Localized scorch spots resulted from the foliar spray within 24 hours of treatment in some species. Broad-leaved species tended to recover. However some species were stunted temporarily; with kale and rape the leaves appeared smaller and darker green while slight deformities were seen with cabbage. Some extra tillering was observed with certain grasses such as Agropyron repens and wheat. Pea and Avena fatua were poorly anchored in soil at the high dose, due to weakened root systems.

Post-emergence selectivities

Six grass weeds were controlled; Avena fatua, Poa trivialis and Agrostis stolonifera at $0.1 \mathrm{~kg} / \mathrm{ha}$, Alopecurus myosuroides and Phalaris minor at $0.3 \mathrm{~kg} / \mathrm{ha}$ and Phalaris paradoxa at $0.9 \mathrm{~kg} / \mathrm{ha}$. All other grasses (Bromus sterilis, Festuca rubra, Poa annua, A. repens) and all broad-leaved species were resistant.

Onion and broad-leaved crops were tolerant. Perennial ryegrass and the cereals, notably maize and oat, were very sensitive. The safener, NA did not alter herbicidal activity on wheat, barley or maize.

An interesting spectrum of grass weeds can be controlled with high selectivity in broad-leaved crops and onion. However the resistance of Poa annua and A. repens is a disadvantage.

ACTIVITY EXPERIMENT

HOE 33171

		$0.05 \mathrm{~kg} / \mathrm{ha}$	$0.25 \mathrm{~kg} / \mathrm{ha}$	$1.25 \mathrm{~kg} / \mathrm{ha}$
	F	xxxxxxxxxxxyxx xxxxxxxxxxxxxx		
	S		XXXXXXXXXXXXXX XXXXXXXXXXXXXX	
BEAN	P	(${ }_{\text {xxxxxxxxxxxxx }}$		
	I	xxyxxxxxxxxyxx xxxxxxxxxxxxxx	xXXXXXXXXXXXXX xxxxxxxxxxxxxx	xxxxxxxxxxxxxx
KALE	F	 	XXXXXXXXXXXXXX xXXXXXXXXXXXXX	
	S	(${ }_{\text {xxxxxxxxx }}$		
	P			
	I			
$\frac{\text { POLYGONUM }}{\text { AMPHIBIUM }}$	F	mexxxxxxxxxxxx		xxxxxxxxxxxxxx xxxxxxxxxxx
	S			
	P			
	I	xxxxxxxxxxxxxx+ xxxxxxxxxxxxx		¢ ${ }_{\text {xxxxxxxxxxxxxx }}$
PERENNIAL RYEGRASS	F		xxxxxxxx xxxxxxxx	
	S			
	P	xxxxxxxxxxxx		xxxxxxx
	I	(${ }^{\text {xxxxxxxxxxxxxx+ }}$	碞xxxxxxxxxx	
$\frac{\text { AVENA }}{\text { FATUA }}$	F	cex xxxxxxxxxxxxxx xxxx	${ }_{\text {xxx }}{ }^{\text {xx }}$	8
	S	佑		
	P			x $\times \times \times \times \times \times \times \mathrm{x}$
	I			
$\frac{\text { AGROPYRON }}{\text { REPENS }}$	F	xxxxxxxxxxxxxx xxxxxxxxxxxxxx	xxxxxxxxxxxxxx xxxxxxxxxxxxxx	
	S		x xxxxxxxxxxxxx xxxxxxxxxxxxxx	xxxxxxxxxxxxxx xxxxxxxxxxxxx
	P	xxxxxxxxxxxxxx	XXXXXXXXXXXXXX ${ }^{+}$ XxXxXxxxxxxxxx	
	I	cex xxxxxxxxxx xxxxxxxxxxx		xXXXXXXXXXXXX xxxxxxxxxxxx

[^0]| Species | HOE 33171 | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | $0.1 \mathrm{~kg} / \mathrm{ha}$ | | $0.3 \mathrm{~kg} / \mathrm{ha}$ | | | $0.9 \mathrm{~kg} / \mathrm{ha}$ |
| WHEAT | 100 | | 100 | | 87 | |
| (1) | 71 | | 57 | xxxxxxxxxx | 43 | x $x \times x \times x \times x \times$ x |
| WHEAT + S | 100 | | 87 | | 62 | |
| (2) | 71 | | 57 | XXXXXXXXXXX | 29 | XXXXXXX |
| BARLEY | 100 | | 50 | yxxxxxxxxxx | 62 | xxxxxxxxxxxxx |
| (3) | 43 | | 7 | x | 14 | xxx |
| BARLEY + S | 87 | | 12 | x ${ }^{\text {x }}$ | 0 | |
| (4) | 43 | XXXXXXXXXX | 7 | x | 0 | |
| OAT | 0 | | 0 | | 0 | |
| (5) | 0 | | 0 | | 0 | |
| PER RYGR | 100 | | 90 | | 90 | |
| (6) | 71 | | 43 | xxxxxxxx x | 36 | xxxxxxx |
| ONION | 100 | | 100 | | 100 | |
| (8) | 100 | jxxxxxxxxxxxyxxxxxxx | 100 | | 100 | |
| DWF BEAN | 100 | | 100 | | 100 | |
| (9) | 100 | | 100 | | 100 | |
| FLD BEAN | 100 | | 100 | | 100 | |
| (10) | 100 | | 100 | | 100 | |
| PEA | 100 | | 100 | | 100 | |
| (11) | 100 | | 100 | | 79 | X XXXXXXXXXXXXXXXX |
| W CLOVER | 100 | | 100 | | 100 | |
| (12) | 100 | | 100 | | 100 | |
| RAPE | 100 | | 100 | | 100 | |
| (14) | 100 | xxxxxxxxxxxxxxxxxxxxxx | 86 | | 86 | |

Species	HOE 33171					$0.9 \mathrm{~kg} / \mathrm{ha}$	
	$0.1 \mathrm{~kg} / \mathrm{ha}$						
			$0.3 \mathrm{~kg} / \mathrm{ha}$				
KALE	100			100		100	
(15)	100	mxxxxxxxxxxxxxxxxxxx	86		86		
$\begin{aligned} & \text { CABBAGE } \\ & \text { (16) } \end{aligned}$	100		100		100		
	100		100		79		
CARROT (18)	100		100		100		
	100	mxxxxxxxxxxxxxxxxxxxx	100		100		
$\begin{aligned} & \text { PARSNIP } \\ & \text { (19) } \end{aligned}$	100		100		100		
	93		100		93		
$\begin{aligned} & \text { LETTUCE } \\ & \text { (20) } \end{aligned}$	100		100	mxxxxxxxxxxxxxxxxxxx	100		
	100	mxxxxxxxxxxxxxxxxxxxx	100		100		
FENUGREK(21)	100		100		100		
	100		100		100		
$\begin{aligned} & \text { SUG BEET } \\ & (22) \end{aligned}$	100		100		100		
	100		100		93		
BETA VUL(23)	100		100		100		
	100		100		100	mxxxxxxxxxxxxxxxxxxx	
$\begin{aligned} & \text { BROM STE } \\ & (24) \end{aligned}$	100		100	$\underline{x ~}$	100		
	86		93		93	mxxxxxxxxxxxxxxxxxxx	
$\begin{aligned} & \text { FEST RUB } \\ & \text { (25) } \end{aligned}$	94		94		100		
	93		93		100	$\underline{X X X X X X X X X X X X X X X X X X X X}$	
AVA FATU(26)	50		0		0		
	21	xxxx	0		0		
ALO MYOS(27)	50	xxxxxxxxxx	10	x ${ }^{\text {x }}$	0		
	36	xxxxxxx	21	$\mathbf{x x x x}$	0		

Species $\quad 0.1 \mathrm{~kg} / \mathrm{ha}$			
POA ANN	100		100
(28)	100		100
POA TRIV	0		0
(29)	0		0
SIN ARV	100	mxxxxxxxxxxxxxxxxxxx	100
(30)	100		100
RAPH RAP	125	xxxxxxxxxxxxxxxxxxxxx+	125
(31)	100		100
CHR SEG	100		100
(32)	100	mxxxxxxxxxxxxxxxxxxx	93
TRIP MAR	100		100
(33)	100		100
SEN VULG	100		100
(34)	100		100
POL LAPA	100		100
(35)	100		100
GAL APAR	89		67
(38)	100	mxxxxxxxxxxxxxxxxxxx	100
CHEN ALB	100	xxxxxxxxxxxxxxxxxxxxx	100
(39)	100		100
STEL MED	100		100
(40)	100		100
SPER ARV	100		100
(41)	100		100

HOE 33171

$$
0.3 \mathrm{~kg} / \mathrm{ha}
$$

xxxxxxxxxxxxxxxxxxxx XXXXXXXXXXXXXXXXXXXX
$\mathbf{x ~} 100$ XXXXXXXXXXXXXXXXXXXX

	25
XxXXXXXXXXXXXXXXXXXX	100

Xxxxxxxxxxxxxxxxxxxx $\quad 100$
XXXXXXXXXXXXXXXXXXX86

XXXXXXXXXXXXXXXXXXXXX	100
$\mathbf{X X X X X X X X X X X X X X X X X X X X}$	

XXXXXXXXXXXXXXXXXXXX 100
$\mathbf{x X X X X X X X X X X X X X X X X X X X} \quad 100$
xxxxxxxxxxxxxxxxxxxx
100
$\mathbf{x x X x X X X X X X X X X X X X X X X X} \quad 100$
$\mathbf{X X X X X X X X X X X X X} \quad 89$
xxxxxxxxxxxxxxxxxxxx 100
xxxxxxxxxxxxxxxxxxxx 92XXXXXXXXXXXXXXXXXXXX100
$\operatorname{xxxxxxxxxxxxxxxxxxxx~} 100$ XXXXXXXXXXXXXXXXXXXX10010093

$0.9 \mathrm{~kg} / \mathrm{ha}$

xxxxxxxxxxxxxxxxxxxxx XXXXXXXXXXXXXXXXX

$\mathbf{x x X x X X X X X X X X X X X X X X X X}$ XXXXXXXXXXXXXXXXX
xxxxxxxxxxxxxxxxxxxx +

xXXXXXXXXXXXXXXXXXXX xXXXXXXXXXXXXXXXX
$\mathbf{x x X x X X X X X X X X X X X X X X X}$ XXXXXXXXXXXXXX

Species $0.1 \mathrm{~kg} / \mathrm{ha}$			
VER PERS	71		71
(42)	86		100
RUM OBTU	100		100
(44)	100		100
AG REPEN	100		100
(47)	93		93
AG STOLO	50		17
(48)	14	xxx	7
CIRS ARV	100		100
(50)	100		100
PHAL PAR	70		50
(54)	36	xxxxxxx	43
MAIZE + S	0		0
(56)	0		0
MAIZE	0		0
(57)	0		0
SOL NIG	100		100
(81)	100		100
PHAL MIN	70		20
(84)	43	xxxxxxxxx	14
OXAL LAT	100		100
(87)	93		100

$0.3 \mathrm{~kg} / \mathrm{ha}$

	71	xxxxxxxxxxxxxx
	93	
xxxxxxxxxxxxxxxxxxxxx	100	
	100	xxxxxxxxxxxxxxxxxxxx
	100	
xxxxxxxxxxxxxxxxxxxx	57	
xxx	0	
x	0	
	100	
xxxxxxxxxxxxxxxxxxxxx	86	xxxxxxxxxxxxxxxxxx
	20	xxxx
	7	x
	0	
	0	
	0	
	0	
	100	
	100	
$\mathbf{x x x x}$	0	
x $x \times$	0	
	100	
	86	

NB: AC 25225 is imazapyr, DOWCO 453 is haloxyfop, HOE 33171 is fenoxaprop-ethyl, HOE 35609 is fenthiaprop-ethyl

Chemical name Ethy1 2-[4(6-ch1oro-3a, 4, 5, $6,7,7 a-h e x a h y d r o b e n z o t h i a z o l-~$ 2-yloxy) cyclohexyloxy]propionate.

Structure

Source
Hoechst UK Ltd Agriculture Division East Winch Hall
East Winch
Norfolk PE32 1HN

Information available and suggested uses
For control of grass weeds in dicotyledonous crops. Control of annual species at 0.18 to 0.24 kg a.i./ha; perennials at 0.48 to 0.72 kg a.i./ha.

Formulation used Emulsifiable concentrate 24% a.i. (including surfactant Genapol X-060 at 24% a.i.)

Spray volume For activity experiment 373 1/ha. For post-emergence selectivity experiment 371 1/ha.

RESULTS

Full results are presented in the histograms on pages $31-35$ and potential selectivites are summarised in the following table.

RATE (kg a.i./ha)	CROPS: vigour reduced by 15% or less	WEEDS: number or vigour reduced by 70% or more
0.8	onion dwarf bean field bean pea white clover rape cabbage carrot parsnip lettuce fenugreek sugar beet radish	Avena fatua Agrostis stolonifera Phalaris minor + species below
0.2	species above + kale	Bromus sterilis Poa trivialis + species below
0.05	species above + maize + safener (NA)	Alopecurus myosuroides Agropyron repens

Comments on results

Activity experiment
The pattern of activity was very similar to that of HOE 33171 with grasses susceptible and broad-leaved species tolerant. HOE 35609 was more active however, especially on perennial ryegrass and Agropyron repens. The foliar spray was the most effective means of application, being markedly superior to the soil drench, post-emergence. Activity was considerably higher pre-emergence when compared to HOE 33171, especially with the smaller seeded perennial ryegrass. Incorporated pre-emergence treatments tended to be more effective than surface sprays with A. fatua and A. repens.

These were almost identical to the previous herbicide, HOE 33171 , pre- and post-emergence treatments causing severe stunting, necrosis and sometimes chlorosis of leaves of grasses. Some minor temporary necrosis occurred on broad-leaved species with foliar spraying, occasionally with some stunting of growth, but only at the higher dose(s). Fenugreek however exhibited a mild chlorosis or bleaching of trifoliate leaves. With kale, leaves became darker green in colour and showed some slight twisting and curling, but again this was only at the high dose.

Post-emergence selectivities

Several grass weeds were controlled. The perennial, Agropyron repens, was very sensitive, being controlled at only $0.05 \mathrm{~kg} / \mathrm{ha}$. Alopecurus myosuroides was also susceptible at this dose. Bromus sterilis, Poa trivialis at $0.2 \mathrm{~kg} / \mathrm{ha}$ and Avena fatua and Agrostis stolonifera at $8 \mathrm{~kg} / \mathrm{ha}$, were the other susceptible grass weeds. Poa annua and Festuca rubra were very resistant, particularly the latter. All broad-leaved weeds were resistant.

Onion and all broad-leaved crops were tolerant, kale being the only species which failed to reach tolerance at the highest dose. Its vigour was reduced by only 29% at this dose however. The safener NA improved the tolerance of maize marginally. Perennial ryegrass and the other cereals were sensitive, especially wheat and barley. The NA safener had no significant effects on the two latter species.

The control of A. repens and other grasses (including volunteer cereals) in onion and broad-leaved crops is potentially useful. The resistance of Poa annua is a disadvantage, necessitating studies of mixtures with other herbicides which can control this species in onion and broad-leaved crops.

NB: AC 25225 is imazapyr, DOWCO 453 is haloxyfop, HOE 33171 is fenoxaprop-ethyl HOE 35609 is fenthiaprop-ethyl

- 31 -

ACTIVITY EXPERIMENT

HOE 35609

Species

WHEAT (1)	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	
WHEAT + S	37	xxxxxxx
(2)	7	x
BARLEY	12	x \mathbf{x}
(3)	7	x
BARLEY + S	0	
(4)	0	
OAT	:100	
(5)	43	xxxxxxxyx
PER RYGR	60	xxxxxxxxxxxx
(6)	50	
ONION	100	
(8)	100	
DWF BEAN	100	
(9)	100	
FLD BEAN	100	
(10)	100	
PEA	100	
(11)	100	
W CLOVER	100	
(12)	100	
RAPE	100	
(14)	100	

HOE 35609

$$
0.2 \mathrm{~kg} / \mathrm{ha}
$$

$$
\begin{aligned}
& 0 \\
& 0
\end{aligned}
$$

\square0
\mathbf{x}

$0.8 \mathrm{~kg} / \mathrm{ha}$

$\mathbf{x x x x x}$

x

Species		$0.05 \mathrm{~kg} / \mathrm{ha}$	$0.2 \mathrm{~kg} / \mathrm{ha}$			$0.8 \mathrm{~kg} / \mathrm{ha}$
KALE	100		100		100	
(15)	86		86	XXXXXXXXXXXXXXXXX	71	
$\begin{aligned} & \text { CABBAGE } \\ & (16) \end{aligned}$	100		100		100	
	100		100		100	
CARROT(18)	100		100		100	
	100		100		100	
PARSNIP(19)	100		100		100	
	100	XXXXXXXXXXXXXXXXXXXXX	100		100	
$\begin{aligned} & \text { LETTUCE } \\ & \text { (20) } \end{aligned}$	100		100		100	
	100		100		100	
FENUGREK(21)	100	xxxxxxxxxxxxxxxxxxxx	100		100	
	100		100	xxxxxxxxxxxxxxxxxxxx	86	
$\begin{aligned} & \text { SUG BEET } \\ & (22) \end{aligned}$	100		100		100	
	100	mxxxxxxxxxxxxxxxxxxx	100		100	
BETA VUL(23)	100		100		100	
	93	mxxxxxxxxxxxxxxxxxx	100		100	
BROM STE(24)	100		10	xx	0	
	43		7	x	0	
$\begin{aligned} & \text { FEST RUB } \\ & (25) \end{aligned}$	100		100		94	
	93	mxxxxxxxxxxxxxxxxx	100		100	mxxxxxxxyxxxxxxxxxxi
AVE FATU(26)	100		62	mxxxxxixxxxx	0	
	79	mxxxxxxxxxxxxxxx	36	x $x \times x \times x$ x	0	
ALO MYOS	0		0		0	
(27)	0		0		0	

$0.05 \mathrm{~kg} / \mathrm{ha}$			
POA ANN	100		100
(28)	86	X $\mathrm{XXXXXXXXXXXXXXXXXX}^{\prime}$	79
POA TRIV	35		9
(29)	36	xxxxxxx	14
SIN ARV	100		90
(30)	100	mxxxxxxxxxxxxxxxxxxx	100
RAPH RAP	125	xxxxxxxxxxxxxxxxxxxxx+	112
(31)	100	mxxxxxxxxxxxxxxxxxxx	79
CHR SEG	100		100
(32)	86	XXXXXXXXXXXXXXXXX	100
TRIP MAR	100		100
(33)	100	mxxxxxxxxxxxyxxxxxxx	100
SEN VUULG	100		100
(34)	100	mxxxxxxxxxxxxxxxxxxx	100
POL LAPA	100		100
(35)	100	mxxxxxxxxxxxxxxxxxx	100
GAL APAR	89		67
(38)	100	mxxxxxxxxxxxyxxxxxxx	100
CHEN ALB	108		100
(39)	100	xxxxxxxxxxxxxxxxxxxx	100
STEL MED	100		100
(40)	100	mxxxxxxxxxxxxxxxxxx	100
SPER ARV	100		100
(41)	100	xxxxxxxxxxxxxxxxxxxx	100

Species	$0.05 \mathrm{~kg} / \mathrm{ha}$		$0.2 \mathrm{~kg} / \mathrm{ha}$		$0.8 \mathrm{~kg} / \mathrm{ha}$	
VER PERS	71	mxxxixxxxxxxxxx	71		71	
(42)	71	x $x \times x \times x \times x \times x \times x \times x$ x	100		71	X $\mathbf{X X X X X X X X X X X X X X}$
RUM OBTU	100		100 R		100	
(44)	100		100 R		100	
AG REPEN	37	$\mathbf{x x x x x x x}$	75		62	
(47)	7	x	14	xxx	14	$\mathbf{x x x}$
AG STOLO	100		100		17	xxx
(48)	79		57		7	x
CIRS ARV	100	R mxxxxxxxxxxxxxxxxxxx	100		100	
(50)	100		100		100	
PHAL PAR	100		100		100	
(54)	86		79		57	
MAIZE + S	100		17	xxx	0	
(56)	86	XXXXXXXXXXXXXXXXXXX	43		0	
MAIZE	83		0		0	
(57)	79		0		0	
SOL NIG	100		100		100	
(81)	100		100		100	
PHAL MIN	100		100		10	x ${ }^{\text {x }}$
(84)	79	XXXXXXXXXXXXXxxx	57		7	x
OXAL LAT	100		100		100	
(87)	86		93		79	

ACKNOWLEDGEMENTS

We are most grateful to the joint Letcombe/WRO Statistics Section for processing the experimental data; Miss D Stringer and Messrs R H Webster, R M Porteous and S L Burbank for technical and practical assistance; to Mrs L Gawne and Mrs J Wallsworth for the preparation and typing of this report; to Mrs S Cox and her staff for its duplication and to the commercial firms who provided the herbicides and relevant data.

REFERENCES

RICHARDSON, W. G. and DEAN, M.L. (1974) The activity and post-emergence selectivity of some recently developed herbicides: oxadiazon, $\mathrm{U}-29,722$, U-27,658, metflurazone, norflurazone, AC 50,191, AC 84,777 and iprymidam. Technical Report Agricultural Research Council Weed Research Organization 32, pp. 74.

RICHARDSON, W.G. and PARKER, C. (1977) The activity and post-emergence selectivity of some recently developed herbicides: KUE 2079A, HOE 29152, RH 2915, triclopyr and Dowco 290. Technical Report Agricultural Research Council Weed Research Organization, 42, pp. 53.

Appendix 1．Species，abbreviations，varieties and stages of growth at spraying and assessment for post－emergence selectivity test

	Designa－ tion and computer serial number	Cultivar or source	Stage of growth at spraying	Stage of growth at assessment （untreated controls，leaf numbers exclusive of cotyledons）
Temperate species				
Wheat （Triticum aestivum）	WHEAT （1）	Mardler	2 tillers	Numerous leaves， tillering
Wheat＋safener	$\begin{aligned} & \text { WHEAT + S } \\ & \text { (2) } \end{aligned}$	Mardler	2 tillers	Numerous leaves， tillering
Barley （Hordeum vulgare）	$\begin{aligned} & \text { BARLEY } \\ & \text { (3) } \end{aligned}$	Sonja	1－2 tillers	Numerous leaves， 2－4 tillers
Barley＋safener	$\begin{aligned} & \text { BARLEY + S } \\ & \text { (4) } \end{aligned}$	Sonja	1－2 tillers	Numerous leaves， 2－4 tillers
Oat （Avena sativa）	$\begin{aligned} & \text { OAT } \\ & (5) \end{aligned}$	Pennal	1 tiller	Numerous leaves， up to 6 tillers
Perennial ryegrass （Lolium perenne）	PER RYGR (6)	S 23	2 tillers	Up to 12 tillers
Onion （Allium cepa）	ONION （8）	Robusta	2－2⿳亠丷厂犬 leaves	3－31 $\frac{1}{2}$ leaves； bulbs $: \bumpeq 1 \mathrm{~cm}$ diameter
Dwarf bean （Phaseolus vulgaris）	DWF BEAN （9）	Masterpiece	2 trifoliate leaves	3 trifoliate leaves， flowering
Field bean （Vicia faba）	$\begin{aligned} & \text { FLD BEAN } \\ & (10) \end{aligned}$	Maris Bead	5－5 $\frac{1}{2}$ leaves	10 leaves，flowering
Pea （Pisum sativum）	$\begin{aligned} & \text { PEA } \\ & (11) \end{aligned}$	Dark Skinned Perfection	5 leaves	Up to 10 leaves
White Clover （Trifolium repens）	$\begin{aligned} & \text { W CLOVER } \\ & (12) \end{aligned}$	Kent Wild	4－7 trifoliate leaves	Up to 20 trifoliate leaves
Rape \qquad oleifera）	RAPE （14）	Jet Neuf	$2 \frac{1}{2}-3 \frac{1}{2}$ leaves	6 leaves
Kale $\frac{\text {（Brassica oleracea }}{\text { acephala）}}$	$\begin{aligned} & \text { KALE } \\ & (15) \end{aligned}$	Maris Kestrel	3 leaves	6 leaves
Cabbage （Brassica oleracea capitata）	$\begin{aligned} & \text { CABBAGE } \\ & (16) \end{aligned}$	Primata Derby Day	$3 \frac{1}{2}-4$ leaves	Up to 8 leaves
Carrot （Daucus carota）	CARROT （18）	Chantenay Red Core	3－4 leaves	7 leaves

Appendix 1. Cont'd

	Designation and computer serial number	Cultivar or source	Stage of growth at spraying	Stage of growth at assessment (untreated controls, leaf numbers exclusive of cotyledons)
Parsnip (Pastinaca sativa)	PARSNIP (19)	Unicorn	11/2-3 leaves	4-5 leaves
Lettuce (Lactuca sativa)	$\begin{aligned} & \text { LETTUCE } \\ & \text { (20) } \end{aligned}$	Reskia	6 leaves	10 leaves
Fenugreek (Trigonella foenumgraecum)	FENUGREEK (21)	Paul	3-4 trifoliate leaves	7 trifoliate leaves
Sugar beet (Beta vulgaris)	SUG BEET (22)	Monotri	4 leaves	6-10 leaves
Beta vulgaris	BETA VUL (23)	WRO 1981 ex Attleborough	4 leaves	6-10 leaves
Bromus sterilis	$\begin{aligned} & \text { BROM STE } \\ & \text { (24) } \end{aligned}$	WRO 1981	4 tillers	Up to 8 tillers
Festuca rubra	$\begin{aligned} & \text { FEST RUB } \\ & \text { (25) } \end{aligned}$	Boreal	0-1 tiller	Up to 15 tillers
Avena fatua	AVE FATU (26)	WRO 1978	2 tillers	12-14 leaves, 2 tillers
$\frac{\text { Alopecurus }}{\text { myosuroides }}$	ALO MYOS (27)	WRO 1980	2-3 tillers	Up to 15 tillers
Poa annua	POA ANN (28)	B \& S Supplies, 1980	2-3 tillers	Up to 15 tillers
Poa trivialis	POA TRIV (29)	B \& S Supplies, 1981	0-1 tiller	Up to 15 tillers
Sinapis arvensis	$\begin{aligned} & \text { SIN ARV } \\ & (30) \end{aligned}$	WRO 1978	6 leaves	Numerous leaves, podded
Raphanus raphanistrum	RAPH RAP (31)	Long Black Spanish	3 leaves	Up to 7 leaves
$\begin{aligned} & \text { Chrysanthemum } \\ & \text { segetum } \end{aligned}$	$\begin{aligned} & \text { CHRYS SEG } \\ & (32) \end{aligned}$	WRO 1981	8-12 leaves	Up to 22 leaves
$\begin{aligned} & \text { Tripleurospermum } \\ & \text { maritimum } \end{aligned}$	$\begin{aligned} & \text { TRIP MAR } \\ & \text { (33) } \end{aligned}$	WRO 1978	6-8 leaves	Up to 10 leaves, flowers developing
Senecio vulgaris	SEN VULG (34)	B \& S Supplies, 1979.	Up to 7 leaves	17 leaves, flowering
Polygonum lapathifolium	POL LAPA (35)	WRO 1981	3-6 leaves	8 leaves, flowering

Appendix 1, Cont'd

	Designation and computer serial number	Cultivar or source	Stage of growth at spraying	Stage of growth at assessment (untreated controls, leaf numbers exclusive of cotyledons)
Galium aparine	GAL APAR (38)	WRO 1980	2 whorls	Numerous whorls
Chenopodium album	$\begin{aligned} & \text { CHEN ALB } \\ & \text { (39) } \end{aligned}$	WRO 1979	6-10 leaves	10 leaves, flowering
Stellaria media	$\begin{aligned} & \text { STEL MED } \\ & (40) \end{aligned}$	B \& S Supplies, 1979	Up to 14 leaves	Numerous leaves, flowering
Spergula arvensis	SPER ARV (41)	B \& S Supplies, 1977	3-4 whorls	Numerous whorls, flowering
Veronica persica	VER PERS (42)	WRO 1975	4-10 leaves	Numerous leaves, flowering
Rumex obtusifolius	RUM OBTU (44)	WRO 1981	2-3 leaves	6 leaves
Agropyron repens	AG REPEN (47)	WRO Clone 31*	1 tiller	Up to 15 leaves, 2 tillers
Agrostis stolonifera	$\begin{aligned} & \text { AG STOLO } \\ & (48) \end{aligned}$	B \& S Supplies, 1981	5 leaves	Up to 25 stolons
Cirsium arvense	$\begin{aligned} & \text { CIRS ARV } \\ & (50) \end{aligned}$	WRO Clone 1**	8 leaves	Up to 14 leaves
Phalaris paradoxa	$\begin{aligned} & \text { PHAL PAR } \\ & (54) \end{aligned}$	Ethiopia, 1979	2 tillers	Up to 9 tillers, flowering
Maize + safener (Zea mays)	$\begin{aligned} & \text { MAIZE + S } \\ & (56) \end{aligned}$	Caldera 535	4-5 leaves	7 leaves
Maize (Zea mays)	$\begin{aligned} & \text { MAIZE } \\ & (57) \end{aligned}$	Caldera 535	4-5 leaves	7 leaves
Solanum nigrum	SOL NIG (81)	WRO 1980	4 leaves	7 leaves, flowering
Phalaris minor	PHAL MIN (84)	Delhi 1977	5 leaves, some tillering	6 leaves, flowering
Oxalis latifolia	OXAL LAT (87)	WRO Clone $2^{\text {f }}$ (ex Cornwall)	$\begin{aligned} & 3-4 \\ & \text { trifoliate } \\ & \text { leaves } \end{aligned}$	4-15 trifoliate leaves, flowering

[^1]| angstrobm | 8 | freezing point | f.p. |
| :---: | :---: | :---: | :---: |
| Abstract | Abs. | from summary | F.s. |
| acid equivalent* | a.e. | gallon | gal |
| acre | ac | Ellons per hour | gal/h |
| active ingredient* | a.i. | gallons per acre | gal/ac |
| approximately equal to* | - | gas liquid chromatography | GLC |
| aqueous concentrate | a.c. | gramme | g |
| bibliography | bib1. | hectare | ha |
| boiling point | b.p. | hectokilogram | hkg |
| bushel | bu | high volume | HV |
| centigrade | C | horse power | hp |
| centimetre* | cm | hour | h |
| concentrated | concd | hundredweight* | cwt |
| concentration concentration \mathbf{x} time product | conen ct | hydrogen ion concentration* | pH |
| concentration | | inch | in. |
| required to kill | | infra red | i.r. |
| 50\% test animals | LC50 | kilogramme | kg |
| cubic centimetre* | cm^{3} | kilo ($\times 10^{3}$) | k |
| cubic foot* | $f t^{3}$ | less than | $<$ |
| cubic inch* | in ${ }^{3}$ | 1itre | |
| cubic metre* | m^{3} | low volume | LV |
| cubic yard* | $y d^{3}$ | maximum | max. |
| cuitivar (s) | cv. | median lethal dose | LD50 |
| curie* | Ci | medium volume | MV |
| degree Celsius* | ${ }^{\circ} \mathrm{C}$ | melting point | m. ${ }^{\text {. }}$ |
| degree centigrade | ${ }^{\circ} \mathrm{C}$ | metre | m. |
| degree Fahrenheit* | ${ }^{\circ} \mathrm{F}$ | micro ($\times 10^{-6}$) | |
| diameter | diam. | microgramme* | $\mu \mathrm{g}$ |
| diameter at breast height | d.b.h. | $\begin{aligned} & \text { micromicro } \\ & \quad\left(\text { pico: } \times 10^{-12}\right) * \end{aligned}$ | μ |
| divided by* | \div or $/$ | micrometre (micron)* | $\mu \mathrm{m}($ or μ) |
| dry matter | d.m. | micron (micrometre)* \dagger | $\mu \mathrm{m}$ (or μ) |
| emulsifiable | | miles per hour* | mile/h |
| concentrate | e.c. | mil1i ($\times 10^{-3}$) | |
| equal to* | $=$ | | |
| fluid | $f 1$. | milliequivalent* | m.equiv. |
| foot | $f t$ | milligramme | mg |
| | | millilitre | m1 |

millimetre*	mm	pre-emergence	pre-em.
$\begin{aligned} & \text { millimicro* } \\ & \text { (nano: } \times 10^{-9} \text {) } \end{aligned}$		quart	quart
	n or $m \mu$	relative humidity	r.h.
minimam	min.	revolution per minute*	rev/min
minus			
minute	min	cond	s
molar concentration*	M	soluble concentrate	S.c.
molecule, molecular		soluble powder	s.p.
more than		solution	soln
		species (singular)	sp.
multiplied	x	species (plural)	¢.
normal concentration*	N (small cap)		spp.
not dated	n.d.	specific gravity	sp. gr.
oil miscible		square foot*	ft
concentrate	(tables only)	square inch	$i n^{2}$
organic matter	O.m.	square metre*	m^{2}
ounce	Oz	square root of*	$\sqrt{ }$
ounces per gallon	oz/gal	sub-species*	ssp.
page	p.	summary	S.
pages	pp.	temperature	temp.
parts per million	ppm	ton	ton
parts per million		tonne	t
by volume	ppmv	ultra-low volume	ULV
parts per million		ultra violet	U.v.
by weight	ppmw	vapour density	
percent(age)	\%		v.d.
pico		vapour pressure	v.p.
(micromicro: $\times 10^{-12}$)	p or $\mu \mu$	varietas	var.
pint	pint	volt	V
pints per acre	pints/ac	volume	vol.
plus or minus*	+	volume per volume	v / v
post-emergence	post-em	water soluble powder	W.s.p.
pound	Ib		(tables
ound per acr		watt	W
pound per acr	1b/	weight	wt
pounds per minute	1b/min		
pound per square inch*	Ib/in ${ }^{2}$	weight per volume*	w/v
powder for dry		weight per weight*	w/w
application	(tables only)	wettable powder	w.p.
power take off	p.t.o.	yard	yd
precipitate (noun)	ppt.	yards per minute	$\mathrm{yd} / \mathrm{min}$

[^2]
TECHNICAL REPORTS

(Price includes surface mail; airmail $£ 1.00$ extra)
(* denotes Reports now out of print)
6. The botany, ecology, agronomy and control of Poa trivialis L. roughstalked meadow-grass. November 1966. G P Allen. Price - £0. 25
7. Flame cultivation experiments 1965. October, 1966. G W Ivens. Price - $£ 0.25$
8. The development of selective herbicides for kale in the United Kingdom. 2. The methylthiotriazines. Price - £0. 25
10. The liverwort, Marchantia polymorpha L. as a weed problem in horticulture; its extent and control. July 1968. I E Henson. Price - $£ 0.25$
11. Raising plants for herbicide evaluation; a comparison of compost types. July 1968. I E Henson. Price - £0.25
*12. Studies on the regeneration of perennial weeds in the glasshouse; I. Temperate species. May 1969. I E Henson. Price - $£ 0.25$
13. Changes in the germination capacity of three Polygonum species following low temperature moist storage. June 1969. I E Henson. Price. - £0. 25
14. Studies on the regeneration of perennial weeds in the glasshouse. II. Tropical species. May 1970. I E Henson. Price - £0. 25
15. Methods of Analysis for herbicide residues. February 1977. (second edition) - price £ 5.75
16. Report on a joint survey of the presence of wild oat seeds in cereal seed drills in the United Kingdom during Spring 1970. November 1970. J G E1liott and P J Attwood. Price - £0. 25
17. The pre-emergence selectivity of some newly developed herbicides, Orga 3045 (in comparison with dalapon), haloxydine (PP 493), HZ 52.112, pronamide (RH 315) and R 12001. January 1971. W G Richardson, C Parker and K Holly. Price - $£ 0.25$
18. A survey from the roadside of the state of post-harvest operations in Oxfordshire in 1971. November 1971. A Phillipson. Price - £0. 12

* 19. The pre-emergence selectivity of some recently developed herbicides in jute, kenaf and sesamum, and their activity against Oxalis latifolia. December 1971. M L Dean and C Parker. Price-£0. 25.
* 20. A survey of cereal husbandry and weed control in three regions of England. July 1972. A Phillipson, T W Cox and J G Elliott. Price - £0. 35

21. An automatic punching counter. November 1972. R C Simmons. Price - £0. 30
22. The pre-emergence selectivity of some newly developed herbicides: bentazon, BAS 3730 H , metflurazone, SAN 9789, HER 52.123, U 27,267. December 1972. W G Richardson and M L Dean. Price - £0. 25
23. A survey of the presence of wild oats and blackgrass in parts of the United Kingdom during summer 1972. A Phillipson. Price-£0. 25
24. The conduct of field experiments at the Weed Research Organization. February 1973. J G Elliott, J Holroyd and T O Robson. Price £ 1.25
25. The pre-emergence selectivity of some recently developed herbicides: lenacil, RU 12068, metribuzin, cyprazine, EMD-IT 5914 and benthiocarb. August 1973. W G Richardson and M L Dean. Price - £1.75.
26. The post-emergence selectivity of some recently developed herbicides: bentazon, EMD-IT 6412, cyprazine, metribuzin, chlornitrofen, glyphosate, MC 4379, ch1orfenprop-methy1. October 1973. W G Richardson and M L Dean. Price - £3.31
27. Selectivity of benzene sulphonyl carbamate herbicides between various pasture grasses and clover. October 1973. A M B1air. Price - £ 1.05
28. The post-emergence selectivity of eight herbicides between pasture grasses: RP 17623, HOE 701, BAS 3790, metoxuron, RU 12068, cyprazine, MC 4379, metribuzin. October 1973. A M Blair. Price - £ 1.00

* 29. The pre-emergence selectivity between pasture grasses of twelve herbicides: haloxydine, pronamide, NC 8438, Orga 3045, chlortoluron, metoxuron, dicamba, isopropalin, carbetamide, MC 4379, MBR 8251 and EMD-IT 5914. November 1973. A M Blair. Price - £ 1.30

30. Herbicides for the control of the broad-leaved dock (Rumex obtusifolius L.). November 1973. A M Blair and J Holroyd. Price $-£ 1.06$
31. Factors affecting the selectivity of six soil acting herbicides against Cyperus rotundus. February 1974. M L Dean and C Parker. Price - £1.10
32. The activity and post-emergence selectivity of some recently developed herbicides: oxadiazon, $\mathrm{U}-29,722, \mathrm{U}-27,658$, metflurazone, norflurazone, AC 50-191, AC 84,777 and iprymidam. June 1974. W G Richardson and M L Dean. Price - £3. 62
33. A permanent automatic weather station using digital integrators. September 1974. R C Simmons. Price £0.63.
34. The activity and pre-emergence selectivity of some recently developed herbicides: trifluralin, isopropalin, oryzalin, dinitramine, bifenox and perfluidone. November 1974. W G Richardson and M L Dean. Price - £2. 50
35. A survey of aquatic weed control methods used by Internal Drainage Boards, 1973. January 1975. T O Robson. Price - £1. 39
36. The activity and pre-emergence selectivity of some recently developed herbicides: Bayer 94871, tebuthiuron, AC 92553. March 1975.
W G Richardson and M L Dean. Price - $£ 1.54$
37. Studies on Imperata cylindrica (L.) Beauv. and Eupatorium odoratum L. October 1975. G W Ivens. Price - £1. 75
38. The activity and pre-emergence selectivity of some recently developed herbicides: metamitron, HOE 22870, HOE 23408, RH 2915, RP 20630. March 1976. W G Richardson, M L Dean and C Parker. Price - £3. 25
39. The activity and post-emergence selectivity of some recently developed herbicides: HOE 2287, , HOE 23408, flamprop-methyl, metamitron and cyperquat. May 1976. W G Richardson and C Parker. Price - £3. 20
40. The activity and pre-emergence selectivity of sone recently developed herbicides: RP 20810, oxadiazon, chlornitrofen, nitrofen, flamprop--isopropy1. fugust 1976. W G Richardson, M I Dean and C Parker. Price - $£ 2.75$.
41. The activity and pre-emergence selectivity of some recently developed herbicides: K 1441, mefluidide, WL 29226, epronaz, Dowco 290 and triclopyr. November 1976.W G Richardson and C Parker. Price - £3.40.
42. The activity and post-emergence selectivity of some recently developed herbicides: KUE 2079A, HOE 29152, RH 2915, Triclopyr and Dowco 290. March 1977. W G Richardson and C Parker. Price - $£ 3.50$
43. The activity and pre-emergence selectivity of some recently developed herbicides: dimefuron, hexazinone, trifop-methyl, fluothiuron, 'buthidazole and butam. November 1977. W G Richardson and C Parker. Price - £3.75.
44. The activity and selectivity of the herbicides: ethofumesate, RU 12709 and isoproturon. December 1977. W G Richardson, C Parker, \& M L Dean. Price - £4.00
45. Methods of analysis for determining the effects of herbicides on soil soil micro-organisms and their activities. January 1978. M P Greaves, S L Cooper, H.A Davies, J A P Marsh \& G I Wingfield. Price - £4.00
46. Pot experiments at the Weed Research Organization with forest crop and weed species. February 1978. D J Turner and W G Richardson.
Price - £2. 70
47. Field experiments to investigate the long-term effects of repeated applications of MCPA, tri-allate, simazine and linuron - effects on the quality of barley, wheat, maire and carrots. July 1978. J D Fryer, P D Smith and J W Ludwig. Frice - £1.20.
48. Factors affecting the toxicity of paraquat and dalapon to grass swards. March 1978. A K Oswald. Price - £2.90
49. The activity and post-emergence selectivity of some recently developed herbicides: NP 48, RH 5205 and Pyridate. May 1978. W G Richardson and C Parker. Price - £2.50
50. Sedge weeds of East Africa - II. Distribution. July 1978. P J Terry. Price - £1.50
51. The activity and selectivity of the herbicides methabenzthiazuron, metoxuron, chlortoluron and cyanazine. September 1978.
W G Richardson and C Parker. Price - £2.20.
52. Antidotes for the protection of field bean (Vicia faba L.) from damage by EPTC and other herbicides. February 1979. A M B1air. Price - £1. 35
53. Antidotes for the protection of wheat from damage by tri-allate. February 1979. A M B1air. Price - £2.00
54. The activity and pre-emergence selectivity of some recently developed herbicices: alachlor, metolachlor, dimethachlor, alloxydim-sodium and fluridone. April 1979. W G Richardson and C Parker. Price - $£ 3.00$
55. The activity and selectivity of the herbicides carbetamide, methazole, R 11913 and OCS 21693. May 1979. W G Richardson and C Parker. Price - £1.80
56. Growing weeds from seeds and other propagules for experimental purposes. July 1979. R H Webster. Price - £1. 10
57. The activity and pre-emergence selectivity of some recently developed herbicides: R 40244, AC 206784, pendimethalin, butralin, acifluorfen and FMC 39821. December 1979. W G Richardson, T M West and C Parker Price - £3.55
58. The tolerance of fenugreek (Trigonella foenumgraecum L.) to various herbicides. December 1979. W G Richardson. Price - £1.55
59. Recommended tests for assessing the side-effects of pesticides on the soil microflora. April 1980. M P Greaves, N J Poole, K H Domsch, G Jagnow and W Verstraete. Price - £2.00
60. Properties of natural rainfalls and their simulation in the laboratory for pesticide research. September 1980. R C Simmons. Price- £1. 25
61. The activity and post-emergence selectivity of some recently developed herbicides: R 40244, DPX 4189, acifluorfen, ARD 34/02 (NP 55) and PP 009. November 1980. W G Richardson, T M West and C Parker. Price - £3.75
62. The activity and pre-emergence selectivity of some recently developed herbicides: UBI S-734, SSH-43, ARD 34/02 (=NP 55), PP 009 and DPX 4189. February 1981. W G Richardson, T M West and C Parker. Price - £3.50
63. The activity and post-emergence selectivity of some recently developed herbicides: SSH-41, MB 30755, AC 213087, AC 222293 and Dowco 433. May 1981. W G Richardson, T M West and C Parker. Price - $£ 3.50$
64. The activity and pre-emergence selectivity of some recently developed herbicides: chlomethoxynil, NC 20484 and MBR 18337. March 1982. W G Richardson, T M West and C Parker. Price - £3.00
65. A system for monitoring environmental factors in controlled environment chambers and glasshouses. June 1982. R C Simmons. Price - £1.50
66. The activity and pre-emergence selectivity of some recently developed herbicides: AC 213087 and AC 222293. December 1982. W G Richardson, T M West and C Parker. Price - £2.00
67. The activity and post-emergence selectivity of some recently developed herbicides: trifopsime, glufosinate, RH 8817, MBR 18337 and NC 20484. December 1982. W G Richardson, T M West and C Parker. Price - £3.25
68. The activity and pre-emergence selectivity of some recently developed herbicides: WL 49818, WL 82830, WL 83627, WL 83801 and DPX 5648. December 1982. W G Richardson, T M West and C Parker. Price - £4.00
69. The activity and late post-emergence selectivity of some recently developed herbicides: AC 252925, DOWCO 453, HOE 33171 and HOE 35609. March 1983. W G Richardson, T M West and G P White. Price - £3.25

[^0]: KEY: $\mathrm{F}=$ post-emergence, foliar application S = post-emergence, soil drench $\mathrm{P}=$ pre-emergence, surface film $I=$ pre-planting, incorporated

[^1]: * one node rhizome pieces
 ** root fragments
 bulbs

[^2]: * Those marked * should normally be used in the text as well as in tables etc.

