Click here for previous

		RH 8817		RH 8817		RH 8817
SPECIES		0.2 kg/ha		0.8 kg/ha		3.2 kg/ha
CIRS ARV	75	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	0		25	XXXXX
(50)	57	XXXXXXXXXXX	0		14	XXX
MILLET	50	XXXXXXXXXX	40	XXXXXXXX	0	
(55)	57	XXXXXXXXXXX	29	XXXXXX	0	
MAIZE + S	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	25	XXXXX
(56)	86.	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	57	XXXXXXXXXXX	21	XXXX
MAIZE	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	0	
(57)	71	XXXXXXXXXXXXXX	64	XXXXXXXXXXXXX	0	
SORG + S	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	67	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	0	
(58)	79	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	29	XXXXXX	0	
SORGHUM	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	50	XXXXXXXXXX	0	
(59)	79	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	36	XXXXXXX	0	
PIGEON P	20	XXXX	0		0	
(61)	43	XXXXXXXXX	0		0	
COWPEA	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	80	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	0	
(62)	50	XXXXXXXXXX	29	XXXXXX	0	
CHICKPEA	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
(63)	64	XXXXXXXXXXXXX	50	XXXXXXXXXX	50	XXXXXXXXXX
GRNDNUT	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
(64)	64	XXXXXXXXXXXXX	50	XXXXXXXXXX	43	XXXXXXXXX
SOYABEAN	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
(65)	86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	64	XXXXXXXXXXXXX	57	XXXXXXXXXXX
COTTON	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	90	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	0	
(66)	43	XXXXXXXXX	14	XXX	0	

ha

POST-EMERGENCE SELECTIVITY TEST

31

XXXXXXXX

1

XXXXXXXX

XXXXXXXX

SPECIES		RH 8817 0.2 kg/ha		RH 8817		· RH 881
		U.Z Ky/na		0.8 kg/ha		3.2 kg/1
JUTE	0		0			
(67)	0		0		0	
			U		0	
KENAF	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	FO	
(68)	29	XXXXXX	29	XXXXXXX	50	XXXXXXXXXX
TODIOGO					1	X
TOBACCO	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	40	
(69)	64	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	43	XXXXXXXXXX	36	XXXXXXXX
SESAMUM						XXXXXXX
(70)	0		0		0	
(, , , ,	0		0		0	
TOMATO	33	TATATATATATATA				
(71)	57	XXXXXXXX	0		0	
		XXXXXXXXXXX	0		0	
RICE	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100			
(72)	71	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	87	XXXXXXXXXXXXXXX
			57	XXXXXXXXXXXX	43	XXXXXXXXX
RICE + A	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	VVVVVVV		
(73)	86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	64	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXX
			~ .	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	43	XXXXXXXXX
ELEU IND	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	80	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	0	
(74)	93	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	43	XXXXXXXXXX	0	
EGH ODUG					0	
ECH CRUS	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	17	XXX	0	
(75)	64	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	14	XXX	0	
ROTT EXA	100					
(76)	100 79	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	25	XXXXX
	19	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	57	XXXXXXXXXXXX	21	XXXX
DIG SANG	100	VVVVV				
(77)	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	92	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	8	XX
	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	64	XXXXXXXXXXXXXX	21	XXXX
AMAR RET	70	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	0			
(78)	43	XXXXXXXXXX	0		0	
			0		0	

17 /ha

XXXXXX

XXXXXXXXX

P SIL EMERGENCE SELEC HH 4 TTY TEST

SPECIES		RH 8817 0.2 kg/ha		RH 8817 0.8 kg/ha		RH 8817 3.2 kg/ha
PORT OLE	0		0		0	
(79)	0		0		0	
SOL NIG	17	XXX	0		0	
(81)	36	XXXXXXX	0		0	
BROM PEC	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	31	XXXXXX
(82)	. 79	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	64	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	36	XXXXXXX
SNO POL	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	94	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	44	XXXXXXXXX
(83)	93	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	71	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	36	XXXXXXX
PHAL MIN	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	50	XXXXXXXXXX	0	
(84)	64	XXXXXXXXXXXXX	36	XXXXXXX	0	
CYP ESCU	-		-		-	
(85)	57	XXXXXXXXXXX	50	XXXXXXXXXXX	29	XXXXXX
CYP ROTU	-		-		-	
(86)	71	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	57	XXXXXXXXXXXX	43	XXXXXXXXX
OXAL LAT	-		-		-	
(87)	50	XXXXXXXXXX	21	XXXX	0	
CYN DACT	-		_		_	
(88)	93	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	64	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	50	XXXXXXXXXX

RH	8817
0.2	kg/ha

RH 8817

POST-EMERGENCE SELECTIVITY TEST

. 33 1

MBR 18337 The state the second is presented and And share a start when the start is the Code number MBR 18337 Chemical name N-[4-(ethylthio)-2-(trifluoromethyl)phenyl]methane sulphonamide Structure

/ NHSO2 CH3 and the contract of the second s

- 34 -

CH₃CH₂S/CF₃

Source

NEW CONTRACTOR OF THE

Ist a the second of the

The second state of the second states

FBC Limited

Agrochemical Division Chesterford Park Research Station Saffron Walden Essex CB10 1XL

Information available and suggested uses

Grass growth retardation and seedhead suppression in all warm and cool season turf grasses at 0.14 and 2.24 kg a.i./ha depending on species; sucrose enhancement in sugar cane at 0.28 to 1.12 kg a.i./ha; weed control in cotton pre-emergence, pre-plant incorporated or post-emergence at 0.56 to 2.24 kg a.i./ha.

Formulation used 24% w/v a.i. emulsifiable concentrate

Spray volume for post-emergence selectivity experiment 371 1/ha

RESULTS

Full results are given in the histograms on pages 36-41 and potential selectivities are summarised in the following table.

RATE (kg a.i./ha)	CROPS: vigour reduced by 15% or less	WEEDS: number or vigour reduced by 70% or more
1.60	None	None listed as no crops tolerant
0.4	rape cabbage radish chickpea	Festuca rubra Poa trivialis Holcus lanatus Agrostis stolonifera Eleusine indica Echinochloa crus-galli
0.1	None listed as no weeds controlled	None

Comments on results

Results of the activity and pre-emergence selectivity experiments were published earlier (Richardson et al, 1982) together with symptoms caused on susceptible species, and soil persistence. Greatest activity was found preemergence especially on grasses. Post-emergence, moderate, though non-lethal effects resulted, broad-leaved species tending to be more sensitive to the foliar spray rather than to the soil drench, but grasses responded similarly to both post-emergence treatments. Symptoms were typical of other amide/anilide herbicides, necrosis usually developing much later after inhibition of apical meristems, which were often swollen. Leaves were often fused together, dark green in colour with shiny leaf surfaces. Similar symptoms appeared in the current post-emergence test but several species tended to produce either extra tillers (grasses) or more axillaries further down their stems, (broad-leaved species), these usually being small and sometimes deformed.

Post-emergence selectivity among temperate species

Although nearly all grass weeds were severely stunted at 0.4 kg/ha and lower, only four species were controlled at this dose. These included the perennial, Agrostis stolonifera and the annuals, Festuca rubra, Holcus lanatus and Poa trivialis. Broad-leaved weeds were generally resistant though some, eg Sinapis arvensis and Spergula arvensis were severely stunted even at the lowest dose.

Only three brassica crops (cabbage, radish and rape) tolerated 0.4 kg/ha. Wheat and barley were sensitive even at the lowest dose. NA failed to reduce herbicidal effects on these two species, in contrast to the pre-emergence test (Richardson et al, 1982).

Although some grass weeds were controlled selectively in certain brassica crops post-emergence, better activity and selectivity exists pre-emergence. A wider spectrum of weeds was then controlled more effectively in brassica and other crops (Richardson et al, 1982). The partial control of <u>Sinapis arvensis</u> in brassica crops post-emergence may be worth further testing, however.

Selectivity among tropical species

Nearly all species showed comparable degrees of stunting and distortion, mostly mild at 0.1 kg/ha and severe at 1.6 kg/ha. At 0.4 kg/ha the effects were generally severe; chickpea was exceptional in showing no deformity at this dose but pod development may have been delayed. There was some protection of maize and rice by NA but only at the lowest dose. Sorghum was not protected by cyometrinil. Perennials were damaged initially to the same degree as annuals but all were recovering strongly after about two months.

The value of this compound as a post-emergence treatment would appear to be restricted to situations where a non-selective growth suppression rather than kill is required, perhaps under a perennial tree crop.

and the second sec

1

SPECIES		MBR 18337		MBR 18337		MBR
		0.1 kg/ha		0.4 kg/ha		1.6
WHEAT	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXX
(1)	57	XXXXXXXXXXX	43	XXXXXXXXX	29	XXXXXX
WHEAT + S	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXX
(2)	57	XXXXXXXXXXX	43	XXXXXXXXX	29	XXXXXX
BARLEY	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXX
(3)	64.	XXXXXXXXXXXXX	43	XXXXXXXXX	36	XXXXXXXX
BARLEY + S	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	VVVVVVVVV
(4)	64	XXXXXXXXXXXXX	43	XXXXXXXXXX	36	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
OAT	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXX
(5)	79	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	43	XXXXXXXXX	36	XXXXXXXX
PER RYGR	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXX
(6)	86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	36	XXXXXXX	43	XXXXXXXXXX
ONION	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
(8)	93	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	71	XXXXXXXXXXXXXX	50	XXXXXXXXXXX
DWF BEAN	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXX
(9)	57	XXXXXXXXXXX	43	XXXXXXXXX	36	XXXXXXXX
FLD BEAN	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXX
(19)	71	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	57	XXXXXXXXXXX	43	XXXXXXXXX
PEA	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXX
(11)	86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	57	XXXXXXXXXXX	43	XXXXXXXXX
W CLOVER	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	69	XXXXXXXXXXX
(12)	64	XXXXXXXXXXXXX	43	XXXXXXXXX	29	XXXXXX
RAPE	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXX
(14)	86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	57	XXXXXXXXXXX

18337 kg/ha

XXXXXXXXXXXXX

XXXXXXXXXXXXX

XXXXXXXXXXXXX

XXXXXXXXXXXXX

XXXXXXXXXXXXX

XXXXXXXXXXXXXX

XXXXXXXXXXXXX XX

XXXXXXXXXXXX

XXXXXXXXXXXX

XXXXXXXXXXXX

XXXXXX

XXXXXXXXXXXX XXX

. . P MERGE A SE LA TEST

SPECIES

14

				The second second			
ł	KALE	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
	(15)	86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	64	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	43	XXXXXXXXX
(CABBAGE	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
	(16)	86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	64	XXXXXXXXXXXXX
(CARROT	84	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	105	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	105	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
	(18)	79	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	64	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	43	XXXXXXXXX
I	PARSNIP	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXX
1	(19)	71	XXXXXXXXXXXXXX	57	XXXXXXXXXXX	43	XXXXXXXXX
01	SUG BEET	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXX
	(22)	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	79	XXXXXXXXXXXXXXXXX	50	XXXXXXXXXX
E	BETA VUL	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXX
	(23)	93	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	64	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	57	XXXXXXXXXXX
E	BROM STE	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXX
	(24)	79	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	36	XXXXXXX	29	XXXXXX
F	FEST RUB	75	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	31	XXXXXX	25	XXXXX
((25)	64	XXXXXXXXXXXX	14	XXX	14	XXX
	AVE FATU	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXX
((26)	71	XXXXXXXXXXXXXX	4.3	XXXXXXXXX	36	XXXXXXX
A	ALO MYOS	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	70	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	60	XXXXXXXXXXXXX
((27)	64	XXXXXXXXXXXXX	36	XXXXXXX	21	XXXX
P	POA ANN	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	81	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	94	XXXXXXXXXXXXXXXXXX
((28)	50	XXXXXXXXXX	36	XXXXXXX	29	XXXXXX
P	POA TRIV	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	94	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
(29)	50	XXXXXXXXXX	29	XXXXXX	29	XXXXXX

MBR 18337 0.1 kg/ha

. . . .

MBR 18337 0.4 kg/ha

MBR 18337 1.6 kg/ha

and the second sec

XXXXXX

XXXXXXXXXXXXXXXXXXX XXXXXXXXXX

and the second second

XXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXX

XXXXXXXXXXXXXXXXXXXX XXXXXX

XXXXXXXXXXXXXXXXXXX XXXXXXX

XXXXXXXXXXXXXXXXXXX XXXXXXXX

XXXXXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXXX

D SO MERGENCE SELE 0 TT TTY TEST

SPECIES		MBR 18337 0.1 kg/ha			MBR 18337 0.4 kg/ha			•
SIN ARV	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100		XXXXXX
(30)	57	XXXXXXXXXXX	50		XXXXXXXXXX	43		XXXXXX
RAPH RAP	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	90		XXXXXX
(31)	93	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	57		XXXXXX
TRIP MAR	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100		XXXXXX
(33)	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	86		XXXXXX
POL LAPA	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100		XXXXXX
(35)	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	86		XXXXXX
GAL APAR	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100		XXXXXX
(38)	86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	86		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	71		XXXXXX
STEL MED	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	95		XXXXXX
(40)	71	XXXXXXXXXXXXXX	57		XXXXXXXXXXX	43		XXXXXX
SPER ARV	81	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	· 87		XXXXX
(41)	57	XXXXXXXXXXX	57		XXXXXXXXXXX	36		XXXXXX
VER PERS	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100		XXXXXX
(42)	93	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	71		XXXXXXXXXXXXXX	57		XXXXXX
RUM OBTU	100 R	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	R	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	R	XXXXXX
(44)	86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	57		XXXXXXXXXXX	57		XXXXXX
HOLC LAN	80	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	80		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	30		XXXXXX
(45)	64	XXXXXXXXXXXXX	29		XXXXXX	7		X
AG REPEN	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100		XXXXXX
(47)	57	XXXXXXXXXXX	43		XXXXXXXXX	36		XXXXXX
AG STOLO	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	90		XXXXXX
(48)	71	XXXXXXXXXXXXXX	29		XXXXXX	21		XXXX

and a start of start R.

in the true

XXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXX E.M. C. A XXXXXXXXX 1 XXXXXXXXXXXXXXXXXXX XXXXXXX XXXXXXXXXXX XXXXXXXXXXX XXXXXX N. C. S. S. XXXXXXX A READ TO A READ TO A READ TO A READ TO

122

MBR 18337 1.6 kg/ha

XXXXXXXXX

XXXXXXXXXXX

XXXXXXXXXXXXXXXXXXX

> JU ST EMERGENCE SEL ECT H -XIII TEST

CDDCTDC		MBR 18337		MBR 18337		MBR
SPECIES		0.1 kg/ha		0.4 kg/ha		1.6
CIRS ARV	75	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	75	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXX
(50)	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	93	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	71	XXXXXXXXXX
MILLET	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	90	XXXXXXXXX
(55)	71	XXXXXXXXXXXXXX	29	XXXXXX	36	XXXXXXX
MAIZE + S	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXX
(56)	79	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	43	XXXXXXXXXX	29	XXXXXX
MAIZE	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXX
(57)	43	XXXXXXXXX	36	XXXXXXX	29	XXXXXX
SORG + S	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXX
(58)	43	XXXXXXXXX	29	XXXXXX	29	XXXXXX
SORGHUM	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXX
(59)	43	XXXXXXXXX	29	XXXXXX	29	XXXXXX
PIGEON P	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXX
(61)	71	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	50	XXXXXXXXXX	43	XXXXXXXXXX
COWPEA	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXX
(62)	86	XXXXXXXXXXXXXXXXX	57	XXXXXXXXXXX	50	XXXXXXXXX
CHICKPEA	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXX
(63)	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	71	XXXXXXXXX
GRNDNUT	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXX
(64)	86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	71	XXXXXXXXXXXXXX	57	XXXXXXXXX
SOYABEAN	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXX
(65)	57	XXXXXXXXXXX	50	XXXXXXXXXX	36	XXXXXXX
COTTON	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	.100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXX
(66)	86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	64	XXXXXXXXXXXXX	50	XXXXXXXXX

18337 kg/ha

XXXXXXXXXXXX XXXXXXX

XXXXXXXXXX

XXXXXXXXXXXX

XXXXXXXXXXXX

XXXXXXXXXXXXX

XXXXXXXXXXXX

XXXXXXXXXXXXX

XXXXXXXXXXXX XXX

XXXXXXXXXXXXX XXXXXXX

XXXXXXXXXXXX XXXX

XXXXXXXXXXXX

XXXXXXXXXXXX XXX

J OST EMERGENCE SELECTI -TTY TEST

SPECIES

JUTE	100	X
(67)	57	X
KENAF	100	x
(68)	64	X
TOBACCO	100	x
(69)	86.	X
SESAMUM	94	X
(70)	57	X
TOMATO	100	X
(71)	64	x
RICE	100	x
(72)	71	x
RICE + S	100	X
(73)	86	X
ELEU IND	100	X
(74)	57	X
ECH CRUS	100	X
(75)	86	X
ROTT EXA	100	x
(76)	79	X
DIG SANG	100	x
(77)	57	x
AMAR RET	100	x
(78)	71	X

1.25 2.25 2

MBR 18337 0.1 kg/ha

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100
XXXXXXXXXX	43	XXXXXXXX	29
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100
XXXXXXXXXXXX	50	XXXXXXXXXX	43
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	64	XXXXXXXXXXXXX	50
xxxxxxxxxxxxxxxx	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100
XXXXXXXXXX	57	XXXXXXXXXXX	36
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100
XXXXXXXXXXXX	57	XXXXXXXXXXX	43
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100
XXXXXXXXXXXXX	43	XXXXXXXXX	29
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	43	XXXXXXXXX	29
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	80	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100
XXXXXXXXXX	29	XXXXXX	29
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	29	XXXXXX	29
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	36	XXXXXXX	29
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100
XXXXXXXXXX	36	XXXXXXX	36
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	105
XXXXXXXXXXXXX	57	XXXXXXXXXXX	43

the first start is the

MBR 18337 0.4 kg/ha

XXXXXX

XXXXXXXXXX TY AT Y XXXXXXX T 12 12 1 1 1 2 2 2 1

XXXXXXXXX

XXXXXX 1. 1. 1. 1. S. 1. 1.

XXXXXX

XXXXXX

XXXXXX * 28

the state of the second s XXXXXX 1.X. 17.3

XXXXXX A TYPE Land

STRATE WALL & WALL AND A STRATE XXXXXXX The and the second

xxxxxxxxxxxxxxxxxxxxxx XXXXXXXXX ET THE KEY STY

and the second of the

MBR 18337 1.6 kg/ha

XXXXXXXXX

P SO ENC 日 TE ST

4

and the

in the second

And the second

CDECTEC		MBR 18337		MBR 18337		MBR
SPECIES		0.1 kg/ha		0.4 kg/ha		1.6
PORT OLE	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXX
(79)	64	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	50	XXXXXXXXXX	43	XXXXXXXXX
SOL NIG	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXX
(81)	64	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	57	XXXXXXXXXXX	43	XXXXXXXXX
BROM PEC	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXX
(82)	57	XXXXXXXXXXX	36	XXXXXXX	29	XXXXXX
SNO POL	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXX
(83)	57	XXXXXXXXXXX	50	XXXXXXXXXX	43	XXXXXXXXX
PHAL MIN	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXX
(84)	93	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	57	XXXXXXXXXXX	29	XXXXXX
CYP ESCU	-		-		_	
(85)	93	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	79	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	43	XXXXXXXXX
CYP ROTU	-		-		-	
(86)	79	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	57	XXXXXXXXXXX	29	XXXXXX
OXAL LAT	-		-		-	
(87)	79	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	57	XXXXXXXXXXX	43	XXXXXXXXX
CYN DACT	-				-	
(88)	93	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	50	XXXXXXXXXX	29	XXXXXX

and the second second second

in the second second

State of the second sec

18337 kg/ha

XXXXXXXXXXXX

XXXXXXXXXXXX

XXXXXXXXXXXX

XXXXXXXXXXXX

XXXXXXXXXXXX

S 4 MER GEN H SE Э EST

Source

FBC Limited Agrochemical Division Chesterford Park Research Station Saffron Walden Essex CB10 1XL

1

Information available and suggested uses

Control of Cyperus spp and annual grass and broad-leaved weeds in cotton at 0.5 to 2.0 kg a.i./ha pre-plant or pre-emergence; tobacco 0.5 to 2.0 kg a.i./ha pre- or post-transplanting; orchard/plantation crops, pre-weed emergence.

Formulation used 40% w/v a.i. emulsifiable concentrate

<u>Spray volume</u> for post-emergence selectivity experiment 371 1/ha RESULTS

Full results are given in the histograms on pages 44-49 and potential selectivities are summarised in the following table.

RATE (kg a.i./ha)	CROPS: vigour reduced by 15% or less	WEEDS: number or vigour reduced by 70% or more
3.20	parsnip rice + safener (NA)	Poa annua Galium aparine Spergula arvensis
		Veronica persica Holcus lanatus Agropyron repens

		Eleusine indica Echinochloa crus-galli Digitaria sanguinalis Portulaca oleracea Cyperus rotundus + species below	
0.80	species above + perennial ryegrass maize + safener (NA)	Festuca rubra Alopecurus myosuroides Poa trivialis Stellaria media Rumex obtusifolius Bromus pectinatus	
0.20	None listed as no weeds controlled	None	

Comments on results

Activity and pre-emergence selectivity data were published previously (Richardson et al, 1982) together with soil persistence data and symptoms on susceptible species. As with MBR 18337, pre-emergence treatments were more effective than post-emergence. In the latter, broad-leaved species were more susceptible to the foliar spray than to soil drenches, again corresponding to MBR 18337 but with the grasses NC 20484 was much more active as a soil drench than as a foliar spray. This should be borne in mind when considering the results of the present post-emergence test where the possibility existed for soil and foliar uptake and activity. Symptoms produced on susceptible species in the present test were similar to those observed and described in the

earlier activity experiment, these closely resembling the effects of the previous herbicide MBR 18337 and other herbicides of the amide and anilide groups.

Post-emergence selectivity among temperate species

The second se

Several annual grass and broad-leaved weeds were controlled. At 0.8 kg/ha Alopecurus myosuroides and Festuca rubra were susceptible. At 3.2 kg/ha Galium aparine and Veronica persica were among the weed species controlled.

Parsnip was the only crop to withstand the high dose of 3.2 kg/ha. Perennial ryegrass was the only other tolerant crop at 0.8 kg/ha. White clover and beans (dwarf and field) were very sensitive as were some of the brassica crops (kale, cabbage and radish). The cereals too were rather susceptible, especially wheat. No safening effect of NA was found with these two cereals, contrasting with a moderate to good effect, found in the earlier pre-emergence test (Richardson et al, 1982).

The control of F. rubra and A. myosuroides in perennial ryegrass is of

interest and perhaps worthy of further investigation. Unfortunately this species is sensitive pre-emergence. The weed spectrum was wider and the level of activity greater, pre- rather than post-emergence (Richardson et al, 1982), while a few more crops were tolerant, pre-emergence.

Selectivity among tropical species

The symptoms of stunting and distortion from this compound were almost indistinguishable from those of the previous compound MBR 18337 and there was a comparable lack of selectivity on most crops. Even chickpea failed to show tolerance, but there was a more pronounced protection of maize and rice by NA, and a range of weeds could theoretically be selectivity controlled in rice at the highest dose of 3.2 kg/ha. Further work with NA and NC 20484 on maize and rice will be published elsewhere. Effects on sorghum were not reduced by cyometrinil. Perennials were affected quite severely at first, as they were by MBR 18337. Recovery was a little slower but almost complete after about three months.

The Art of the second 1.5.7. 1.5.7. 1.5.1. and the state of the second state of the Water water the part of the second se and the second s the second E STRATE A PARTY and a fact the part of the second 1 The second the state of the second

CDECTEC		NC 20484		NC 20484		NC
SPECIES		0.2 kg/ha		0.8 kg/ha		3.2
WHEAT	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXX
(1)	71	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	43	XXXXXXXXX	29	XXXXXX
WHEAT + S	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXX
(2)	64	XXXXXXXXXXXXX	43	XXXXXXXXX	29	XXXXXX
BARLEY	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXX
(3)	86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	71	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	36	XXXXXXX
BARLEY + S	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXX
(4)	86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	64	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	36	XXXXXXX
OAT	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXX
(5)	86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	64	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	43	XXXXXXXXX
PER RYGR	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXX
(6)	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	43	XXXXXXXXX
ONION	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	86	XXXXXXXXXX
(8)	71	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	57	XXXXXXXXXXX	43	XXXXXXXXX
DWF BEAN	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXX
(9)	50	XXXXXXXXXX	43	XXXXXXXXX	29	XXXXXX
FLD BEAN	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXX
(10)	43	XXXXXXXXX	29	XXXXXX	29	XXXXXX
PEA	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXX
(11)	79	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	79	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	57	XXXXXXXXXX
W CLOVER	81	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	75	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	44	XXXXXXXXXX
(12)	36	XXXXXXX	29	XXXXXX	29	XXXXXX
RAPE	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXX
(14)	79	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	57	XXXXXXXXXXX	43	XXXXXXXXXX

20484 kg/ha

XXXXXXXXXXXXX

XXXXXXXXXXXXX

XXXXXXXXXXXXX

XXXXXXXXXXXXX

XXXXXXXXXXXX

XXXXXXXXXXXXX 2

XXXXXXXXXX X

XXXXXXXXXXXX

XXXXXXXXXXXXX

XXXXXXXXXXXXX XXXX

XXXXXXXXXXXX ~

J OST EMERGENCE SELEC H . . TY TEST

SPECIES

KALE	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	
(15)	50	XXXXXXXXXX	43	
CABBAGE	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	
(16)	43	XXXXXXXXX	50	
CARROT	95	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	105	
(18)	86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	79	
PARSNIP	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	
(19)	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	86	
SUG BEET	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	
(22)	79	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	57	
BETA VUL	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	
(23)	86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	64	
BROM STE	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	
(24)	93	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	64	
FEST RUB	56	XXXXXXXXXXX	0	
(25)	50	XXXXXXXXXX	0	
AVE FATU	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	
(26)	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	79	
ALO MYOS	80	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	80	
(27)	50	XXXXXXXXXX	29	
POA ANN	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	94	
(28)	86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	36	
POA TRIV	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	87	
(29)	79	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	29	

NC	20484
0.2	kg/ha

.

NC 20484

0.8 kg/ha

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100
XXXXXXXXX	36
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100
XXXXXXXXXX	43
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	105
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	57
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	86
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	00
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100
XXXXXXXXXXX	50
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100
XXXXXXXXXXXX	64
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100
XXXXXXXXXXXXX	43
	25
	14
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	50
mmmmmmmmmmm	50
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	90
XXXXXX	29
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	62
XXXXXXX	29
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	62
XXXXXXX	29
ΛΛΛΛΛΛ	29

3.2 kg/ha

XXXXXXXXXXX	
XXXXXXX	

XXXXXXXXX

XXXXXXXXXXXX

XXXXXXXXXX

XXXXXXXXXXXXX

XXXXXXXXX

XXXXXX XXX

XXXXXXXXXX

XXXXXX

XXXXXXXXXXXXX XXXXXX

XXXXXXXXXXXXX XXXXXX

NC 20484

XXXXXXXXXXX

S EMER ENCE SELE H TY TEST

45

P

SPECIES

		U.Z Ry/IId					240-12	
SIN ARV	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
(30)	57	XXXXXXXXXX	43		XXXXXXXXX	36		XXXXXXX
RAPH RAP	80	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	MP	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
(31)	57	XXXXXXXXXXX	43		XXXXXXXXX	43		XXXXXXXXX
TRIP MAR	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
(33)	79	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	71		XXXXXXXXXXXXXX	36		XXXXXXX
POL LAPA	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
(35)	86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	86		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	64		XXXXXXXXXXXXX
GAL APAR	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
(38)	64	XXXXXXXXXXXXX	36		XXXXXXX	29		XXXXXX
STEL MED	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
(40)	36	XXXXXXX	29		XXXXXX	29		XXXXXX
SPER ARV	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	94		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	87		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
(41)	79	XXXXXXXXXXXXXXX	43		XXXXXXXXX	. 29		XXXXXX
VER PERS	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	80		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	50		XXXXXXXXXX
(42) -	71	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	50		XXXXXXXXXX	29		XXXXXX
RUM OBTU	100 F	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	R	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	R	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
(44)	43	XXXXXXXXX	29		XXXXXX	29		XXXXXX
HOLC LAN	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	30		XXXXXX	60		XXXXXXXXXXX
(45)	79	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	50		XXXXXXXXXX	14		XXX
AG REPEN	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
(47)	71	XXXXXXXXXXXXX	57		XXXXXXXXXX	29		XXXXXX
AG STOLO	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
(48)	86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	50		XXXXXXXXXX	36		XXXXXXX

NC 20484 0.2 kg/ha

NC 0.8

C	20484
8	kg/ha

NC 20484 3.2 kg/ha

XXXXXXXXX

XXXXXXXXX

and the second second

XXXXXXXXX

XXXXXXXXX XX

XXXXXXXXX

XXXXXXXXX

XXXXXXXXX

XXXXXXXXXX

XXXXXXXXXX

1, 14

Ч OST EMERGEN E SELE TT < ALT TEST

CIRS ARV 75 XX (50) 57 XX MILLET 100 XX 93 (55) XX MAIZE + S 100 XX (56) 100 XX 100 MAIZE XXX (57) 93 XXX SORG + S 100 XX (58) 100 XXX 100 SORGHUM XXX (59) 93 XXX 100 PIGEON P XXX (61) 43 XXX 100 COWPEA XXX (62) 64 XXX 100 CHICKPEA XXX 63 86 XXX GRNDNUT 100 XXX 71 (64) XXX 100 SOYABEAN XXX (65) 71 XXX 100 COTTON XXX (66) 93 XXX

SPECIES

NC 20484		NC 20484		. NC
0.2 kg/ha		0.8 kg/ha		3.2
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	75	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	75	XXXXXXXXX
XXXXXXXXXX	71	XXXXXXXXXXXXXX	50	XXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	64	XXXXXXXXXXXXX	43	XXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	93	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	36	XXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	57	XXXXXXXXXXX	29	XXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	43	XXXXXXXXX	29	XXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	43	XXXXXXXXX	29	XXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXX
XXXXXXXX	29	XXXXXX	29	XXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXX
XXXXXXXXXXXX	57	XXXXXXXXXXX	57	XXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	71	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	57	XXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXX
XXXXXXXXXXXXX	57	XXXXXXXXXXX	43	XXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXX
XXXXXXXXXXXX	64	XXXXXXXXXXXXX	50	XXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	57	XXXXXXXXXXX	50	XXXXXXXXXX

20484 kg/ha

XXXXXXX

XXXXXXXXXXXX

XXXXXXXXXXXX

XXXXXXXXXXXX

XXXXXXXXXXXX

XXXXXXXXXXXX

and a second

POST-EMERGENCE SELECTIVITY TEST

- 47

	NC 20484		NC 20484		. NC 2
	0.2 kg/ha		0.8 kg/ha		3.2 k
100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXX
86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	57	XXXXXXXXXXX	29	XXXXXX
100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXX
64	XXXXXXXXXXXX	50	XXXXXXXXXX	36	XXXXXXX
100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXX
71	XXXXXXXXXXXXX	50	XXXXXXXXXX	43	XXXXXXXXXX
100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXX
86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	71	XXXXXXXXXXXXXX	43	XXXXXXXXX
100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXX
57	XXXXXXXXXX	50	XXXXXXXXXX	36	XXXXXXX
87	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	87	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXX
86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	71	XXXXXXXXXXXXXX	50	XXXXXXXXXXX
100 MP	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	87	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXX
86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	86	XXXXXXXXXXX
100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXX
86	XXXXXXXXXXXXXXXXX	50	XXXXXXXXXX	29	XXXXXX
100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	92	XXXXXXXXX
100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	50	XXXXXXXXXX	29	XXXXXX
100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXX
100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	79	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	43	XXXXXXXXXX
100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXX
71	XXXXXXXXXXXXX	36	XXXXXXX	29	XXXXXX
100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXX
79	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	71	XXXXXXXXXXXXX	43	XXXXXXXXXX
	 86 100 64 100 100 86 100 87 86 100 86 100 86 100 86 100 86 100 86 100 100<td>0.2 kg/ha 100 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX</td><td>0.2 kg/ha 100 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX</td><td>0.2 kg/ha 0.8 kg/ha 100 XXXXXXXXXXXXXXXXX 100 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX</td><td>0.2 kg/ha 0.8 kg/ha 100 XXXXXXXXXXXXXXXXX 100 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX</td>	0.2 kg/ha 100 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	0.2 kg/ha 100 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	0.2 kg/ha 0.8 kg/ha 100 XXXXXXXXXXXXXXXXX 100 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	0.2 kg/ha 0.8 kg/ha 100 XXXXXXXXXXXXXXXXX 100 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

20484 kg/ha

XXXXXXXXXXXX

XXXXXXXXXXXX

3.

XXXXXXXXXXXX

XXXXXXXXXXXX

XXXXXXXXXX

XXXXXXXXXXXX

POST-EMERGENCE SELECTIVITY TEST

4000

CDECTEC		NC 20484		NC 20484		. NC
SPECIES		0.2 kg/ha		0.8 kg/ha		3.2 1
PORT OLE	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	75	XXXXXXXXXX
(79)	57	XXXXXXXXXXX	36	XXXXXXX	29	XXXXXX
SOL NIG	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXX
(81)	64	XXXXXXXXXXXXX	50	XXXXXXXXXX	36	XXXXXXX
BROM PEC	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXX
(82)	71	XXXXXXXXXXXXX	29	XXXXXX	29	XXXXXX
SNO POL	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXX
(83)	50	XXXXXXXXXX	43	XXXXXXXXX	36	XXXXXXX
PHAL MIN	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	92	XXXXXXXXXXX
(84)	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	79	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	50	XXXXXXXXXX
CYP ESCU	-		_		_	
(85)	71	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	50	XXXXXXXXXX	36	XXXXXXX
CYP ROTU	-				_	
(86)	86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	50	XXXXXXXXXX	29	XXXXXX
OXAL LAT						
(87)	57	XXXXXXXXXXX	50	XXXXXXXXXX	36	XXXXXXX
CYN DACT						
(88)	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	64	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	36	XXXXXXX

20484 kg/ha

XXXXXXX

XXXXXXXXXXXX

XXXXXXXXXXXX

XXXXXXXXXXXX

XXXXXXXXXX XX

the second s

Р OST EMERGENCE SEL H TEST

ACKNOWLEDGEMENTS

We are most grateful to the joint Letcombe/WRO Statistics Section for processing the experimental data; to Mr G P White, Miss D Stringer and Messrs. R H Webster, R M Porteous and S L Burbank for technical and practical assistance; to Mrs J Souch for the preparation and typing of this report; to Mrs S Cox and her staff for its duplication and to the commercial firms who provided the herbicides and relevant data.

The work of the Tropical Weeds Group was carried out under Project D11 (27) financed by H M Overseas Development Administration.

REFERENCES

RICHARDSON, W.G. and DEAN, M.L. (1974) The activity and post-emergence selectivity of some recently developed herbicides: oxadiazon, U-29,722, U-27,658, metflurazone, norflurazone, AC 50,191, AC 84,777 and iprymidam. Technical Report Agricultural Research Council Weed Research Organization 32, pp 74.

RICHARDSON, W.G. and PARKER, C. (1977) The activity and post-emergence selectivity of some recently developed herbicides: KUE 2079A, HOE 29152, RH 2915, triclopyr and Dowco 290. Technical Report Agricultural Research Council Weed Research Organization, 42, pp 53.

RICHARDSON, W.G., WEST, T.M. and PARKER, C. (1982) The activity and pre-emergence selectivity of some recently developed herbicides: chlomethoxynil, NC 20484 and MBR 18337. Technical Report Agricultural Research Council Weed Research Organization, 64, pp 43.

Species, abbreviations, varieties and stages of growth at spraying Appendix 1. and assessment for post-emergence selectivity test.

- 51 -

Designa-Stage of Cultivar tion and growth at computer or spraying serial source number

Stage of growth at assessment (untreated controls, leaf numbers exclusive of cotyledons)

Temperate species

10-12 leaves, 2] leaves Mardler WHEAT Wheat 2 tillers (1)(Triticum aestivum) 27 leaves 10-12 leaves, Mardler WHEAT + S Wheat + safener 2 tillers (2)10-20 leaves, up 23 leaves Sonja BARLEY Barley to 7 tillers (3)(Hordeum vulgare) 10-20 leaves, up 27 leaves BARLEY + S Sonja Barley + safener to 7 tillers (4)2-27 leaves 14-17 leaves, up Pennal OAT Oat to 3 tillers (5) (Avena sativa) 32-42 leaves, Up to 4 tillers tillering S 23 PER RYGR Perennial ryegrass (6)(Lolium perenne)

(Torram berenne)	(0)		011101110	
Onion (Allium cepa)	ONION (8)	Hygro	1 ¹ / ₂ -2 leaves	4 leaves
Dwarf bean (Phaseolus vulgaris)	DWF BEAN (9)	The Prince	2 unifoliate leaves	4 trifoliate leaves, flowering
Field bean (Vicia faba)	FLD BEAN (10)	Maris Bead	$2-2\frac{1}{2}$ leaves	9 leaves
Pea (Pisum sativum)	PEA (11)	Dark Skinned Perfection	2-2 ¹ / ₂ leaves	Up to 10 leaves
White Clover (Trifolium repens)	W CLOVER (12)	Milkanova	1 trifoliate leaf	12 trifoliate leaves
Rape (Brassica napus	RAPE (14)	Rapora	2 ¹ / ₂ leaves	7 leaves

4-43 leaves 27 leaves Marrow Stem KALE Kale (15) (Brassica oleracea acephala

Cabbage (Brassica oleracea capitata)

2-23 leaves 6-7 leaves Derby Day CABBAGE (16)

Carrot (Daucus carota) CARROT (18)

6 leaves 112-2 leaves Chantenay Red Core

cont'd Appendix 1.

- 52 -

	Designa- tion and computer serial number	Cultivar or source	Stage of growth at spraying	Stage of growth at assessment (untreated controls, leaf numbers exclusive of cotyledons)
Parsnip (Pastinaca sativa)	PARSNIP (19)	Albino	1 ¹ / ₂ -2 leaves	4 leaves

Lettuce LETTUCE (Lactuca sativa) (20)

Reskia

Inadequate germination

Fenugreek (Trigonella foenumgraecum)	FENUGREEK (21)	Paul	Inadequate germination	
Sugar beet (Beta vulgaris)	SUG BEET (22)	Vytomo	2-2 ¹ / ₂ leaves	7-8 leaves
Beta vulgaris	BETA VUL (23)	WRO 1979 ex Attleborough	2 leaves	7 leaves
Bromus sterilis	BROM STE (24)	WRO 1979	4-41 leaves, tillering	35 leaves, up to 10 tillers
Festuca rubra	FEST RUB (25)	Boreal	2 leaves	Up to 7 tillers
<u>Avena fatua</u>	AVE FATU (26)	WRO 1978	3-4½ leaves, some tillering	
Alopecurus myosuroides	ALO MYOS (27)	WRO 1979	2-3 leaves	Up to 12 tillers
Poa annua	POA ANN (28)	B & S Supplies 1978	4-5 leaves, some tillering	Up to 12 tillers
Poa trivialis	POA TRIV (29)	WRO 1978	5-7 leaves, tillering	Up to 20 tillers
<u>Sinapis arvensis</u>	SIN ARV (30)	WRO 1971	3-5 leaves	5-6 leaves, flowering
Raphanus raphanistrum	RAPH RAP (31)	Long Black Spanish	4-5 leaves	7-8 leaves
Tripleurospermum maritimum	TRIP MAR (33)	WRO 1978	4 leaves	Numerous leaves, flowers developing

maritimum	

1 - Z - - - -

.

Senecio vulgaris

Polygonum lapathifolium

Polygonum aviculare

SEN VULG WRO 1977 Inadequate (34)germination POL LAPA WRO 1980 21 leaves

POL AVIC B & S Supplies 1978

(35)

(36)

11111

Inadequate germination 10 leaves, flowering

-

-

Appendix 1. cont'd

- 53 -

Designa-Cultivar tion and computer or source serial number

Stage of growth at spraying

Stage of growth at assessment (untreated controls, leaf numbers exclusive of cotyledons)

8-13 stolons

Up to 13 whorls 3-5 whorls WRO 1979 GAL APAR (38)

Chenopodium album

Galium aparine

Inadequate B & S CHEN ALB 1000 momination

	(39)	Supplies 1977	germination	
Stellaria media	STEL MED (40)	B & S Supplies 1977	6 leaves	Numerous leaves, flowering
Spergula arvensis	SPER ARV (41)	B & S Supplies 1977	2 whorls	Numerous whorls, flowering
Veronica persica	VER PERS (42)	WRO 1977	4-5 leaves	Numerous leaves, flowering
Rumex obtusifolius	RUM OBTU (44)	B & S Supplies 1978	1-2 ¹ / ₂ leaves	4-41 leaves
Holcus lanatus	HOLC LAN (45)	B & S Supplies 1979	2-3 leaves	6-10 tillers
Agropyron repens	AG REPEN	WRO	$2\frac{1}{2}$ -3 leaves	14-20 leaves,

2-3 tillers Clone 31* (47)

4-7 leaves, B&S AG STOLO Agrostis stolonifera Supplies 1976 tillering (48)

7-10 leaves 3-5 leaves CIRS ARV WRO Cirsium arvense Clone 1** (50)

Tropical species (grown under higher temperature regime)

51-71 leaves 23-3 leaves Ex ICRISAT MILLET Millet (55) 1977 (Pennisetum americanum) 61-71 leaves 3-32 leaves

MAIZE + S Julia Maize + safener (56) (Zea mays) 67 leaves 3-32 leaves Julia MAIZE Maize

(Zea mays)	(57)			
Sorghum + safener (Sorghum bicolor)	SORG + S (58)	Funk G 623	31-4 leaves	7 ¹ / ₂ leaves
Sorghum (Sorghum bicolor)	SORGHUM (59)	Funk G 623	31-4 leaves	7 ¹ / ₂ leaves
Pigeon pea (Cajanus cajan)	PIGEON P (61)	ICRISAT 1977	1 trifoliate leaf	5-7 trifoliate leaves

* one node rhizome pieces

** root fragments

Appendix 1. cont'd

- 54 -

Designation and Cultivar Stage of at asse computer or growth at control serial source spraying numbers of coty

Stage of growth at assessment (untreated controls, leaf numbers exclusive of cotyledons)

Cowpea
(Vigna unguiculata)COWPEA
(62)ICRISAT 19771 trifoliate
leaf3-4 trifoliate
leavesChickpeaCHICKPEAJygthi 19818-9 pinnate18 pinnate

Chickpea (Cicer arietinum)	CHICKPEA (63)	Jygthi 1981	8-9 pinnate leaves	18 pinnate leaves
Groundnut (Arachis hypogaea)	GRNDNUT (64)	Mani Pinta (Ghana)	3-4 pinnate leaves	6-7 pinnate leaves
Soyabean (Glycine max)	SOYABEAN (65)	Bragg (USA)	1-2 trifoliate leaves	5 trifoliate leaves
Cotton (Gossypium hirsutum)	COTTON (66)	S 71 (Nigeria)	2 leaves	4-5 leaves
Jute (Corchorus olitorius)	JUTE (67)	Egypt 1971	3-4 leaves	8-11 leaves
Kenaf (Hibiscus cannabinus)	KENAF (68)	A 63-440 (Ghana)	3-4 leaves	8-9 leaves
Tobacco (Nicotiana tabacum)	TOBACCO (69)	Yellow Mammoth	4-5 leaves	7-8 leaves
Sesamum (Sesamum indicum)	SESAMUM (70)	Sudan, 1981	2 leaves	6-8 leaves
Tomato (Lycopersicum esculentum)	томато (71)	Ailsa Craig	2-4 pinnate leaves	7-9 pinnate leaves
Rice (Oryza sativa)	RICE (72)	IR 298	3-31 leaves	6 ¹ / ₂ -7 leaves, 0-2 tillers
Rice + safener (Oryza sativa)	RICE + S (73)	IR 298	3-32 leaves	$6\frac{1}{2}$ -7 leaves, 0-1 tiller
Eleusine indica	ELEU IND (74)	WRO 1977	2-32 leaves	8-9 leaves, 2-3 tillers
Echinochloa crus-galli	ECH CRUS (75)	WRO 1976	3-3¼ leaves	6 ¹ / ₂ -8 leaves
Rottboellia exaltata	ROT EXAL (76)	Zimbabwe 1978	2 ¹ / ₂ -3 leaves	6 leaves
Digitaria sanguinalis	DIG SANG (77)	WRO 1973	4-5 leaves	7-9 leaves, 2-4 tillers
Amaranthus retroflexus	AMAR RET (78)	WRO 1979	5-7 leaves	6-12 leaves

Appendix 1. cont'd

- 55 -

Designa-Cultivar Stage of tion and growth at computer or spraying serial source number

Stage of growth at assessment (untreated controls, leaf numbers exclusive of cotyledons)

Portulaca oleracea

4-6 leaves 10-16 leaves PORT OLE WRO 1973 (79)

Solanum nigrum	SOL NIG (81)	WRO 1975	1-6 leaves	Flowering
Bromus pectinatus	BROM PEC (82)	Tanzania 1978	3-3¼ leaves	6-7 leaves, 0-2 tillers
<u>Snowdenia</u> polystachya	SNOW POL (83)	Ethiopia 1978	4월-5월 leaves	$6\frac{1}{2}-8\frac{1}{2}$ leaves, 0-2 tillers
Phalaris minor	PHAL MIN (84)	India 1978	3-32 leaves, some tillering	6-7 leaves, 1-2 tillers
Cyperus esculentus	CYP ESCU (85)	WRO Clone' 2* (ex South Africa)	4-42 leaves	6-8 leaves
Cyperus rotundus	CYP ROTU (86)	WRO Clone 1* (ex Zimbabwe)		10-12 leaves
Oxalis latifolia	OXAL LAT (87)	WRO Clone 2** (ex Cornwall)	1-2 trifoliate leaves	10-20 leaves, flowering
Cynodon dactylon	CYN DACT (88)	WRO Clone 2† (ex Sudan)		Up to 7 nodes

† runners * tubers ** bulbs

ABBREVIATIONS

1. 4

angström	R	freezing point	f.p.
Abstract	Abs.	from summary	F.s.
acid equivalent*	a.e.	gallon	gal
acre	ac	gallons per hour	gal/h
active ingredient*	a.i.	gallons per acre	gal/ac
approximately equal to*		gas liquid chromatography	GLC

1.1

2

aqueous concentrate	a.c.	gramme	g
bibliography	bibl.	hectare	ha
boiling point	b.p.	hectokilogram	hkg
bushe1	bu	high volume	HV
centigrade	C	horse power	hp
centimetre*	cm	hour	h
concentrated	concd	hundredweight*	cwt
concentration concentration x time product	concn	hydrogen ion concentration*	pH
	ct	inch	in。
concentration required to kill		infra red	i.r.
50% test animals	LC50	kilogramme	kg
cubic centimetre*	cm ³	$kilo(x10^3)$	k
cubic foot*	ft ³	less than	<
cubic inch*	in ³	litre	1.
cubic metre*	m	low volume	LV
cubic yard*	yd 3	maximum	max.
cultivar(s)	cv.	median lethal dose	LD50
curie*	Ci	medium volume	MV
degree Celsius*	°c	melting point	m.p.
degree centigrade	°c	metre	m
degree Fahrenheit*	°F	micro (x10 ⁻⁶)	
diameter	diam.	microgramme*	μ μg
diameter at breast height	d.b.h.	micromicro (pico: x10 ⁻¹²)*	μμ
divided by*	e or /	micrometre (micron)*	μm (or μ)
dry matter	d.m.	micron (micrometre)* †	μm (or μ)
emulsifiable		miles per hour*	mile/h
concentrate	e.c.	milli $(x10^{-3})$	
equal to*	-	milliequivalent*	m
fluid	f1.	milligramme	m.equiv.
		IIITTTKT allung	mg

millimetre* mm millimicro* $(nano: x10^{-9})$ n or mu minimum min. minus ---minute min molar concentration* M (small cap) molecule, molecular mol. more than > multiplied by* x

pre-emergence pre-em. quart quart relative humidity r.h. revolution per minute* rev/min second 8 soluble concentrate S.C. soluble powder s.p. solution soln species (singular) sp. species (plural) spp.

normal concentration*	N (small cap)	abour (brown)	opp.
		specific gravity	sp. gr.
not dated	n.d.	square foot*	ft ²
oil miscible concentrate	o.m.c. (tables only)	square inch	in ²
organic matter	o.m.	square metre*	m ²
ounce	OZ	square root of*	~
ounces per gallon	oz/gal	sub-species*	ssp.
page	p.	summary	s.
pages	pp.	temperature	temp.
parts per million	ppm	ton	ton
parts per million		tonne	t
by volume	ppmv	ultra-low volume	ULV
parts per million		ultra violet	11. 17

0

by weight ppmw percent(age) % pico (micromicro: x10⁻¹²) p or µµ pint pint pints per acre pints/ac + plus or minus* post-emergence post-em pound 1b pound per acre* 1b/ac pounds per minute lb/min lb/in^2 pound per square inch"

arcia Aloter u.v. vapour density v.d. vapour pressure v.p. varietas var. volt V volume vol. volume per volume v/v water soluble powder W.S.p. (tables only) watt W weight wt weight per volume* w/v weight per weight* W/W

powder for dry application	p. (tables only)	wettable powder	w.p.
power take off	p.t.o.	yard	yd
precipitate (noun)	ppt.	yards per minute	yd/min

* Those marked * should normally be used in the text as well as in tables etc.

ALS STREET STREET IN THE ALL STREET

TECHNICAL REPORTS (Price includes surface mail; airmail £1.00 extra) (* denotes Reports now out of print)

- The botany, ecology, agronomy and control of Poa trivialis L. rough-6. stalked meadow-grass. November 1966. G P Allen. Price - £0.25
- 7. Flame cultivation experiments 1965. October, 1966. G W Ivens. Price - £0.25
- The development of selective herbicides for kale in the United Kingdom. 8. 2. The methylthiotriazines. Price - £0.25
- The liverwort, Marchantia polymorpha L. as a weed problem in 10. horticulture; its extent and control. July 1968. I E Henson. Price - £0.25
- Raising plants for herbicide evaluation; a comparison of compost 11. types. July 1968. I E Henson. Price - £0.25
- Studies on the regeneration of perennial weeds in the glasshouse; *12. I. Temperate species. May 1969. I E Henson. Price - £0.25

- Changes in the germination capacity of three Polygonum species 13. following low temperature moist storage. June 1969. I E Henson. Price. - £0.25
- Studies on the regeneration of perennial weeds in the glasshouse. 14. II. Tropical species. May 1970. . I E Henson. Price - £0.25
- Methods of Analysis for herbicide residues. February 1977. 15. (second edition) - price £5.75
- Report on a joint survey of the presence of wild oat seeds in cereal 16. seed drills in the United Kingdom during Spring 1970. November 1970. J G Elliott and P J Attwood. Price - £0.25
- The pre-emergence selectivity of some newly developed herbicides, 17. Orga 3045 (in comparison with dalapon), haloxydine (PP 493), HZ 52.112, pronamide (RH 315) and R 12001. January 1971. W G Richardson, C Parker and K Holly. Price - £0.25
- A survey from the roadside of the state of post-harvest operations in 18. Oxfordshire in 1971. November 1971. A Phillipson. Price - £0.12
- The pre-emergence selectivity of some recently developed herbicides * 19. in jute, kenaf and sesamum, and their activity against Oxalis latifolia. December 1971. M L Dean and C Parker. Price - £0.25.

A survey of cereal husbandry and weed control in three regions of * 20. England. July 1972. A Phillipson, T W Cox and J G Elliott. Price - £0.35

- 2 -

- An automatic punching counter. November 1972. R C Simmons. 21. Price - £0.30
- The pre-emergence selectivity of some newly developed herbicides: 22. bentazon, BAS 3730H, metflurazone, SAN 9789, HER 52.123, U 27,267. December 1972. W G Richardson and M L Dean. Price - £0.25
- A survey of the presence of wild oats and blackgrass in parts of the 23. United Kingdom during summer 1972. A Phillipson. Price - £0.25
- The conduct of field experiments at the Weed Research Organization. 24. February 1973. J G Elliott, J Holroyd and T O Robson. Price -£1.25
- The pre-emergence selectivity of some recently developed herbicides: 25. lenacil, RU 12068, metribuzin, cyprazine, EMD-IT 5914 and benthiocarb. August 1973. W G Richardson and M L Dean. Price - £1.75.
- The post-emergence selectivity of some recently developed herbicides: 26. bentazon, EMD-IT 6412, cyprazine, metribuzin, chlornitrofen, glyphosate, MC 4379, chlorfenprop-methyl. October 1973. W G Richardson and M L Dean. Price - £3.31
- Selectivity of benzene sulphonyl carbamate herbicides between various pasture grasses and clover. October 1973. A M Blair. Price - £1.05

- The post-emergence selectivity of eight herbicides between pasture 28. grasses: RP 17623, HOE 701, BAS 3790, metoxuron, RU 12068, cyprazine, MC 4379, metribuzin. October 1973. A M Blair. Price - £1.00
- The pre-emergence selectivity between pasture grasses of twelve * 29. herbicides: haloxydine, pronamide, NC 8438, Orga 3045, chlortoluron, metoxuron, dicamba, isopropalin, carbetamide, MC 4379, MBR 8251 and EMD-IT 5914. November 1973. A M Blair. Price - £1.30
 - Herbicides for the control of the broad-leaved dock (Rumex obtusifolius 30. L.). November 1973. A M Blair and J Holroyd. Price - £1.06
 - 31. Factors affecting the selectivity of six soil acting herbicides against Cyperus rotundus. February 1974. M L Dean and C Parker. Price - £1.10
 - The activity and post-emergence selectivity of some recently developed 32. herbicides: oxadiazon, U-29,722, U-27,658, metflurazone, norflurazone, AC 50-191, AC 84,777 and iprymidam. June 1974. W G Richardson and M L Dean. Price - £3.62
 - A permanent automatic weather station using digital integrators. 33. September 1974. R C Simmons. Price £0.63.
 - The activity and pre-emergence selectivity of some recently developed 34. herbicides: trifluralin, isopropalin, oryzalin, dinitramine, bifenox and perfluidone. November 1974. W G Richardson and M L Dean. Price - £2.50

35. A survey of aquatic weed control methods used by Internal Drainage Boards, 1973. January 1975. T O Robson. Price - £1.39

- 3 -

- 36. The activity and pre-emergence selectivity of some recently developed herbicides: Bayer 94871, tebuthiuron, AC 92553. March 1975. W G Richardson and M L Dean. Price - £1.54
- 37. Studies on Imperata cylindrica (L.) Beauv. and Eupatorium odoratum L. October 1975. G W Ivens. Price - £1.75
- 38. The activity and pre-emergence selectivity of some recently developed

herbicides: metamitron, HOE 22870, HOE 23408, RH 2915, RP 20630. March 1976. W G Richardson, M L Dean and C Parker. Price - £3.25

- 39. The activity and post-emergence selectivity of some recently developed herbicides: HOE 22870, HOE 23408, flamprop-methyl, metamitron and cyperquat. May 1976. W G Richardson and C Parker. Price - £3.20
- 40. The activity and pre-emergence selectivity of some recently developed herbicides: RP 20810, oxadiazon, chlornitrofen, nitrofen, flamprop--isopropyl. August 1976. W G Richardson, M L Dean and C Parker. Price - £2.75.
- 41. The activity and pre-emergence selectivity of some recently developed herbicides: K 1441, mefluidide, WL 29226, epronaz, Dowco 290 and triclopyr. November 1976. W G Richardson and C Parker. Price - £3.40.
- 42. The activity and post-emergence selectivity of some recently developed herbicides: KUE 2079A, HOE 29152, RH 2915, Triclopyr and Dowco 290.

March 1977. W G Richardson and C Parker. Price - £3.50

- 43. The activity and pre-emergence selectivity of some recently developed herbicides: dimefuron, hexazinone, trifop-methyl, fluothiuron, buthidazole and butam. November 1977. W G Richardson and C Parker. Price - £3.75.
- 44. The activity and selectivity of the herbicides: ethofumesate, RU 12709 and isoproturon. December 1977. W G Richardson, C Parker, & M L Dean. Price - £4.00
- 45. Methods of analysis for determining the effects of herbicides on soil soil micro-organisms and their activities. January 1978. M P Greaves, S L Cooper, H A Davies, J A P Marsh & G I Wingfield. Price - £4.00
- 46. Pot experiments at the Weed Research Organization with forest crop and weed species. February 1978. D J Turner and W G Richardson. Price - £2.70
- 47. Field experiments to investigate the long-term effects of repeated applications of MCPA, tri-allate, simazine and linuron - effects on the quality of barley, wheat, maize and carrots. July 1978. J D Fryer, P D Smith and J W Ludwig. Frice - £1.20.
- 48. Factors affecting the toxicity of paraquat and dalapon to grass swards. March 1978. A K Oswald. Price - £2.90
- 49. The activity and post-emergence selectivity of some recently developed herbicides: NP 48, RH 5205 and Pyridate. May 1978. W G Richardson and C Parker. Price - £2.50

- 50. Sedge weeds of East Africa II. Distribution. July 1978. P J Terry. Price - £1.50
- 51. The activity and selectivity of the herbicides methabenzthiazuron, metoxuron, chlortoluron and cyanazine. September 1978. W G Richardson and C Parker. Price - £2.20.

- 4 -

- 52. Antidotes for the protection of field bean (Vicia faba L.) from damage by EPTC and other herbicides. February 1979. A M Blair. Price - £1.35
- 53. Antidotes for the protection of wheat from damage by tri-allate. February 1979. A M Blair. Price - £2.00
- 54. The activity and pre-emergence selectivity of some recently developed herbicices: alachlor, metolachlor, dimethachlor, alloxydim-sodium and fluridone. April 1979. W G Richardson and C Parker. Price - £3.00
- 55. The activity and selectivity of the herbicides carbetamide, methazole, R 11913 and OCS 21693. May 1979. W G Richardson and C Parker. Price - £1.80
- 56. Growing weeds from seeds and other propagules for experimental purposes. July 1979. R H Webster. Price - £1.10
- 57. The activity and pre-emergence selectivity of some recently developed herbicides: R 40244, AC 206784, pendimethalin, butralin, acifluorfen and FMC 39821. December 1979. W G Richardson, T M West and C Parker -Price - £3.55
- 58. The tolerance of fenugreek (Trigonella foenumgraecum L.) to various herbicides. December 1979. W G Richardson. Price £1.55
- 59. Recommended tests for assessing the side-effects of pesticides on the soil microflora. April 1980. M P Greaves, N J Poole, K H Domsch, G Jagnow and W Verstraete. Price - £2.00
- 60. Properties of natural rainfalls and their simulation in the laboratory for pesticide research. September 1980. R C Simmons. Price - £1.25
- 61. The activity and post-emergence selectivity of some recently developed herbicides: R 40244, DPX 4189, acifluorfen, ARD 34/02 (NP 55) and PP 009. November 1980. W G Richardson, T M West and C Parker. Price - £3.75
- 62. The activity and pre-emergence selectivity of some recently developed herbicides: UBI S-734, SSH-43, ARD 34/02 (= NP 55), PP 009 and DPX 4189. February 1981. W G Richardson, T M West and C Parker. Price - £3.50
- 63. The activity and post-emergence selectivity of some recently developed herbicides: SSH-41, MB 30755, AC 213087, AC 222293 and Dowco 433. May 1981. W G Richardson, T M West and C Parker. Price - £3.50
- 64. The activity and pre-emergence selectivity of some recently developed herbicides: chlomethoxynil, NC 20484 and MBR 18337. March 1982. W G Richardson, T M West and C Parker. Price - £3.00
- 65. A system for monitoring environmental factors in controlled environment chambers and glasshouses. June 1982. R C Simmons. Price - £1.50

66. The activity and pre-emergence selectivity of some recently developed herbicides: AC 213087 and AC 222293. December 1982. W G Richardson, T M West and C Parker. Price - £2.00

- 5 -

\$ 7

67. The activity and post-emergence selectivity of some recently developed herbicides: trifopsime, glufosinate, RH 8817, MBR 18337 and NC 20484. December 1982. W G Richardson, T M West and C Parker. Price - £3.25