

TECHNICAL REPORT No. 72

THE ACTIVITY AND LATE POST-EMERGENCE SELECTIVITY OF FBC 32197 FBC 32197 is quizalofop-ethyl

W G Richardson, T M West and G P White

November 1983

Price - £1.25

1

Agricultural Research Council Weed Research Organization, Begbroke Hill, Yarnton, Oxford, OX5 1PF

126

ISSN 0511 4136 ISBN 0 7084 0289 5

Page

1

SUMMARY

INTRODUCTION

METHODS AND MATERIALS

RESULTS

FBC 32197 Ethyl 2-[4-(6-chloroquinoxalin-2-yloxy)phenoxy] propionate

CONTENTS

ACKNOWLEDGEMENTS

REFERENCES

APPENDIX

. .

15

5

14

14

The content of this publication, in whole or in part, may be quoted or , reproduced provided the authors and the ARC Weed Research Organization are fully acknowledged. The correct bibliographical reference is:-

RICHARDSON, W.G., WEST, T.M. and WHITE, G.P. The activity and late post-emergence selectivity of FBC 32197. Technical Report Agricultural Research Council Weed Research Organization, 1983, 72, pp. 17.

THE ACTIVITY AND LATE POST-EMERGENCE SELECTIVITY OF FBC 32197.

W.G. Richardson*, T.M. West* and G.P. White* Agricultural Research Council Weed Research Organization Begbroke Hill, Yarnton, Oxford OX5 1PF

SUMMARY

FBC 32197 was examined for post-emergence selectivity on 44 crop and weed species. Its route of action was determined on six selected species in a separate test. The safener 1,8 naphthalic anhydride (NA) was used as a seed dressing on wheat, barley and maize to see if herbicide effects could be reduced.

FBC 32197 showed outstanding potential control of many grass weeds, including volunteer cereals, in onion and most broad-leaved crops. All broad-leaved weeds were resistant however. Festuca rubra and Poa annua were the two most resistant grasses but the latter species showed some susceptibility to the higher doses.

The safener, NA, did not reduce toxicity sufficiently to be of any practical use in wheat, barley or maize.

INTRODUCTION

The pre- and post-emergence selectivities and effects of new herbicides are investigated at WRO on a large number of pot-grown crop and weed species. The limitations of these investigations are that only one crop variety or source of weed species is used and growth is in one particular soil type, at only one depth of sowing without interspecific competition. Consequently the results should only be used as a guide for further work, as plant responses in pot experiments can be very different to those in the field.

This report gives indications of the post-emergence selectivity of FBC 32197. Results of an activity experiment are also included to provide information on levels of phytotoxicity, type and route of action.

METHODS AND MATERIALS

(a) Activity experiment (AE 1) This was carried out on six selected species as described previously (Richardson and Dean, 1974). Three annual species and perennial ryegrass were raised from seeds and two perennials from rhizome fragments. There were two replicates for each treatment. Herbicides were applied by four different methods:

- (i) post-emergence to the foliage only, avoiding contact with the soil,
- (ii) post-emergence to the soil only, as a drench avoiding foliage contact,
- (iii) pre-emergence to the soil surface,
- (iv) pre-emergence with thorough incorporation, before planting.

* Herbicide Group

Experimental details are summarised in Tables 1 and 2.

(b) Post-emergence selectivity experiment

The experimental details were as previously described (Richardson and Parker, 1977). Plants were raised in 9 or 10 cm diameter plastic pots in soil taken from a field near Begbroke Hill (Yarnton). Planting dates were staggered so that the majority of species would reach a pre-determined leaf stage (2-4 leaves) by the time of spraying. However, as can be noted in Appendix I,

2

several species were at a more advanced stage of growth. All species were raised in the open.

Table 1. Plant data for activity experiment (AE 1)

Species	Cultivar source	No.per pot at spraying		Depth of plant- ing	Stage of growth at Spraying Assessment		
		pre-	post	(Cm)	post-em	pre-em	post-em
Dwarf bean (Phaseolus vulgaris)	The Prince	4	1-2	1.5	2 uni- foliate leaves	3 tri- foliate leaves	4 tri- foliate leaves

Kale (Brassica oleracea acephala)	Marrow- stem	12	6	0.5	2-2.5 leaves	5 leaves	4 leaves
Polygonum amphibium	WRO Clone 1	6	5	1.0	5.5 leaves	9 leaves	10 leaves
Perennial ryegrass (Lolium perenne)	S 23	15	10	0.5	3.5 leaves	5 tillers	6 tillers
Avena fatua	WRO 1978	12	5	1.0	3 leaves	1-2 tillers	3-5 tillers
Agropyron repens	WRO Clone 31	6	4	1.0	3 leaves	2-3 tillers	2 tillers

Table 2. Soil and environmental conditions in two experiments

Experiment type	Activity experiment	Post-emergence selectivity test
Date of spraying	14.5.82	9.6.82
Main assessment completed	18.6.82	30.6.82
Organic carbon (%)	1.3	1.3
Clay content (%)	16.0	16.0
pH (in water; 1:2 soil:water ratio)) 7.5	7.5
Superphosphate (g/kg)	2.0	2.0
Vitax QS 3 fertilizer (g/kg)	2.5	2.5
Hydrated Mg S0 ₄ 7H ₂ 0 (g/kg)	0.8	0.8
Temperature (°C)	Glasshouse	Outdoors
Mean	19	17
Maximum	34	30
Minimum	10	10

Mean	60	60
Maximum	90	87
Minimum	26	22

Before spraying, each species was thinned to constant number per pot. Certain plant material was pre-treated to improve establishment:- seeds of <u>Chenopodium album and Polygonum lapathifolium were soaked in 0.1 M potassium</u> nitrate solution and then kept in the light for two and three days respectively prior to planting; seeds of <u>Alopecurus myosuroides</u> were soaked in distilled water and kept in the light for 24 hours; <u>Rumex obtusifolius</u> seeds were dehusked; <u>Veronica persica</u> and <u>Agrostis stolonifera</u> were sown in a tray of peat compost and seedlings (1-2 true leaves) transplanted into the potting medium.

To protect from soil-borne pathogens all seeds except wheat, barley, oat, sugar beet, Avena fatua and those soaked in KNO solution were pretreated with one of the following: thiram, Harvesan organomercury, thiram + benlate (onion). Root fragments of Cirsium arvense were washed in a colloidal copper solution (2 ml litre-1) prior to planting. For dwarf bean, field bean and certain brassicas (kale, rape, cabbage, radish) 6% gum arabic solution was included with the thiram fungicide seed dressing to improve adhesion, as most of these species are susceptible to "damping off" diseases.

A series of treatments was included to investigate possible uses for safeners. Maize, wheat and barley were treated with NA (1,8-naphthalic anhydride) at 0.5% a.i. w/w of seeds.

The herbicide was applied using a laboratory sprayer operating at a pressure of 207 kPa (30 lb/in2) with an 8002 Tee Jet band spray nozzle moving at 0.5 m sec⁻¹, 45 cm above the stationary plants. There were two replicates for each treatment. Stages of growth at spraying and assessment are summarised in Appendix I. After spraying, the plants were protected from rainfall for 24 hours and then watered overhead from a rose at the end of a trigger hose

attached to the mains water supply, to wash any residues off the foliage. The pots were then returned to their original position in the open. Watering throughout the experiment was done from overhead. Additional fertilizer in solution was applied to all species at one week intervals after spraying (5 ml litre-1 Vitafeed 301). Insecticide and fungicide solutions were applied to individual species as required.

4

(c) Assessment and processing of results

Results were assessed and processed as before (Richardson and Dean, 1974). Survivors were counted and scored for vigour on a 0-7 scale as previously, where 0 = dead and 7 = as untreated control.

Histograms are presented for the results of each treatment, the upper of each pair represents mean plant survival and the lower, mean vigour score, both calculated as percentages of untreated controls. Actual percentage figures are displayed to the left of each row of x's (in selectivity test only). The same information is displayed in the histograms, each 'x' representing a 5% increment, but in the activity experiment each 'x' represents a 7% increment. A '+' indicates a value in excess of 100%. A value of 100 = as untreated control and O = a complete kill. 'R' indicates results based on one replicate only.

A table of observed selectivities, using the criteria specified, is presented along with comments to highlight salient points. Radish (Raphanus raphanistrum) which was included because it is easy to propagate may be regarded

as a crop or weed.

Several species, notably the perennials, were kept for extra periods to observe later effects or the degree of recovery from injury.

5

FBC 32197

Code numbers

FBC 32197 NCI 96683

Chemical name

Ethyl 2-[4-(6-chloroquinoxalin-2-yloxy)phenoxy] propionate

Structure

C1 ·N's

FBC Limited Agrochemicals Division Chesterford Park Research Station Saffron Walden Essex CB10 1XL, UK

Information available and suggested uses

For control of grass weeds in broad-leaved crops.

Formulation used Emulsifiable concentrate 10% a.i.

Spray volume

For activity experiment 373 1/ha. For post-emergence selectivity experiment 371 /ha.

RESULTS

Full results are presented in the histograms on pages 8 to 13 and potential selectivities are summarised in the following table.

RATE	CROPS: vigour reduced	WEEDS: number or vigour	
(kg a.i./ha)	by 15% or less	reduced by 70% or more	
0.8	onion dwarf bean field bean	Phalaris paradoxa Phalaris minor + species below	1

pea white clover kale cabbage carrot parsnip lettuce fenugreek sugar beet radish

RATE (kg a.i./ha)	CROPS: vigour reduced by 15% or less	WEEDS: number or vigour reduced by 70% or more
0.2	species above	Bromus sterilis
		Avena fatua
		Agrostis stolonifera
		+ species below

6

0.05	species above +	Alopecurus myosuroides
	rape	Poa trivialis
		Agropyron repens

Comments on results

Activity experiment

Toxicity was high on the grasses with all four application methods, but broad-leaved species were generally tolerant, except for minor effects at the high dose. On grasses the foliar spray was the most effective of all the application methods, and was much more effective than the soil drench, post-emergence. Agropyron repens was the most sensitive species. Pre-emergence, the herbicide was more active on the surface than when incorporated for perennial ryegrass but the reverse was true for <u>A. repens</u>. In the case of <u>Avena fatua</u>, incorporated treatments were more active than surface applications at the two lower doses, but not at the higher dose.

Symptoms

These were generally very similar to those caused by the three previous herbicides, with a severe inhibition of growth accompanied by chlorosis and necrosis. Grasses often failed to emerge at the high dose pre-emergence. Avena fatua exhibited a weakened root system with soil treatments. Effects on broad-leaved species were usually minor and temporary, such as lack of vigour, chlorosis and necrosis. Some slight deformities of leaves (e.g. crinkling) developed after spraying in some species e.g. certain brassica crops (kale and rape). On two of the leguminous species (dwarf bean and fenugreek) a pronounced, patchy chlorosis or bleaching of trifoliates was observed.

Post-emergence selectivities

All but two of the grass weed species were controlled. Agropyron repens was highly sensitive (as in the activity experiment) being controlled at the lowest dose of 0.05 kg/ha. Poa trivialis and Alopecurus myosuroides were also either killed or controlled at this dose. At 0.2 kg/ha Avena fatua, Bromus sterilis and Agrostis stolonifera were susceptible. Both Phalaris minor and P. paradoxa were either killed or controlled at 0.8 kg/ha. Poa annua, although not controlled, was reduced by about 50% at the higher doses. Festuca rubra was reduced, but not adequately controlled at 0.8 kg/ha. All broad-leaved weeds were resistant.

Onion and broad-leaved crops were tolerant. However rape only satisfied the tolerance criteria at the lowest dose of 0.05 kg/ha. Although reduced in vigour by only 20 to 30% at higher doses, slight deformities were observed as decribed earlier. All four cereals and perennial ryegrass were very sensitive. The safener, NA, failed to alleviate effects on maize, wheat and barley, in fact it increased activity slightly on the two latter species. FBC 32197 shows high potential for control of most grasses, notably perennials but also volunteer cereals, in onion and most broad-leaved crops. Some further pot work is worthwhile to see if control of Poa annua (treated here at a late growth stage) can be achieved, possibly with the use of additives or other herbicides.

7

ACTIVITY EXPERIMENT

8

FBC 32197

0.05 kg/ha

XXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXX

F

S

0.25 kg/ha

XXXXXXXXXXXXXXX

XXXXXXXXXXXXXXX

XXXXXXXXXXXXXXX

1.25 kg/ha

XXXXXXXXXXXXXXX XXXXXXXXXXXX

XXXXXXXXXXXXXXX XXXXXXXXXXXXXX

DWARF

KALE

POLYGON	UM
AMPHIBI	UM

- P XXXXXXXXXXXXXXX XXXXXXXXXXXXXXX
- XXXXXXXXXXXXXXXX I XXXXXXXXXXXXXXX

F XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXX

- S XXXXXXXXXXXXXXX XXXXXXXXXXXXXXX
- P XXXXXXXXXXXXXX XXXXXXXXXXXXXXXX
- XXXXXXXXXXXXXXX+ XXXXXXXXXXXXXXX

XXXXXXXXXXXXXXX XXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXX

XXXXXXXXXXXXXXX

XXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXX

XXXXXXXXXXXXXX

XXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXX XXXXXXXXXXXXXX

XXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX

XXXXXXXXXXXX XXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX

XXXXXXXXXXXXXX XXXXXXXXXXXX

XXXXXXXXXXXXXXX XXXXXXXXXXXXXXX

XXXXXXXXXXXXX XXXXXXXXXXX

XXXXXXXXXXXXXX XXXXXXXXXXXXXXX

F XXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXX

- XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX
- P

S

- XXXXXXXXXXXX XXXXXXXXXXXXXXXX

	F.	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XX	8
PERENNIAL	S	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXX
RYEGRASS	P	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXX	8
	I	XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXX XXX
	F	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	8	00
AVENA	S	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	8
FATUA	P	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXX X
	I	XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
	F	XXXXX XXXXXX	8	8
AGROPYRON	S	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	8
REPENS	P	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	8
	I	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	8

F = post-emergence, foliar application KEY: S = post-emergence, soil drench P = pre-emergence, surface film I = pre-planting, incorporated

SPECIES		0.05 kg/ha		0.20 kg/ha		0.8
WHEAT (1)	37 7	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	12 7	XX X	0 0	
WHEAT + S (2)	00		0		0	
BARLEY (3)	62 21	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	00		0	
BARLEY + S (4)	0 0		0 0		00	
OAT (5)	100 64	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	0 0		00	
PER PYGR (6)	20 29	XXXX XXXXXX	0 0		0 0	
ONION (8)	87 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 93	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
DWF BEAN (9)	100 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
FLD BEAN (10)	100 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
PEA (11)	100 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
W CLOVER (12)	100 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

FBC 32197

O OF Legit

.

.

0 20 km/hm

fright and and

147 - A 2 44

. .

P OST EMERGENCE SELE CTIV ITY TEST

9

XXXXXXXXXXXXX XXXXXXXXXXXX

XXXXXXXXXXXXX XXXXXXXXXX

XXXXXXXXXXXXX XXXXXXXXXXXXX

XXXXXXXXXXXXX XXXXXXXXXX

XXXXXXXXXXXX XXXXXXXXXXXX

SPECIES

RAPE (14)	100 86	XXXXX
KALE (15)	100 100	XXXXX
CABBAGE (16)	100 100	XXXXX
CARROT (18)	100 100	XXXXX
PARSNIP (19)	100 100	XXXXX
LETTUCE (20)	100 100	XXXXX
FENUGREEK (21)	100 100	XXXXX
SUG BEET (22)	100 100	XXXXX
BETA VULG (23)	100 93	XXXXX
BROM STE (24)	100 57	XXXXX
FEST RUB (25)	94 93	XXXXX

FBC 32197

0.05 kg/ha 0.20 kg/ha 100 XXXXXXXXXXXXXXXXXXX 79 XXXXXXXXXXXXX 100 100 XXXXXXXXXXXXXXXXXX 100 XXXXXXXXXXXXXXXXX 100 XXXXXXXXXXXXXXXXXXXX 100 XXXXXXXXXXXXXXXXXXX 100 XXXXXXXXXXXXXXXXXXXX 100 XXXXXXXXXXXXXXXXXX 100 XXXXXXXXXXXXXXXXXX 100 XXXXXXXXXXXXXXXXXXXX 100 XXXXXXXXXXXXXXXXX 100 XXXXXXXXXXXXXXXXXX 86 XXXXXXXXXXXXXXXXXXX 100 XXXXXXXXXXXXXXXXXXX 100 XXXXXXXXXXXXXXXXXXX 100 79 XXXXXXXXXXXXXXXX 0 0 XXXXXXX 100 XXXXXXXXXXXXXXXX 100 XXXXXXXXXXXXXXXX

100

71

100

93

100

93

90

100

100

100

100

93

100

86

100

100

100

86

0

0

69

57

	XXXXXXXXXX
4	XXXXXXXXXXX
	XXXXXXXXXXX
	XXXXXXXXXXX
	XXXXXXXXXXX
1	XXXXXXXXXXX
	XXXXXXXXXXX
	XXXXXXXXXXX
	XXXXXXXXXXXX
	XXXXXXXXXXX
	XXXXXXXXXXX
	XXXXXXXXXXX
	XXXXXXXXXXXX
	XXXXXXXXXXXX
	XXXXXXXXXXX
	XXXXXXXXXXX
	VVVVVVV VVV
	AAAAAAAAAAA
	XXXXXXXXXXX

XXXXXXXXXXXXXXXX XXXXXXXXXXX

0.80 kg/ha

XXXXXXXXXXX XXXX

XXXXXXXXXX XXXXXXXXXX

XXXXXXXXXXX XXXXXXXXX

XXXXXXXXX XXXXXXXXXXX

XXXXXXXXXX XXXXXXXXXX

XXXXXXXXXX XXXXXXXXX

XXXXXXXXXXX XXXXXXX

XXXXXXXXXXX XXXXXXXXXX

XXXXXXXXXX XXXXXXX

POST -EMERGENCE SELECTI 0 4 TTY TEST

SPECIES		0.05 kg/ha		0.20 kg/ha		0.80 kg/ha
AVE FATU (26)	100 50	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	37 29	XXXXXXX XXXXXX	0 0	
ALO MYOS (27)	20 21	XXXX XXXX	00		00	
POA ANN (28)	100 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 57	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	92 50	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
POA TRIV (29)	0 0		0 0		0 0	
SIN ARV (30)	100 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
RAPH RAP (31)	125 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	125 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	87 86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
CHRY SEG (32)	100 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
TRIP MAR (33)	100 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 93	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
SEN VULG (34)	100 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
POL LAPA (35)	100 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
GAL APAR (38)	89 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	111 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	67 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

FBC 32197

POST -EMERGENCE SELECTIVITY TEST

SPECIES

CHEN ALB (39)	100 100		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 100		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 100		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
STEL MED	100		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 100		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
SPER ARV	100		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100		XXXXXXXXXXXX
(41)	100		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100		XXXXXXXXXX
VER PERS (42)	71 100		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	71 100		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	71 100		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
RUM OBTU (44)	100 100	R R	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 100	R R	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 100	R R	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
AG REPEN (47)	87 29		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	62 21		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	50 14		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
AG STOLO (48)	67 36		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	17 7		XXX X	000		
CIRS ARV (50)	100 100	R R	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 100	R R	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 100	R R	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
PHAL PAR (54)	100 93		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	80 50		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	50 21		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
MAIZE + S (56)	000			00			000		
MAIZE	0			0			0		
()//	0			0			0		

FBC 32197

0.05 kg/ha

0.80 kg/ha

0.20 kg/ha

XXXXXXXXXXX XXXXXXXXXXX

XXXXXXXXXXX

XXXXXXXXXXX

XXXXXXXXXXX XXXXXXXXXXX

XXXXX XXXXXXXXXXX

XXXXXXXXXXX

XXXXXXXXXXX

XXXXXXXXXXX

XXXXXXXXXXX

POST EMERGENCE SELECTI VIT K H E 5

H

*

12

SPECIES

· · ·

SOL NIG	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXX
(81)	93	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	86	XXXXXX
PHAL MIN	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	50	XXXXXX
(84)	86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	36	XXXXXX
OXAL LAT	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXX
(87)	86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	86	XXXXXX

FBC 32197

0.

0.05 kg/ha

00 1 /1		
20 kg/na		0.80 kg/ha
XXXXXXXXXXXX	100	XXXXXXXXXXXX
XXXXXXXXXX	57	XXXXXXXXXXXX
VVV	0	
AAA	0	
XXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXX	64	XXXXXXXXXXXX

POST-EMERGENCE SELECTIVITY TEST

w

ACKNOWLEDGEMENTS

We are most grateful to the joint Letcombe/WRO Biometrics Section for processing the experimental data; to Miss D Stringer and Messrs R H Webster, R M Porteous and S L Burbank for technical and practical assistance; to Mrs L Gawne and Mrs J Wallsworth for the preparation and typing of this report; to Mrs S Cox and her staff for its duplication and to FBC Limited who provided the herbicide and relevant data.

14

REFERENCES

RICHARDSON, W.G. and DEAN, M.L. (1974) The activity and post-emergence selectivity of some recently developed herbicides: oxadiazon, U-29,722, U-27,658, metflurazone, norflurazone, AC 50,191, AC 84,777 and iprymidam. Technical Report Agricultural Research Council Weed Research Organization, 32, pp 74.
RICHARDSON, W.G. and PARKER, C. (1977) The activity and post-emergence selectivity of some recently developed herbicides: KUE 2079A, HOE 29152, RH 2915, triclopyr and Dowco 290. Technical Report Agricultural Research

Council Weed Research Organization, 42, pp 53.

15

Appendix 1. Species, abbreviations, varieties and stages of growth at spraying and assessment for post-emergence selectivity test

Designation and Cultivar Stage of computer or growth at serial source spraying number Stage of growth at assessment (untreated controls, leaf numbers exclusive of cotyledons)

Temperate species

C I a set and the

Wheat WHEAT Mardler 2 tillers Numerous leaves, (Triticum aestivum) (1) tillering Wheat + safener WHEAT + S Mardler 2 tillers Numerous leaves, (2) tillering Barley BARLEY Sonja 1-2 tillers Numerous leaves, (Hordeum vulgare) (3)2-4 tillers Barley + safener BARLEY + S Sonja 1-2 tillers Numerous leaves, (4)2-4 tillers Oat OAT Pennal 1 tiller Numerous leaves, (Avena sativa) (5) up to 6 tillers Perennial rvegrass PER RYGR 5 22 2 +illang IIn to 12 4:11

(Lolium perenne)	(6)	5 25	2 UIIIers	up to 12 tillers
Onion (Allium cepa)	ONION (8)	Robusta	2-2½ leaves	$3-3\frac{1}{2}$ leaves; bulbs = 1 cm diameter
Dwarf bean (Phaseolus vulgaris)	DWF BEAN (9)	Masterpiece	2 trifoliate leaves	3 trifoliate leaves, flowering
Field bean (Vicia faba)	FLD BEAN (10)	Maris Bead	5-5½ leaves	10 leaves, flowering
Pea (Pisum sativum)	· PEA (11)	Dark Skinned Perfection	5 leaves	Up to 10 leaves
White Clover (Trifolium repens)	W CLOVER (12)	Kent Wild	4-7 trifoliate leaves	Up to 20 trifoliate leaves
Rape (Brassica napus oleifera)	RAPE (14)	Jet Neuf	2½-3½ leaves	6 leaves
Kale (Brassica oleracea acephala)	KALE (15)	Maris Kestrel	3 leaves	6 leaves
Cabbage (Brassica oleracea capitata)	CABBAGE (16)	Primata Derby Day	3 ¹ / ₂ -4 leaves	Up to 8 leaves
Carrot (Daucus carota)	CARROT (18)	Chantenay Red Core	3-4 leaves	7 leaves

Appendix 1, Cont'd

. . .

1.1.4

212

.

Designation and. Cultivar computer or serial source number

Stage of growth at spraying

Stage of growth at assessment (untreated controls, leaf numbers exclusive of cotyledons)

397

2 il

4

Galium aparine	GAL APAR (38)	WRO 1980	2 whorls	Numerous whorls
Chenopodium album	CHEN ALB (39)	WRO 1979	6-10 leaves	10 leaves, flowering
Stellaria media	STEL MED (40)	B & S Supplies, 1979	Up to 14 leaves	Numerous leaves, flowering
Spergula arvensis	SPER ARV (41)	B & S Supplies, 1977	3-4 whorls	Numerous whorls, flowering
Veronica persica	VER PERS (42)	WRO 1975	4-10 leaves	Numerous leaves, flowering
 Rumex obtusifolius	RUM OBTU (44)	WRO 1981	2-3 leaves	6 leaves

16

Oxalis latifolia	OXAL LAT (87)	WRO Clone 2 ⁴ (ex Cornwall)	3-4 trifoliate leaves	4-15 trifoliate leaves, flowering
Phalaris minor	PHAL MIN (84)	Delhi 1977	5 leaves, some tillering	6 leaves, flowering
Solanum nigrum	SOL NIG (81)	WRO 1980	4 leaves	7 leaves, flowering
Maize (Zea mays)	MAIZE (57)	Caldera 535	4-5 leaves	7 leaves
Maize + safener (Zea mays)	MAIZE + S (56)	Caldera 535	4-5 leaves	7 leaves
Phalaris paradoxa	PHAL PAR (54)	Ethiopia, 1979	2 tillers	Up to 9 tillers, flowering
Cirsium arvense	CIRS ARV (50)	WRO Clone 1**	8 leaves	Up to 14 leaves
Agrostis stolonifera	AG STOLO (48)	B & S Supplies, 1981	5 leaves	Up to 25 stolons
Agropyron repens	AG REPEN (47)	WRO Clone 31*	1 tiller	Up to 15 leaves, 2 tillers

* one node rhizome pieces ** root fragments + bulbs

Appendix 1. Cont'd

Designation and Cultivar computer or serial source number

Stage of growth at spraying

Stage of growth at assessment (untreated controls, leaf numbers exclusive of cotyledons)

1.

1

1

......

Parsnip

PARSNIP

Unicorn

17

 $1\frac{1}{2}-3$ leaves 4-5 leaves

(Pastinaca sativa)	(19)			
Lettuce (Lactuca sativa)	LETTUCE (20)	Reskia	6 leaves	10 leaves
Fenugreek (Trigonella foenumgraecum)	FENUGREEK (21)	Paul	3-4 trifoliate leaves	7 trifoliate leaves
Sugar beet (Beta vulgaris)	SUG BEET (22)	Monotri	4 leaves	6-10 leaves
Beta vulgaris	BETA VUL (23)	WRO 1981 ex Attleborough	4 leaves	6-10 leaves
Bromus sterilis	BROM STE (24)	WRO 1981	4 tillers	Up to 8 tillers

Festuca rubra	FEST RUB (25)	Boreal	0-1 tiller	Up to 15 tillers
Avena fatua	AVE FATU (26)	WRO 1978	2 tillers	12-14 leaves, 2 tillers
Alopecurus myosuroides	ALO MYOS (27)	WRO 1980	2-3 tillers	Up to 15 tillers
Poa annua	POA ANN (28)	B & S Supplies, 1980	2-3 tillers	Up to 15 tillers
Poa trivialis	POA TRIV (29)	B & S Supplies, 1981	0-1 tiller	Up to 15 tillers
Sinapis arvensis	SIN ARV (30)	WRO 1978	6 leaves	Numerous leaves, podded
Raphanus raphanistrum	RAPH RAP (31)	Long Black Spanish	3 leaves	Up to 7 leaves
Chrysanthemum segetum	CHRYS SEG (32)	WRO 1981	8-12 leaves	Up to 22 leaves
Tripleurospermum maritimum	TRIP MAR (33)	WRO 1978	6-8 leaves	Up to 10 leaves, flowers dev loping
Senecio vulgaris	SEN VULG (34)	B & S Supplies, 1979.	Up to 7 leaves	17 leaves, flowering
Polygonum lapathifolium	POL LAPA (35)	WRO 1981	3-6 leaves	8 leaves, flowering

ABBREVIATIONS

angström	R	freezing point	f.p.
Abstract	Abs.	from summary	F.s.
acid equivalent*	a.e.	gallon	gal
acre	ac	gallons per hour	gal/h
active ingredient*	a.i.	gallons per acre	gal/ac
approximately equal to*	~	gas liquid chromatography	GLC
aqueous concentrate	a.c.	gramme	g
bibliography	bibl.	hectare	ha
boiling point	b.p.	hectokilogram	hkg
bushe1	bu	high volume	HV
centigrade	C	horse power	hp
centimetre*	cm	hour	h
concentrated	concd	hundredweight*	cwt
concentration concentration x	concn	hydrogen ion concentration*	рH
time product	ct	inch	ino
concentration required to kill	TARA	infra red	i.r.
50% test animals	3	kilo (m10 ³)	rg r
cubic centimetre	cm c_3	less then	~
CUDIC FOOT	IT 3	lites	
cubic inch-	1n 3	low wolumo	TV
cubic metre	m 3	TOW VOLUME	may
cubic yara	ya	maximum madian lethal doce	ID50
cultivar(s)	cv.	medium volume	MV
denne Celeine*	0	meatur vorune	
degree Ceisius	0	merting point	m. p.
degree centigrade	0	metre $(x10^{-6})$	
diemeter	diam	microgrammo*	μ.
diameter at broast	ul an.	micropiero	μeg
height	d.b.h.	$(pico: x10^{-12})*$	intr
divided by*	° or /	micrometre (micron)*	μm (or μ)
dry matter	d.m.	micron (micrometre)*†	μm (or μ)
emulsifiable concentrate	e.c.	mills (r10 ⁻³)	mile/h
equal to*	=		
fluid	f1.	milliequivalent	medara
foot	ft	milligramme	mg
		milliltre	mT

T The name micrometre is preferred to micron and μm is preferred to μ .

millimetre*	mm	pre-emergence	pre-em.
millimicro*		quart	quart
$(nano: x10^{-9})$	n or mp	relative humidity	r.h.
minimum	min.	revolution per minute*	rev/min
minus	-	second	ß
minute	min	soluble concentrate	S.C.
molar concentration*	M (small cap)	soluble powder	s.p.
molecule, molecular	mol.	solution	soln
more than	>	anacias (singular)	en.

multiplied by* x N (small cap) normal concentration* n.d. not dated oil miscible O.M.C. (tables only) concentrate organic matter o.m. oz ounce oz/gal ounces per gallon p. page pp. pages parts per million ppm parts per million by volume VMOG

species (singular) sp. species (plural) spp. specific gravity sp. gr. ft² square foot* in² square inch m² square metre* square root of* 5 sub-species* ssp. S. summary temp. temperature ton ton t tonne ULV ultra-low volume

by volume	P.P
parts per million by weight	ppmw
percent(age)	%
pico (micromicro: x10 ⁻¹²)	p or µµ
pint	pint
pints per acre	pints/ac
plus or minus*	+
post-emergence	post-em
pound	1b
pound per acre*	lb/ac
pounds per minute	lb/min

ultra violet	u.v.
vapour density	v.d.
vapour pressure	v.p.
varietas	var.
volt	V
volume	vol.
volume per volume	v/v
water soluble powder	w.s.p. (tables only)
watt	W
weight	wt
weight per volume*	w/v

pound per square inch*	1b/in	weight per weight*	w/w
powder for dry	p. (tables only)	wettable powder	w.p.
apprication		yard	yd
power take off	p.t.0.	yards per minute	vd/min
precipitate (noun)	ppt.		Juyment

* Those marked * should normally be used in the text as well as in tables etc.

TECHNICAL REPORTS (Price includes surface mail; airmail £2.00 extra) (* denotes Reports now out of print)

- The botany, ecology, agronomy and control of Poa trivialis L. rough-6. stalked meadow-grass. November 1966. G P Allen. Price - £0.25
- Flame cultivation experiments 1965. October, 1966. G W Ivens. 7. Price - £0.25
- The development of selective herbicides for kale in the United Kingdom. 8. 2. The methylthiotriazines. Price - £0.25
- The liverwort, Marchantia polymorpha L. as a weed problem in 10. horticulture; its extent and control. July 1968. I E Henson. Price - £0.25
- Raising plants for herbicide evaluation; a comparison of compost 11. types. July 1968. I E Henson. Price - £0.25
- Studies on the regeneration of perennial weeds in the glasshouse; *12. I. Temperate species. May 1969. I E Henson. Price - £0.25

- Changes in the germination capacity of three Polygonum species 13. following low temperature moist storage. June 1969. I E Henson. Price. - £0.25
- Studies on the regeneration of perennial weeds in the glasshouse. 14. II. Tropical species. May 1970. . I E Henson. Price - £0.25
- Methods of Analysis for herbicide residues. February 1977. 15. (second edition) - price £5.75
- Report on a joint survey of the presence of wild oat seeds in cereal 16. seed drills in the United Kingdom during Spring 1970. November 1970. J G Elliott and P J Attwood. Price - £0.25
- The pre-emergence selectivity of some newly developed herbicides, 17. Orga 3045 (in comparison with dalapon), haloxydine (PP 493), HZ 52.112, pronamide (RH 315) and R 12001. January 1971. W G Richardson, C Parker

and K Holly. Price - £0.25

- A survey from the roadside of the state of post-harvest operations in 18. Oxfordshire in 1971. November 1971. A Phillipson. Price - £0.12
- The pre-emergence selectivity of some recently developed herbicides * 19. in jute, kenaf and sesamum, and their activity against Oxalis latifolia. December 1971. M L Dean and C Parker. Price - £0.25.

* 20. A survey of cereal husbandry and weed control in three regions of England. July 1972. A Phillipson, T W Cox and J G Elliott. Price - £0.35

- 2 -

- 21. An automatic punching counter. November 1972. R C Simmons. Price - £0.30
- 22. The pre-emergence selectivity of some newly developed herbicides: bentazon, BAS 3730H, metflurazone, SAN 9789, HER 52.123, U 27,267. December 1972. W G Richardson and M L Dean. Price - £0.25
- 23. A survey of the presence of wild oats and blackgrass in parts of the United Kingdom during summer 1972. A Phillipson. Price - £0.25
- 24. The conduct of field experiments at the Weed Research Organization. February 1973. J G Elliott, J Holroyd and T O Robson. Price -£1.25
- 25. The pre-emergence selectivity of some recently developed herbicides: lenaci1, RU 12068, metribuzin, cyprazine, EMD-IT 5914 and benthiocarb. August 1973. W G Richardson and M L Dean. Price - £1.75.
- 26. The post-emergence selectivity of some recently developed herbicides: bentazon, EMD-IT 6412, cyprazine, metribuzin, chlornitrofen, glyphosate, MC 4379, chlorfenprop-methyl. October 1973. W G Richardson and M L Dean. Price - £3.31
- 27. Selectivity of benzene sulphonyl carbamate herbicides between various

pasture grasses and clover. October 1973. A M Blair. Price - £1.05

- 28. The post-emergence selectivity of eight herbicides between pasture grasses: RP 17623, HOE 701, BAS 3790, metoxuron, RU 12068, cyprazine, MC 4379, metribuzin. October 1973. A M Blair. Price - £1.00
- *29. The pre-emergence selectivity between pasture grasses of twelve herbicides: haloxydine, pronamide, NC 8438, Orga 3045, chlortoluron, metoxuron, dicamba, isopropalin, carbetamide, MC 4379, MBR 8251 and EMD-IT 5914. November 1973. A M Blair. Price - £1.30
 - 30. Herbicides for the control of the broad-leaved dock (Rumex obtusifolius L.). November 1973. A M Blair and J Holroyd. Price - £1.06
 - 31. Factors affecting the selectivity of six soil acting herbicides against Cyperus rotundus. February 1974. M L Dean and C Parker. Price - £1.10
 - 32. The activity and post-emergence selectivity of some recently developed

herbicides: oxadiazon, U-29,722, U-27,658, metflurazone, norflurazone, AC 50-191, AC 84,777 and iprymidam. June 1974. W G Richardson and M L Dean. Price - £3.62

- 33. A permanent automatic weather station using digital integrators. September 1974. R C Simmons. Price £0.63.
- 34. The activity and pre-emergence selectivity of some recently developed herbicides: trifluralin, isopropalin, oryzalin, dinitramine, bifenox and perfluidone. November 1974. W G Richardson and M L Dean. Price - £2.50

35. A survey of aquatic weed control methods used by Internal Drainage Boards, 1973. January 1975. T O Robson. Price - £1.39

- 3 -

- 36. The activity and pre-emergence selectivity of some recently developed herbicides: Bayer 94871, tebuthiuron, AC 92553. March 1975. W G Richardson and M L Dean. Price - £1.54
- 37. Studies on Imperata cylindrica (L.) Beauv. and Eupatorium odoratum L. October 1975. G W Ivens. Price - £1.75
- 38. The activity and pre-emergence selectivity of some recently developed herbicides: metamitron, HOE 22870, HOE 23408, RH 2915, RP 20630. March 1976. W G Richardson, M L Dean and C Parker. Price - £3.25
- 39. The activity and post-emergence selectivity of some recently developed herbicides: HOE 22870, HOE 23408, flamprop-methyl, metamitron and cyperquat. May 1976. W G Richardson and C Parker. Price - £3.20
- 40. The activity and pre-emergence selectivity of some recently developed herbicides: RP 20810, oxadiazon, chlornitrofen, nitrofen, flamprop--isopropyl. August 1976. W G Richardson, M L Dean and C Parker. Price - £2.75.
- 41. The activity and pre-emergence selectivity of some recently developed herbicides: K 1441, mefluidide, WL 29226, epronaz, Dowco 290 and triclopyr. November 1976. W G Richardson and C Parker. Price - £3.40.

42. The activity and post-emergence selectivity of some recently developed herbicides: KUE 2079A, HOE 29152, RH 2915, Triclopyr and Dowco 290. March 1977. W G Richardson and C Parker. Price - £3.50

- 43. The activity and pre-emergence selectivity of some recently developed herbicides: dimefuron, hexazinone, trifop-methyl, fluothiuron, buthidazole and butam. November 1977. W G Richardson and C Parker. Price - £3.75.
- 44. The activity and selectivity of the herbicides: ethofumesate, RU 12709 and isoproturon. December 1977. W G Richardson, C Parker, & M L Dean. Price - £4.00
- 45. Methods of analysis for determining the effects of herbicides on soil soil micro-organisms and their activities. January 1978. M P Greaves, S L Cooper, H A Davies, J A P Marsh & G I Wingfield. Price - £4.00
- 46. Pot experiments at the Weed Research Organization with forest crop and weed species. February 1978. D J Turner and W G Richardson.

Price - £2.70

- 47. Field experiments to investigate the long-term effects of repeated applications of MCPA, tri-allate, simazine and linuron - effects on the quality of barley, wheat, maize and carrots. July 1978. J D Fryer, P D Smith and J W Ludwig. Price - £1.20.
- 48. Factors affecting the toxicity of paraquat and dalapon to grass swards. March 1978. A K Oswald. Price - £2.90
- 49. The activity and post-emergence selectivity of some recently developed herbicides: NP 48, RH 5205 and Pyridate. May 1978. W G Richardson and C Parker. Price - £2.50

- 50. Sedge weeds of East Africa II. Distribution. July 1978. P J Terry. Price - £1.50
- 51. The activity and selectivity of the herbicides methabenzthiazuron, metoxuron, chlortoluron and cyanazine. September 1978. W G Richardson and C Parker. Price - £2.20.

- 4 -

- 52. Antidotes for the protection of field bean (Vicia faba L.) from damage by EPTC and other herbicides. February 1979. A M Blair. Price - £1.35
- 53. Antidotes for the protection of wheat from damage by tri-allate. February 1979. A M Blair. Price - £2.00
- 54. The activity and pre-emergence selectivity of some recently developed herbicices: alachlor, metolachlor, dimethachlor, alloxydim-sodium and fluridone. April 1979. W G Richardson and C Parker. Price - £3.00
- 55. The activity and selectivity of the herbicides carbetamide, methazole, R 11913 and OCS 21693. May 1979. W G Richardson and C Parker. Price - £1.80
- 56. Growing weeds from seeds and other propagules for experimental purposes. July 1979. R H Webster. Price - £1.10
- 57. The activity and pre-emergence selectivity of some recently developed herbicides: R 40244, AC 206784, pendimethalin, butralin, acifluorfen and FMC 39821. December 1979. W G Richardson, T M West and C Parker -Price - £3.55
- 58. The tolerance of fenugreek (Trigonella foenumgraecum L.) to various herbicides. December 1979. W G Richardson. Price £1.55
- 59. Recommended tests for assessing the side-effects of pesticides on the soil microflora. April 1980. M P Greaves, N J Poole, K H Domsch, G Jagnow and W Verstraete. Price - £2.00
- 60. Properties of natural rainfalls and their simulation in the laboratory for pesticide research. September 1980. R C Simmons. Price - £1.25
- 61. The activity and post-emergence selectivity of some recently developed herbicides: R 40244, DPX 4189, acifluorfen, ARD 34/02 (NP 55) and PP 009. November 1980. W G Richardson, T M West and C Parker. Price - £3.75
- 62. The activity and pre-emergence selectivity of some recently developed herbicides: UBI S-734, SSH-43, ARD 34/02 (= NP 55), PP 009 and DPX 4189. February 1981. W G Richardson, T M West and C Parker. Price - £3.50
- 63. The activity and post-emergence selectivity of some recently developed herbicides: SSH-41, MB 30755, AC 213087, AC 222293 and Dowco 433. May 1981. W G Richardson, T M West and C Parker. Price - £3.50
- 64. The activity and pre-emergence selectivity of some recently developed herbicides: chlomethoxynil, NC 20484 and MBR 18337. March 1982. W G Richardson, T M West and C Parker. Price - £3.00

65. A system for monitoring environmental factors in controlled environment chambers and glasshouses. June 1982. R C Simmons. Price - £1.50 66. The activity and pre-emergence selectivity of some recently developed herbicides: AC 213087 and AC 222293. December 1982. W G Richardson, T M West and C Parker. Price - £2.00

- 5 -

- 67. The activity and post-emergence selectivity of some recently developed herbicides: trifopsime, glufosinate, RH 8817, MBR 18337 and NC 20484. December 1982. W G Richardson, T M West and C Parker. Price - £3.25
- 68. The activity and pre-emergence selectivity of some recently developed herbicides: WL 49818, WL 82830, WL 83627, WL 83801 and DPX 5648. December 1982. W G Richardson, T M West and C Parker. Price - £4.00
- 69. The activity and late post-emergence selectivity of some recently developed herbicides: AC 252925, DOWCO 453, HOE 33171 and HOE 35609. March 1983. W G Richardson, T M West and G P White. Price - £3.25
- 70. The potential of various herbicides for selective control of weed grasses and <u>Stellaria media</u> in newly sown ryegrass/clover leys and ryegrass seed crops. May 1983. F W Kirkham Price - £1.75
- 71. A feasibility study of the use of chemicals for rural amenity areas. Sponsored by the Countryside Commission. September 1983. E J P Marshall Price - £5.00
- 72. The activity and late post-emergence selectivity of FBC 32197. November 1983. W G Richardson, T M West and G P White. Price - £1.25

