
(8)	50	XXXXXXXXXX	14	XXX	7	x
DWF BEAN	100	XXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXX
(9)	79	XXXXXXXXXXXXXXXXX	29	XXXXXX	29	XXXXXX
FID BEAN	93	XXXXXXXXXXXXXXXXXXXXXX	13	XXX	0	
(10)	36	XXXXXXX	7	x	0	
PEA	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	83	XXXXXXXXXXXXXXXXXX	67	XXXXXXXXXXXXX
(11)	29	XXXXXX	14	XXX	14	XXX

25 XXXXX

14 xxx

		DPX-T6376	
Species	0.0005 kg/ha	0.002 kg/ha	0.008 kg/ha

KALE	100	XXXXXXXXXXXXXXXXXXXXXXX	90	XXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXX
(15)	36	XXXXXXX	36	XXXXXX	29	XXXXXX
CAPPACE	100		60		80	XXXXXXXXXXXXX
CABBAGE	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	60	XXXXXXXXXXX	29	XXXXXX
(16)	29	XXXXXX	29	XXXXXX	2.3	AAAAA
CARROT	67	XXXXXXXXXXXXXX	76	XXXXXXXXXXXXXXX	10	XX
(18)	57	XXXXXXXXXXX	43	XXXXXXXX	7	x
PARSNIP	100	XXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXX	83	XXXXXXXXXXXXXX
(19)	64	XXXXXXXXXXXX	36	XXXXXXX	29	XXXXXXX
LETTUCE	92	XXXXXXXXXXXXXXXX	75	XXXXXXXXXXXXX	75	XXXXXXXXXXXXXX
(20)	36	XXXXXXX	29	XXXXXX	29	XXXXXX
FENUGREK	83	XXXXXXXXXXXXXXXX	17	XXX	0	
(21)	36	XXXXXXX	7	X	0	
SUG BEET	100	XXXXXXXXXXXXXXXXX	50	XXXXXXXXXX	67	XXXXXXXXXXXXX
(22)	43	XXXXXXXXX	21	XXXX	21	XXXX
BETA VUI	75	XXXXXXXXXXXXXX	58	XXXXXXXXXXX	42	XXXXXXX
(2.3)	36	XXXXXXX	29	XXXXXX	14	XXX
BROM STE	100	XXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXX
(24)	100	XXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXX
FEST RUB	100	XXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXX	50	XXXXXXXXX
(25)	100	XXXXXXXXXXXXXXXX	79	XXXXXXXXXXXXXXXXX	36	XXXXXX
ATTO TOATHY	700		700		100	
AVE FATU	100	XXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXX
(26)	100	XXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXX	93	XXXXXXXXXXXXXXXXXXX
ALO MYOS	90	XXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXX	90	XXXXXXXXXXXXXXXXXXX
(27)	86	XXXXXXXXXXXXXXXX	71	XXXXXXXXXXXX	57	XXXXXXXXXX

Species

0.0005 kg/ha

0.002 kg/ha

0.008 kg/ha

POA ANN	94	XXXXXXXXXXXXXXXXXXX	94	XXXXXXXXXXXXXXXXXXXXXX	94	XXXXXXXXXXXXXXXXXXX
(28)	. 79	XXXXXXXXXXXXXXXXXX	57	XXXXXXXXXX	43	XXXXXXXXX
POA TRIV	1.00	XXXXXXXXXXXXXXXXXXXXXXX	60	XXXXXXXXXXXX	10	xx
(29)	86	XXXXXXXXXXXXXXXXXX	50	XXXXXXXXXX	21	XXXX
SIN ARV	73	XXXXXXXXXXXXXXXX	82	XXXXXXXXXXXXXXXX	82	XXXXXXXXXXXXXXXXXX
(30)	29	XXXXXX	21	XXXX	21	XXXX
RAPH RAP	30	XXXXXX	0		0	
(31)	43	XXXXXXXXX	0		0	
CHRY SEG	90	XXXXXXXXXXXXXXXXXXX	90	XXXXXXXXXXXXXXXXXX	50	XXXXXXXXX
(32)	29	XXXXXX	29	XXXXXX	14	XXX
MAT PERF	81	XXXXXXXXXXXXXXXX	75	XXXXXXXXXXXXXXXXX	75	XXXXXXXXXXXXXX
(33)	43	XXXXXXXXX	29	XXXXXX	29	XXXXXX
GAL APAR	100	XXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXX	83	XXXXXXXXXXXXXXXXX
(38)	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	71	XXXXXXXXXXXX	57	XXXXXXXXX
CHEN ALB	100	XXXXXXXXXXXXXXXXXXX	92	XXXXXXXXXXXXXXXXXXX	83	XXXXXXXXXXXXXXXX
(39)	79	XXXXXXXXXXXXXXXX	50	XXXXXXXX	29	XXXXXX
STEL MED	94	XXXXXXXXXXXXXXXXXXXXX	81	XXXXXXXXXXXXXXXXXX	62	XXXXXXXXXXXX
(40)	43	XXXXXXXXX	2.9	XXXXXX	14	XXX
SPER ARV	71	XXXXXXXXXXXXXXX	93	XXXXXXXXXXXXXXXXXXX	64	XXXXXXXXXXXXXXXX
(41)	43	XXXXXXXX	2.9	XXXXXX	2.1	XXXX
VER PERS	50	XXXXXXXXXXX	30	XXXXXX	50	XXXXXXXXXX
(42)	36	XXXXXXX	21	XXXX	14	XXX
VI ARVE	100	XXXXXXXXXXXXXXXXXXXXXX	20	XXXX	0	
(43)	71	XXXXXXXXXXXXXX	21	XXXX	0	

RUM OBTU	100	XXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXX
(44)	50	XXXXXXXXX	43	XXXXXXXXX	43	XXXXXXXX
EL REPEN	100	XXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXX
(47)	100	XXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXX
AG STOLO	1.00	XXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXX
(48)	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXX	86	XXXXXXXXXXXXX
PHAL PAR	100	XXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXX
(54)	100	XXXXXXXXXXXXXXXXXXXX	79	XXXXXXXXXXXXXXXXX	57	XXXXXXXXX
MAIZE+S	100	XXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXX
(56)	100	XXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXX
MAIZE	100	XXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXX
(57)	100	XXXXXXXXXXXXXXXXXX	50	XXXXXXXXXX	36	XXXXXX
SOYABEAN	100	XXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXX
(65)	29	XXXXXX	29	XXXXXX	29	XXXXXX
SOL NIG	100	XXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXX	83	XXXXXXXXXXXXXXXX
(81)	57	XXXXXXXXXX	43	XXXXXXXXX	29	XXXXXX
PHAL MIN	100	XXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXX
(84)	1.00	XXXXXXXXXXXXXXXXX	71	XXXXXXXXXXXXX	57	XXXXXXXXXX

CHLORAZIFOP

Code number

CGA 82725

Trade name -

Chemical name propynylester 2-[4-(3,5-dichloro-2-pyridyloxy)-phenoxy]-propionic acid,-2-

structure

C1
$$CH_3$$
 CH_2 $CE CH$

Source

Ciba-Geigy (UK) Ltd
Agrochemical Division
Whittlesford
Cambridge
CB2 4QT

Information available and suggested uses

Post-emergence control of grasses in broad-leaved crops at 0.5 to 1.5 kg a.i./ha.

This herbicide has now been withdrawn by the manufacturers.

Formulation used 20% w/v a.i. emulsifiable concentrate + 0.1% v/v Agral 90 surfactant.

Spray volume 370 1/ha for both experiments.

RESULTS

Full results are given in the histograms on pages 25-29 and potential selectivities are summarized in the following table.

RATE (kg/ha)	CROPS: vigour reduced by 15% or less	WEEDS: number or vigour reduced by 70% or more
1.6	dwarf bean field bean pea white clover carrot parsnip lettuce fenugreek sugar beet	Poa annua Elymus repens + species below
0.4	species above + wheat+safener (NA) barley±safener (NA) onion kale soyabean	species above
0.1	species above + wheat cabbage radish	Avena fatua Alopecurus myosuroides Poa trivialis Agrostis stolonifera Phalaris paradoxa Phalaris minor

Comments on results

Activity experiment

Grasses were very susceptible while broad-leaved species showed a high degree of tolerance. The post-emergence foliar spray was more active than the soil drenches on the two annual grasses, Avena fatua in fact being most susceptible to the foliar spray. Perennial ryegrass however was most susceptible to the pre-emergence surface treatments with 42% of plants being killed at 0.05 kg/ha and complete kill at higher doses. On grasses, the surface pre-emergence treatment was generally more effective than when incorporated into the soil. This difference was greatest with the smaller seeded ryegrass.

Symptoms on susceptible species

The main symptoms on grasses were a stunting of growth followed by a general necrosis of tissues. Chlorosis of new leaves was observed in several species this being interveinal with Elymus repens while older leaves often became darker green. At higher doses pre-emergence, plants often failed to emerge or died back from the one-leaf stage. Roots of Avena fatua were weakened at low doses pre-emergence. Tillers of grasses were often inhibited partially or completely.

Effects on broad-leaved species were only seen at the higher doses and consisted of a general lack of vigour, as well as stunting and necrosis. This was severe on some of the brassicas, resulting in death of some plants. Some formative effects were seen on kale, rape, soyabean and sugar beet and in the latter species appeared as inrolling of leaves from their margins.

Post-emergence selectivity

Only certain grass weeds were controlled, all broad-leaved species being resistant. Six grasses, Avena fatua, Alopecurus myosuroides, Poa trivialis, Agrostis stolonifera and both Phalaris species were controlled at the lowest dose of 0.1 kg/ha. Poa annua and Elymus repens were controlled at 0.4 kg/ha and above. Festuca rubra and in particular, Bromus sterilis, were resistant.

Most broad-leaved crops were tolerant. All leguminous crops tested and carrot, parsnip, lettuce and sugar beet tolerated the highest dose of 1.6 kg/ha. Brassica crops were not quite so tolerant however, rape showing symptoms even at the lowest dose while radish and cabbage tolerated only 0.1 kg/ha and kale 0.4 kg/ha. Onion was reduced in vigour by only 21% at 1.6 kg/ha. Surprisingly barley was tolerant to 0.4 kg/ha while wheat was reduced in vigour by only 21%. Perennial ryegrass and in particular, oat and maize were very sensitive.

Important grass weeds are apparently more susceptible than many broad-leaved crops as with the other new graminicides, such as fluazifop-butyl, fenthiaprop-ethyl, haloxyfop and sethoxydim. Similarly, Poa annua is relatively resistant necessitating mixture studies. Control of volunteer barley and wheat may not be as good with chlorazifop as with the other graminicides. Of more interest however was the tolerance of these two species to doses which killed or controlled Avena fatua and Alopecurus myosuroides, for which there is no post-emergence cereal herbicide. The resistance of Bromus sterilis was a disadvantage in these two cereals however.

ACTIVITY EXPERIMENT

CHLORAZIFOP

		0.05 kg/ha	0.25 kg/ha	1.25 kg/ha
	F	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXX
DWARF BEAN	S	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
DWART DEAR	P	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
	Ι	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
	F	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
KALE	S	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
	P.	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
	Ι	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
	F	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
POLYGONUM	S	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
AMPHIBIUM	P	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXX
	I	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
	F	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
PERENNIAL	S	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
RYEGRASS	P	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	0	0
	Ι	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXX
	F	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXX
AVENA FATUA	S	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
	P	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
	Ι	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
	F	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXX
ELYMUS	S	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXX
REPENS	P	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXX XX
	Ι	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

KEY: F = post-emergence, foliar application

S = post-emergence, soil drench

P = pre-emergence, surface film

I = pre-planting, incorporated

XXXXXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXXXXXX

100 XXXXXXXXXXXXXXXXXXXXX

57 XXXXXXXXXXXXX

W CLOVER

(12)

RAPE

(14)

XXXXXXXXXXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXX

XXXXXXXXXXXX

29 XXXXXX

XXXXXXXXXXXXXXXXXX

Species		0.1 kg/ha		0.4 kg/ha		1.6 kg/ha	
KALE	100	XXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	70	XXXXXXXXXXXXXXXX	
(15)	86	XXXXXXXXXXXXXXXXXX	86	XXXXXXXXXXXXXXXXXXX	79	XXXXXXXXXXXXXXXXX	
CABBAGE	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	70	XXXXXXXXXXXXXXXXX	
(16)	93	XXXXXXXXXXXXXXXXXXXX	79	XXXXXXXXXXXXXXXX	57	XXXXXXXXXX	PO
CARROT	114	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	114	***************************************	114	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	-TS(
(18)	93	XXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXX	1.00	XXXXXXXXXXXXXXXXXXXXXXX	EME
PARSNIP	100	XXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXX	ERGENCE
(19)	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	NCE
LETTUCE	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXX	SEI
(20)	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	93	XXXXXXXXXXXXXXXXXXXXXX	LEC
FENUGREK	100	XXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	TIV
(21)	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXX	93	XXXXXXXXXXXXXXXXXXX	YTI
SUG BEET	1.00	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXX	TES
(22)	1.00	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	93	XXXXXXXXXXXXXXXXXXX	93	XXXXXXXXXXXXXXXXXXXX	TS
BETA VULG	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXX	
(23)	1.00	XXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXX	
BROM STE	100	XXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXX	
(24)	100	XXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXX	
FEST RUB	100	XXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXX	75	XXXXXXXXXXXXXXXXX	
(25)	86	XXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXX	57	XXXXXXXXXXX	
AVE FATU	30	XXXXXX	0		0		
(26)	14	XXX	0		0		
ALO MYOS	50	XXXXXXXXXX	0		0		
(27)	14	XXX	0		0		

27

Species		0.1 kg/ha		0.4 kg/ha		1.6 kg/ha	
TO TO TO TOTAL	04	XXXXXXXXXXXXXXXXX	75	XXXXXXXXXXXXXXX	12	XX	
POA ANN (28)	100			XXXXXXXXXX	7	x	
(20)							
POA TRIV	0		0		0		PO
(29)	0		0		0		TS
					91	XXXXXXXXXXXXXXXXX	田田
SIN ARV	91	XXXXXXXXXXXXXXXXX	91	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	86	XXXXXXXXXXXXXXXXX	
(30)	100	XXXXXXXXXXXXXXXXXXXXXXXX	86	XXXXXXXXXXXXXXXXX			RGE
	200		100	XXXXXXXXXXXXXXXXXXXX	70	XXXXXXXXXXXX	ENC
RAPH RAP	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	79	XXXXXXXXXXXXXXXXXX	50	XXXXXXXX	iri i
(31)	300	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX					SE
CHIENE CIEC	700	XXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXX	300	XXXXXXXXXXXXXXXXXXXX	E
CHRY SEG	100		86	XXXXXXXXXXXXXXXXX	71.	XXXXXXXXXXXX	CT 2
(32)	100						~ ~
							E
MAT PERF	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXX	
(33)	100	XXXXXXXXXXXXXXXXXXXXXXX	1.00	XXXXXXXXXXXXXXXXXXXXXXXX	93	XXXXXXXXXXXXXXXXXX	TES S
					200		H
GAL APAR	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100		100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	
(38)	100	XXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXX	86	XXXXXXXXXXXXXX	
					100	XXXXXXXXXXXXXXXXXX	
CHEN ALB	100	XXXXXXXXXXXXXXXXXXXX	92		100	XXXXXXXXXXXXXXXXXX	
(39)	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXX	200		
	200		1.00	XXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXX	
STEL MED	100		100		100	XXXXXXXXXXXXXXXXXXXXXXX	
(40)	100	XXXXXXXXXXXXXXXXXX					
CDED ADV	86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	93	XXXXXXXXXXXXXXXXXXXXXXX	300	XXXXXXXXXXXXXXXXXXXXXX	
SPER ARV	100		100		100	XXXXXXXXXXXXXXXXXXXXX	
(41)	1.00						
VER PERS	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100		
(42)	100		79	XXXXXXXXXXXXXXXXX	57	XXXXXXXXXXX	
,,							
VI ARVE	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	60	XXXXXXXXXXXX	80		
			02	**************************************	64	XXXXXXXXXXXXXXXXX	

XXXXXXXXXXXXXXXXXXXXXXXXX

(43)

64 XXXXXXXXXXXXXXXXX

Species		0.1 kg/ha		0.4 kg/ha		1.6 kg/ha		
DUM OPPILI	100	XXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		
RUM OBTU (44)		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	71	XXXXXXXXXXXX		
FI. REPEN	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	87	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	75	XXXXXXXXXXXXX	POS	
(47)		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	71	XXXXXXXXXXXXXXX	29	XXXXXX	T-E	
AG STOLO	70	XXXXXXXXXXXXX	60	XXXXXXXXXXXXX	10	xx	MER	
(48)	29	XXXXXX	14	XXX	7	X	GEN	
DIVAT DAD	40	XXXXXXXX	10	XX	0		CE	
PHAL PAR (54)	29	XXXXXX		x	0		SEL	
3.00 T.0777.1.0	22	vvvvvv	0		0		ECT	
MAIZE+S (56)	33 57	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	0		0		IVI	
	•		0		0		TY	
MAIZE (57)	0		0		0		TEST	29
	200	XXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXX		
SOYABEAN (65)	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	86	XXXXXXXXXXXXXXXXXX	79	XXXXXXXXXXXXX		
COL NIC	100	XXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXX		
SOL NIG (81)			1.00	XXXXXXXXXXXXXXXXXXXXXXXXX	300	XXXXXXXXXXXXXXXXXXXX		
TOTTE T DETENT	70	XXXXXXXXXXXXX	0		0			
PHAL MIN (84)	29		0		0			

ACKNOWLEDGEMENTS

We are most grateful to the joint Letcombe/WRO Statistics Section for processing the experimental data; Messrs R H Webster, R M Porteous and S L Burbank for technical and practical assistance; to Mrs L Gawne and Mrs J Wallsworth for the preparation and typing of this report; to Mrs S Cox and her staff for its duplication and to the commercial firms who provided the chemicals and relevant data.

REFERENCES

- RICHARDSON, W. G. and DEAN, M.L. (1974) The activity and post-emergence selectivity of some recently developed herbicides: oxadiazon, U-29,722, U-27,658, metflurazone, norflurazone, AC 50,191, AC 84,777 and iprymidam. Technical Report Agricultural Research Council Weed Research Organization, 32, pp. 74.
- RICHARDSON, W.G. and PARKER, C. (1977) The activity and post-emergence selectivity of some recently developed herbicides: KUE 2079A, HOE 29152, RH 2915, triclopyr and Dowco 290. Technical Report Agricultural Research Council Weed Research Organization, 42, pp. 53.
- PICHARDSON, W.G., WEST, T.M. and PARKER, C. (1980) The activity and post-emergence selectivity of some recently developed herbicides: R 40244, DPX 4189, acifluorfen, ARD 34/02 (NP 55) and PP 009. Technical Report Agricultural Research Council Weed Research Organization, 61, pp. 55.
- RICHARDSON, W.G., WEST, T.M. and PARKER, C. (1981) The activity and pre-emergence selectivity of some recently developed herbicides: UBI-S734, SSH-43, ARD 34/02 (= NP 55), PP 009 and DPX 4189. Technical Report Agricultural Research Council Weed Research Organization, 62, pp. 59.
- PARKER, C., RICHARDSON, W.G. and WEST, T.M. (1980) Potential for extending the selectivity of DPX 4189 by use of herbicide safeners. Proceedings British Crop Protection Conference Weeds, 1, 15-22.

Appendix 1. Species, abbreviations, varieties and stages of growth at spraying and assessment for post-emergence selectivity test

Species	Designa- tion and computer serial number	Cultivar or source	Stage of growth at spraying	Stage of growth at assessment (untreated controls, leaf numbers exclusive of cotyledons)
Wheat (Triticum aestivum)	WHEAT (1)	Timmo	3.5-4.5 leaves, l tiller	3-5 tillers
Wheat + safener	WHEAT + S	Timmo	3 leaves	4 tillers
Barley (Hordeum vulgare)	BARLEY (3)	Triumph	3-5 leaves, 1 tiller	4-5 tillers
Barley + safener	BARLEY + S	Triumph	2-2.5 leaves	4-5 tillers
Oat (Avena sativa)	OAT (5)	Pennal	2.5-3 leaves	4-6 tillers
Perennial ryegrass (Lolium perenne)	PER RYGR (6)	S 23	1 tiller	7-9 tillers
Onion (Allium cepa)	ONION (8)	Robusta	2-2.5 leaves	4.5 leaves
Dwarf bean (Phaseolus vulgaris)	DWF BEAN (9)	Masterpiece	2 unifoliate leaves	5 trifoliate leaves, flowering
Field bean (Vicia faba)	FLD BEAN (10)	Maris Bead	3 leaves	10-12 leaves, flowering
Pea (Pisum sativum)	PEA (11)	Dark Skinned Perfection	3.5 leaves	Up to 10 leaves
White Clover (Trifolium repens)	W CLOVER (12)	S 100	4 trifoliate leaves	Numerous trifoliate leaves
Rape (Brassica napus oleifera)	RAPE (14)	Jet Neuf	2.5-3.5 leaves	7-7.5 leaves
Kale (Brassica oleracea acephala)	KALE (15)	Marrowstem	2-2.5 leaves	3.5-4.5 leaves
Cabbage (Brassica oleracea capitata)	CABBAGE (16)	Derby Day	2-2.5 leaves	8-8.5 leaves

Species	Designa- tion and computer serial number	Cultivar or source	Stage of growth at spraying	stage of growth at assessment (untreated controls, leaf numbers exclusive of cotyledons)
Carrot (Daucus carota)	CARROT (18)	Chantenay Red Core	3-3.5 leaves	7-8 leaves
Parsnip (Pastinaca sativa)	PARSNIP (19)	Evesham	2.5 leaves	4.5-5 leaves
Lettuce (Lactuca sativa)	LETTUCE (20)	Reskia	3.5 leaves	6-10 leaves
Fenugreek (Trigonella foenumgraecum)	FENUGREK (21)	Paul	3-4 trifoliate leaves	7.5-8.5 trifoliate leaves
Sugar beet (Beta vulgaris)	SUG BEET (22)	Nomo	4-5 leaves	10 leaves
Beta vulgaris	BETA VUL (23)	WRO 1981 ex Attleborough	3-4 leaves	14 leaves
Bromus sterilis	BROM STE (24)	WRO 1982	2-3 tillers	Up to 10 tillers
Festuca rubra	FEST RUB (25)	Boreal	3-3.5 leaves	7-20 tillers
Avena fatua	AVE FATU (26)	WRO 1980	2-3 tillers	3-4 tillers
Alopecurus myosuroides	ALO MYOS (27)	WRO 1982	1-2 tillers	Up to 14 tillers
Poa annua	POA ANN (28)	B & S Supplies, 1978	2-3 tillers	8-10 tillers
Poa trivialis	POA TRIV (29)	B & S Supplies, 1981	1-3 tillers	8-10 tillers
Sinapis arvensis	SIN ARV (30)	WRO 1981	5 leaves	Numerous leaves, podded
Raphanus raphanistrum	RAPH RAP	Long Black Spanish	2.5-4 leaves	4.5-6 leaves
Chrysanthemum segetum	CHRY SEG	WRO 1982	8 leaves	Up to 11 leaves
Matricaria perforata	MAT PERF (33)	WRO 1981	7-9 leaves	Numerous leaves, flowering
Galium aparine	GAL APAR (38)	WRO 1981	3-3.5 whorls	Numerous whorls

Species	Designa- tion and computer serial number	Cultivar or source	Stage of growth at spraying	Stage of growth at assessment (untreated controls, leaf numbers exclusive of cotyledons)
Chenopodium album	CHEN ALB	WRO 1979	Up to 14 leaves	Numerous leaves, flowering
Stellaria media	STEL MED (40)	B & S Supplies, 1982	Up to 18 leaves	Numerous leaves, flowering
Spergula arvensis	SPER ARV	WRO, 1981	3-4 whorls	Numerous whorls, flowering
Veronica persica	VER PERS (42)	WRO, 1980	9-11 leaves	Numerous leaves, flowering
Viola arvensis	VI ARVE (43)	B & S Supplies, 1982	3-7 leaves	Numerous leaves, flowering
Rumex obtusifolius	RUM OBTU (44)	WRO, 1981	3-4.5 leaves	5.5 leaves
Elymus repens	EL REPEN (47)	WRO Clone 31*	2.5-3 leaves	4-5 tillers
Agrostis stolonifera	AG STOLO (48)	B & S Supplies, 1981	4-6 stolons	18-25 stolons
Cirsium arvense	CIRS ARV (50)	WRO Clone 1**	10-10.5 leaves	Numerous leaves
Phalaris paradoxa	PHAL PAR (54)	Ethiopia, 1979	Up to 2 tillers	5-7 tillers, flowering
Maize + safener (Zea mays)	MAIZE + S (56)	LG 11	4.5 leaves	6-6.5 leaves
Maize (Zea mays)	MAIZE (57)	LG 11	3.5 leaves	5.5-6.5 leaves
Soybean (Glycine max)	SOYABEAN (65)	Anoko	2 unifoliates	3.5 trifoliate leav
Solanum nigrum	SOL NIG (81)	WRO, 1980	3.5-4 leaves	5-6 leaves, flowering
Phalaris minor	PHAL MIN (84)	WRO, 1979	2 tillers	5 tillers

^{*} one node rhizome pieces

^{**} root fragments

ABBREVIATIONS

angström	R	freezing point	f.p.
Abstract	Abs.	from summary	F.s.
acid equivalent*	a.e.	gallon	gal
acre	ac	gallons per hour	ga1/h
active ingredient*	a.i.	gallons per acre	gal/ac
approximately equal to*		gas liquid chromatography	GLC
aqueous concentrate	a.c.	gramme	g
bibliography	bibl.	hectare	ha
boiling point	b.p.	hectokilogram	hkg
bushel	bu	high volume	HV
centigrade	C	horse power	hp
centimetre*	cm	hour	h
concentrated	concd	hundredweight*	cwt
concentration x	concn	hydrogen ion concentration*	pH
time product	ct	inch	in.
concentration required to kill		infra red	i.r.
50% test animals	LC50	kilogramme	kg
cubic centimetre*	cm ³	kilo (x10 ³)	k
cubic foot*	ft ³	less than	<
cubic inch*	in ³	litre	1.
cubic metre*	m ³	low volume	LV
cubic yard*	yd ³	maximum	max.
cultivar(s)	cv.	median lethal dose	LD50
curie*	Ci	medium volume	MV
degree Celsius*	°c	melting point	m.p.
degree centigrade	°C	metre	m
degree Fahrenheit*	o _F	micro (x10 ⁻⁶)	μ
diameter	diam.	microgramme*	μg
diameter at breast height	d.b.h.	micromicro (pico: x10 ⁻¹²)*	im
divided by*	e or /	micrometre (micron)*	μm (or μ)
dry matter	d.m.	micron (micrometre)*†	μm (or μ)
emulsifiable		miles per hour*	mile/h
concentrate	e.c.	milli (x10 ⁻³)	m
equal to*	=	milliequivalent*	m.equiv.
fluid	f1.	milligramme	
foot	ft	millilitre	mg m1
			ml

t The name micrometre is preferred to micron and μm is preferred to μ .

millimetre*	mm	pre-emergence	pre-em.
millimicro* (nano: x10 ⁻⁹)		quart	quart
	n or mu	relative humidity	r.h.
minimum	min.	revolution per minute*	rev/min
minus		second	8
minute	min	soluble concentrate	s.c.
molar concentration*	M (small cap)	soluble powder	s.p.
molecule, molecular	mol.	solution	soln
more than	>	species (singular)	sp.
multiplied by*	x	species (plural)	spp.
normal concentration*	N (small cap)	specific gravity	sp. gr.
not dated	n.d.	square foot*	ft2
oil miscible	o.m.c.	square inch	in ²
concentrate	(tables only)	square metre*	m ²
organic matter	O.M.	square root of*	
ounce	OZ	sub-species*	ssp.
ounces per gallon	oz/gal		S.
page	p.	temperature	temp.
pages	pp.		
parts per million	ppm	ton	ton
parts per million		tonne	t
by volume	ppmv	ultra-low volume	ULV
parts per million by weight	ppmw	ultra violet	u.v.
percent(age)	%	vapour density	v.d.
pico		vapour pressure	v.p.
(micromicro: x10 ⁻¹²)	p or µµ	varietas	var.
pint	pint	volt	V
pints per acre	pints/ac	volume	vol.
plus or minus*	+	volume per volume	V/V
post-emergence	post-em	water soluble powder	W.s.p. (tables only)
pound	16	watt	W
pound per acre*	lb/ac	weight	wt
pounds per minute	lb/min	weight per volume*	W/V
pound per square inch*	lb/in ²	weight per weight*	W/W
powder for dry	p.	wettable powder	w.p.
application	(tables only)	yard	yd
power take off	p.t.o.	yards per minute	yd/min
precipitate (noun)	ppt.		

^{*} Those marked * should normally be used in the text as well as in tables etc.

WEED RESEARCH ORGANIZATION

TECHNICAL REPORTS (Price includes surface mail; airmail £2.00 extra)

(* denotes Reports now out of print)

- 6. The botany, ecology, agronomy and control of Poa trivialis L. rough-stalked meadow-grass. November 1966. G P Allen. Price £0.25
- 7. Flame cultivation experiments 1965. October 1966. G W Ivens. Price £0.25
- 8. The development of selective herbicides for kale in the United Kingdom.
 2. The methylthiotriazines. Price £0.25
- 10. The liverwort, Marchantia polymorpha L. as a weed problem in horticulture; its extent and control. July 1968. I E Henson. Price £0.25
- 11. Raising plants for herbicide evaluation; a comparison of compost types. July 1968. I E Henson. Price £0.25
- *12. Studies on the regeneration of perennial weeds in the glasshouse; I. Temperate species. May 1969. I E Henson. Price £0.25
 - 13. Changes in the germination capacity of three Polygonum species following low temperature moist storage. June 1969. I E Henson. Price £0.25
 - 14. Studies on the regeneration of perennial weeds in the glasshouse. II. Tropical species. May 1970. I E Henson. Price £0.25
 - 15. Methods of analysis for herbicide residues. February 1977. (second edition). Price £5.75
 - 16. Report on a joint survey of the presence of wild oat seeds in cereal seed drills in the United Kingdom during spring 1970. November 1970.

 J G Elliott and P J Attwood. Price £0.25
 - 17. The pre-emergence selectivity of some newly developed herbicides,
 Orga 3045 (in comparison with dalapon), haloxydine (PP 493), HZ 52.112,
 pronamide (RH 315) and R 12001. January 1971. W G Richardson, C Parker
 and K Holly. Price £0.25
- 18. A survey from the roadside of the state of post-harvest operations in Oxfordshire in 1971. November 1971. A Phillipson. Price £0.25
- *19. The pre-emergence selectivity of some recently developed herbicides in jute, kenaf and sesamum, and their activity against Oxallis latifolia. December 1971. M L Dean and C Parker. Price £0.25

- * 20. A survey of cereal husbandry and weed control in three regions of England. July 1972. A Phillipson, T W Cox and J G Elliott.

 Price £0.35
 - 21. An automatic punching counter. November 1972. R C Simmons. Price £0.30
 - 22. The pre-emergence selectivity of some newly developed herbicides: bentazon, BAS 3730H, metflurazone, SAN 9789, HER 52.123, U 27,267. December 1972. W G Richardson and M L Dean. Price £0.25
 - 23. A survey of the presence of wild oats and blackgrass in parts of the United Kingdom during summer 1972. A Phillipson. Price £0.25
 - 24. The conduct of field experiments at the Weed Research Organization. February 1973. J G Elliott, J Holroyd and T O Robson. Price £1.25
 - 25. The pre-emergence selectivity of some recently developed herbicides: lenacil, RU 12068, metribuzin, cyprazine, EMD-IT 5914 and benthiocarb. August 1973. W G Richardson and M L Dean. Price - £1.75.
 - 26. The post-emergence selectivity of some recently developed herbicides: bentazon, EMD-IT 6412, cyprazine, metribuzin, chlornitrofen, glyphosate, MC 4379, chlorfenprop-methyl. October 1973. W G Richardson and M L Dean. Price £3.31
 - 27. Selectivity of benzene sulphonyl carbamate herbicides between various pasture grasses and clover. October 1973. A M Blair. Price £1.05
 - 28. The post-emergence selectivity of eight herbicides between pasture grasses: RP 17623, HOE 701, BAS 3790, metoxuron, RU 12068, cyprazine, MC 4379, metribuzin. October 1973. A M Blair. Price £1.00
- *29. The pre-emergence selectivity between pasture grasses of twelve herbicides: haloxydine, pronamide, NC 8438, Orga 3045, chlortoluron, metoxuron, dicamba, isopropalin, carbetamide, MC 4379, MBR 8251 and EMD-IT 5914. November 1973. A M Blair. Price £1.30
 - 30. Herbicides for the control of the broad-leaved dock (Rumex obtusifolius L.). November 1973. A M Blair and J Holroyd. Price £1.06
 - 31. Factors affecting the selectivity of six soil acting herbicides against Cyperus rotundus. February 1974. M L Dean and C Parker. Price £1.10
 - 32. The activity and post-emergence selectivity of some recently developed herbicides: oxadiazon, U-29,722, U-27,658, metflurazone, norflurazone, AC 50-191, AC 84,777 and iprymidam. June 1974. W G Richardson and M L Dean. Price £3.62
 - 33. A permanent automatic weather station using digital integrators. September 1974. R C Simmons. Price £0.63.
 - 34. The activity and pre-emergence selectivity of some recently developed herbicides: trifluralin, isopropalin, oryzalin, dinitramine, bifenox and perfluidone. November 1974. W G Richardson and M L Dean.

 Price £2.50

- 35. A survey of aquatic weed control methods used by Internal Drainage Boards, 1973. January 1975. T O Robson. Price £1.39
- 36. The activity and pre-emergence selectivity of some recently developed herbicides: Bayer 94871, tebuthiuron, AC 92553. March 1975.

 W G Richardson and M L Dean. Price £1.54
- 37. Studies on Imperata cylindrica (L.) Beauv. and Eupatorium odoratum L. October 1975. G W Ivens. Price £1.75
- 38. The activity and pre-emergence selectivity of some recently developed herbicides: metamitron, HOE 22870, HOE 23408, RH 2915, RP 20630.

 March 1976. W G Richardson, M L Dean and C Parker. Price £3.25
- 39. The activity and post-emergence selectivity of some recently developed herbicides: HOE 22870, HOE 23408, flamprop-methyl, metamitron and cyperquat. May 1976. W G Richardson and C Parker. Price £3.20
- 40. The activity and pre-emergence selectivity of some recently developed herbicides: RP 20810, oxadiazon, chlornitrofen, nitrofen, flamprop-isopropyl. August 1976. W G Richardson, M L Dean and C Parker.

 Price £2.75.
- 41. The activity and pre-emergence selectivity of some recently developed herbicides: K 1441, mefluidide, WL 29226, epronaz, Dowco 290 and triclopyr. November 1976. W G Richardson and C Parker. Price £3.40.
- 42. The activity and post-emergence selectivity of some recently developed herbicides: KUE 2079A, HOE 29152, RH 2915, Triclopyr and Dowco 290.

 March 1977. W G Richardson and C Parker. Price £3.50
- 43. The activity and pre-emergence selectivity of some recently developed herbicides: dimefuron, hexazinone, trifop-methyl, fluothiuron, buthidazole and butam. November 1977. W G Richardson and C Parker. Price £3.75.
- 44. The activity and selectivity of the herbicides: ethofumesate, RU 12709 and isoproturon. December 1977. W G Richardson, C Parker, & M L Dean. Price £4.00
- 45. Methods of analysis for determining the effects of herbicides on soil soil micro-organisms and their activities. January 1978. M P Greaves, S L Cooper, H.A Davies, J A P Marsh & G I Wingfield. Price £4.00
- 46. Pot experiments at the Weed Research Organization with forest crop and weed species. February 1978. D J Turner and W G Richardson. Price £2.70
- 47. Field experiments to investigate the long-term effects of repeated applications of MCPA, tri-allate, simazine and linuron effects on the quality of barley, wheat, maize and carrots. July 1978.

 J D Fryer, P D Smith and J W Ludwig. Price £1.20.
- 48. Factors affecting the toxicity of paraquat and dalapon to grass swards. March 1978. A K Oswald. Price £2.90
- 49. The activity and post-emergence selectivity of some recently developed herbicides: NP 48, RH 5205 and Pyridate. May 1978. W G Richardson and C Parker. Price £2.50

- 50. Sedge weeds of East Africa II. Distribution. July 1978. P J Terry.
 Price £1.50
- 51. The activity and selectivity of the herbicides methabenzthiazuron, metoxuron, chlortoluron and cyanazine. September 1978.
 W G Richardson and C Parker. Price £2.20.
- 52. Antidotes for the protection of field bean (Vicia faba L.) from damage by EPTC and other herbicides. February 1979. A M Blair. Price £1.35
- 53. Antidotes for the protection of wheat from damage by tri-allate. February 1979. A M Blair. Price £2.00
- 54. The activity and pre-emergence selectivity of some recently developed herbicices: alachlor, metolachlor, dimethachlor, alloxydim-sodium and fluridone. April 1979. W G Richardson and C Parker. Price £3.00
- 55. The activity and selectivity of the herbicides carbetamide, methazole, R 11913 and OCS 21693. May 1979. W G Richardson and C Parker. Price £1.80
- 56. Growing weeds from seeds and other propagules for experimental purposes.

 July 1979. R H Webster. Price £1.10
- 57. The activity and pre-emergence selectivity of some recently developed herbicides: R 40244, AC 206784, pendimethalin, butralin, acifluorfen and FMC 39821. December 1979. W G Richardson, T M West and C Parker Price £3.55
- 58. The tolerance of fenugreek (Trigonella foenumgraecum L.) to various herbicides. December 1979. W G Richardson. Price £1.55
- 59. Recommended tests for assessing the side-effects of pesticides on the soil microflora. April 1980. M P Greaves, N J Poole, K H Domsch, G Jagnow and W Verstraete. Price £2.00
- 60. Properties of natural rainfalls and their simulation in the laboratory for pesticide research. September 1980. R C Simmons. Price £1.25
- 61. The activity and post-emergence selectivity of some recently developed herbicides: R 40244, DPX 4189, acifluorfen, ARD 34/02 (NP 55) and PP 009. November 1980. W G Richardson, T M West and C Parker. Price £3.75
- 62. The activity and pre-emergence selectivity of some recently developed herbicides: UBI S-734, SSH-43, ARD 34/02 (= NP 55), PP 009 and DPX 4189. February 1981. W G Richardson, T M West and C Parker. Price £3.50
- 63. The activity and post-emergence selectivity of some recently developed herbicides: SSH-41, MB 30755, AC 213087, AC 2222293 and Dowco 433.

 May 1981. W G Richardson, T M West and C Parker. Price £3.50
- 64. The activity and pre-emergence selectivity of some recently developed herbicides: chlomethoxynil, NC 20484 and MBR 18337. March 1982.

 W G Richardson, T M West and C Parker. Price £3.00
- 65. A system for monitoring environmental factors in controlled environment chambers and glasshouses. June 1982. R C Simmons. Price £1.50

- 66. The activity and pre-emergence selectivity of some recently developed herbicides: AC 213087 and AC 222293. December 1982. W G Richardson, T M West and C Parker. Price £2.00
- 67. The activity and post-emergence selectivity of some recently developed herbicides: trifopsime, glufosinate, RH 8817, MBR 18337 and NC 20484. December 1982. W G Richardson, T M West and C Parker. Price £3.25
- 68. The activity and pre-emergence selectivity of some recently developed herbicides: WL 49818, WL 82830, WL 83627, WL 83801 and DPX 5648.

 December 1982. W G Richardson, T M West and C Parker. Price £4.00
- 69. The activity and late post-emergence selectivity of some recently developed herbicides: AC 252925, DOWCO 453, HOE 33171 and HOE 35609. March 1983. W G Richardson, T M West and G P White. Price £3.25
- 70. The potential of various herbicides for selective control of weed grasses and Stellaria media in newly sown ryegrass/clover leys and ryegrass seed crops. May 1983. F W Kirkham Price £1.75
- 71. A feasibility study of the use of chemicals for rural amenity areas.

 Sponsored by the Countryside Commission. September 1983. E J P Marshall Price £5.00
- 72. The activity and late post-emergence selectivity of FBC 32197.

 November 1983. W G Richardson, T M West and G P White. Price £1.25
- 73. Paraquat persistence statistical analysis of the WRO long term trial.

 January 1984. R J Hance, T H Byast and T M Weight. Price £1.00
- 74. The activity and post-emergence selectivity of some recently developed herbicides: AC 252214, DPX-T6376, and chlorazifop. February 1984. W G Richardson, T M West and G P White. Price £2.00.