SPECIES		$\begin{gathered} \text { RH } 8817 \\ 0.2 \mathrm{~kg} / \mathrm{ha} \end{gathered}$		$\begin{gathered} \text { RH } 8817 \\ 0.8 \mathrm{~kg} / \mathrm{ha} \end{gathered}$	
CIRS ARV	75		0		25
(50)	57	mxxxxxxexxx	0		14
MILLET	50	mxxixixixix	40	mxxxxxyx	0
(55)	57	mxxxxmexyxx	29	xxxxxx	0
MAIZE + S	100		100		25
(56)	86		57	mxxxyxxxxxy	21
MAIZE	100		100		0
(57)	71	mxxxxxxxxxxyxx	64	xxxxxxxxxxxy	0
SORG + S	100		67		0
(58)	79		29	xxxxx	0
SORGHUM	100		50	mxxxxxxixx	0
(59)	79		36	xxxxxxx	0
PIGEON P	20	xxxx	0		0
(61)	43	xxxxxxyxx	0		0
COWPEA	100		80		0
(62)	50	xxxxxxxxxx	29	xxxxx	0
CHICKPEA	100		100		100
(63)	64	mxxxxxxxyxxyx	50	mxxxxxxxx	50
GRNDNUT	100		100		100
(64)	64	mxxxxxxxxxxx	50	mxxxxxxxx	43
SOYABEAN	100		100		100
(65)	86		64	xxxxxxxxxxxx	57
COTTON	100	mxxxxxxxxxxxyxxyxxy	90		0
(66)	43	xxxxxxxxx	14	xxx	0

SPECIES
RH 8817
$0.2 \mathrm{~kg} / \mathrm{ha}$

$\begin{aligned} & \text { JUTE } \\ & (67) \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$		0		0
$\begin{aligned} & \text { KENAF } \\ & (68) \end{aligned}$	$\begin{array}{r} 100 \\ 29 \end{array}$	xxxxxx	$\begin{array}{r} 100 \\ 29 \end{array}$	xxxxxx	50 7
$\begin{aligned} & \text { TOBACCO } \\ & (69) \end{aligned}$	$\begin{array}{r} 100 \\ 64 \end{array}$	 	$\begin{array}{r} 100 \\ 43 \end{array}$	xxxxxxxxx	40 36
$\begin{aligned} & \text { SESAMUM } \\ & (70) \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$		$\begin{aligned} & 0 \\ & 0 \end{aligned}$		0
$\begin{aligned} & \text { TOMATO } \\ & (71) \end{aligned}$	$\begin{aligned} & 33 \\ & 57 \end{aligned}$	xxxyxyx xxxyxyxyxxx	$\begin{aligned} & 0 \\ & 0 \end{aligned}$		0
$\begin{gathered} \text { RICE } \\ (72) \end{gathered}$	$\begin{array}{r} 100 \\ 71 \end{array}$	 	$\begin{array}{r} 100 \\ 57 \end{array}$	 	87 43
$\begin{aligned} & \text { RICE + A } \\ & (73) \end{aligned}$	$\begin{array}{r} 100 \\ 86 \end{array}$	 	$\begin{array}{r} 100 \\ 64 \end{array}$	 	$\begin{array}{r} 100 \\ 43 \end{array}$
$\begin{aligned} & \text { ELEU IND } \\ & (74) \end{aligned}$	$\begin{array}{r} 100 \\ 93 \end{array}$	 	$\begin{aligned} & 80 \\ & 43 \end{aligned}$	xxxxyxxxx	0
ECH CRUS $\text { (} 75 \text {) }$	$\begin{array}{r} 100 \\ 64 \end{array}$	xxyxxyxyxyxx	$\begin{aligned} & 17 \\ & 14 \end{aligned}$	$\begin{aligned} & x x x \\ & x x x \end{aligned}$	0
$\begin{aligned} & \text { ROTT EXA } \\ & (76) \end{aligned}$	$\begin{array}{r} 100 \\ 79 \end{array}$	 	$\begin{array}{r} 100 \\ 57 \end{array}$	xxxxxxxxxxx	$\begin{aligned} & 25 \\ & 21 \end{aligned}$
DIG SANG $\text { (} 77 \text {) }$	$\begin{aligned} & 100 \\ & 100 \end{aligned}$	 	$\begin{aligned} & 92 \\ & 64 \end{aligned}$	xxyxxxyxxyxxx	$\begin{array}{r} 8 \\ 21 \end{array}$
AMAR RET $\text { (} 78 \text {) }$	70 43		$\begin{aligned} & 0 \\ & 0 \end{aligned}$		0

RH 8817
$3.2 \mathrm{~kg} / \mathrm{ha}$

XXXXXXXXXX
 X

xxxxxxxx
XXXXXXX
xxxxxxxxxxxxxxxxx xxxxxxxxx
xxxxxxxxxxxxxxxxxxxx xXXXXXXXX

Spectes		$\begin{gathered} \text { RH } 8817 \\ 0.2 \mathrm{~kg} / \mathrm{ha} \end{gathered}$		$\begin{gathered} \text { RH } 8817 \\ 0.8 \mathrm{~kg} / \mathrm{ha} \end{gathered}$		$\begin{gathered} \text { RH } 8817 \\ 3.2 \mathrm{~kg} / \mathrm{ha} \end{gathered}$
PORT OLE	0		0		0	
(79)	0		0		0	
SOL NIG	17	xxx	0			
(81)	36	xxxxxxx	0		0	
BROM PEC	100	dxixixixixixixixixixix	100			
(82)	79	mexixixixixixixix	64	xxxxxxxxxxxxx ${ }^{\text {cex }}$	$\begin{aligned} & 31 \\ & 36 \end{aligned}$	xxxxxx xxxxxx
SNO POL	100	dxxixixixixixixixixixit	94			
(83)	93	mexxixixixixixixixix	71		$\begin{aligned} & 44 \\ & 36 \end{aligned}$	xxxxxxx
PHAL MIN	100		50	mxxxxixixx		
(84)	64	mxxxxxixixixx	36	xxxxxxx	0	
CYP escu	-		-			
(85)	57	dxxxixixixx	50	mxxxxmxxxx	29	xxxxxx
CYP Rotu	-		-			
(86)	71		57	xxxxxxxxxxx	43	xxxxxxxxx
OXAL LAT	-		-			
(87)	50	mxxxxxxxxx	21	xxxx	0	
Cyn dact	-		-			
(88)	93		64	xxxxxxxxxxxxx	50	xxxxxxyxx

Code number
Chemical name

MBR 18337

N-[4-(ethylthio) -2-(trifluoromethyl) phenyl]methane sulphonamide

Structure

Source
FBC Limited Agrochemical Division
Chesterford Park Research Station
Saffron Walden
Essex CB10 1XL

Information available and suggested uses

Grass growth retardation and seedhead suppression in all warm and cool season turf grasses at 0.14 and 2.24 kg a.i./ha depending on species; sucrose enhancement in sugar cane at 0.28 to $1.12 \mathrm{~kg} \mathrm{a} . \mathrm{i} . / \mathrm{ha}$; weed control in cotton pre-emergence, pre-plant incorporated or post-emergence at 0.56 to 2.24 kg a.i./ha.

Formulation used $24 \% \mathrm{w} / \mathrm{v}$ a.i. emulsifiable concentrate
Spray volume for post-emergence selectivity experiment $371 \mathrm{l} / \mathrm{ha}$

RESULTS

Full results are given in the histograms on pages $36-41$ and potential selectivities are summarised in the following table.

RATE $(\mathrm{kg} \mathrm{a.i./ha)}$	CROPS: vigour reduced by 15\% or less	WEEDS: number or vigour reduced by 70\% or more
1.60	None	None listed as no crops tolerant
0.4	rape cabbage radish chickpea	$\frac{\text { Festuca rubra }}{\text { Poa trivialis }}$
0.1	None listed as no lanatus weeds controlled	$\frac{\text { Agrostis stolonifera }}{\text { Eleusine indica }}$

Comments on results

Results of the activity and pre-emergence selectivity experiments were published earlier (Richardson et al, 1982) together with symptoms caused on
susceptible species, and soil persistence. Greatest activity was found preemergence especially on grasses. Post-emergence, moderate, though non-lethal effects resulted, broad-leaved species tending to be more sensitive to the foliar spray rather than to the soil drench, but grasses responded similarly to both post-emergence treatments. Symptoms were typical of other amide/anilide herbicides, necrosis usually developing much later after inhibition of apical meristems, which were often swollen. Leaves were often fused together, dark green in colour with shiny leaf surfaces. Similar symptoms appeared in the current post-emergence test but several species tended to produce either extra tillers (grasses) or more axillaries further down their stems, (broad-leaved species), these usually being small and sometimes deformed.

Post-emergence selectivity among temperate species

Although nearly all grass weeds were severely stunted at $0.4 \mathrm{~kg} / \mathrm{ha}$ and lower, only four species were controlled at this dose. These included the perennial, Agrostis stolonifera and the annuals, Festuca rubra, Holcus lanatus and Poa trivialis. Broad-leaved weeds were generally resistant though some, eg Sinapis arvensis and Spergula arvensis were severely stunted even at the lowest dose.

Only three brassica crops (cabbage, radish and rape) tolerated $0.4 \mathrm{~kg} / \mathrm{ha}$. Wheat and barley were sensitive even at the lowest dose. NA failed to reduce herbicidal effects on these two species, in contrast to the pre-emergence test (Richardson et al, 1982).

Although some grass weeds were controlled selectively in certain brassica crops post-emergence, better activity and selectivity exists pre-emergence. A wider spectrum of weeds was then controlled more effectively in brassica and other crops (Richardson et al, 1982). The partial control of Sinapis arvensis in brassica crops post-emergence may be worth further testing, however.

Selectivity among tropical species

Nearly all species showed comparable degrees of stunting and distortion, mostly mild at $0.1 \mathrm{~kg} / \mathrm{ha}$ and severe at $1.6 \mathrm{~kg} / \mathrm{ha}$. At $0.4 \mathrm{~kg} / \mathrm{ha}$ the effects were generally severe; chickpea was exceptional in showing no deformity at this dose but pod development may have been delayed. There was some protection of maize and rice by NA but only at the lowest dose. Sorylum was not protected by cyometrinil. Perennials were damaged initially to the same degree as annuals but all were recovering strongly after about two months.

The value of this compound as a post-emergence treatment would appear to be restricted to situations where a non-selective growth suppression rather than kill is required, perhaps under a perennial tree crop.

SPECIES	
WHEAT	100
(1)	57
WHEAT + S	100
(2)	57
BARLEY	100
(3)	64
BARLEY + S	100
(4)	64
OAT	100
(5)	79
PER RYGR	100
(6)	86
ONION	100
(8)	93
DWF BEAN	100
(9)	57
FLD BEAN	100
(19)	71
PEA	100
(11)	86
W CLOVER	100
(12)	64
RAPE	100
(14)	86

$\begin{array}{ll}\text { MBR } & 18337 \\ 0.1 & \mathrm{~kg} / \mathrm{ha}\end{array}$
 xyxyxyxixxy 43

mxxyxyxxyx 43

mexxyxyxyxix 43

36

71

xxyxxyxxyxx
43

mexxexxyxxyxxy
57

57

	100

MBR 18337
$0.4 \mathrm{~kg} / \mathrm{ha}$

	100
xxxxxxxx	29
	100
mxxyxxxxx	29
	100
mxxyxxxx	36
	100
mxxyxxxx	36
	100
xxxxyxyx	36
	100
xxxxxxx	43
	100
mexixixixixixix	50
	100
xxxxxxxx	36
	100
mxxxxixixixx	43
	100
mxxyxxxxxy	43
	69
xxxxxxxxx	29
	100
	57

MBR 18337
$1.6 \mathrm{~kg} / \mathrm{ha}$
xxxxxxxxxxxxxxxxxxxx xxexxx
 xxxxxx
 xxxxxxx
 xxxxyxx
 xxxxxxx
 xxxxxxxxx
 xxxxxxxxx
 xxyxxxx
 xxxxxxxxx
 xxxxxxexx
mexxyxixixixix xxxxxx
 xixxxxxyxxy

SPECIES	
KALE	100
(15)	86
CABBAGE	100
(16)	86
CARROT	84
(18)	79
PARSNIP	100
(19)	71
SUG BEET	100
(22)	100
BETA VUL	100
(23)	93
BROM STE	100
(24)	79
FEST RUB	75
(25)	64
AVE FATU	100
(26)	71
ALO MYOS	100
(27)	64
POA ANN	100
(28)	50
POA TRIV	100
(29)	50

MBR 18337
$0.1 \mathrm{~kg} / \mathrm{ha}$

	100
mxxxxxxxxxyxxyxxx	64
	100
	86
	105
	64
	100
mexxxxxxxxxxx	57
	100
	79
	100
	64
	100
	36
	31
	14
	100
	43
	70
mexxxxxxxxxxx	36
	81
xxxxxxxxx	36
	100
xxxx	29

MBR 18337
$0.4 \mathrm{~kg} / \mathrm{ha}$

	100	
mxxxxxxxxxxx	43	xxxxxxxx
	100	
mxxxxxxxxxxxxxyxx	64	mxxxxxxxxxxxx
	105	
mexexixixixixix	43	mxxxyxxyx
	100	
mxxyxiximex	43	mxxxyxixy
	100	
	50	xxxxxxxxx
	100	
	57	mxxyxixixixi
	100	
xxxxxx	29	xxxxxx
xxxxxx	25	xxxxx
xxx	14	xxx
	100	
mxxxxixix	36	xxxxxxx
	60	mxxxxxxxxixx
xxxxxxx	21	xxxx
	94	
xxxxxxx	29	mxxxx
mxxxxxxxxxxxxxxxxxix	94	
xxxxx	29	xxxxxx

SPECIES		$\begin{array}{ll} \text { MBR } & 18337 \\ 0.1 & \mathrm{~kg} / \mathrm{ha} \end{array}$		MBR 18337 $0.4 \mathrm{~kg} / \mathrm{ha}$		MBR 18337 $1.6 \mathrm{~kg} / \mathrm{ha}$	
SIN ARV	100		100		100		
（ 30 ）	57	xxxxxxxxxx	50	mxxxxxxxxx	43	xxxxxxxxx	
RAPH RAP	100		100	mxxxxixxxxxxxxxxxxxxx	90	mxxxxxxxxxxxxxyxxm	
（ 31 ）	93		100		57	dxxxxxixixix	
TRIP MAR	100		100		100		
（ 33 ）	100		100		86		
POL LAPA	100		100		100		\％
（ 35 ）	100		100		86		1
GAL APAR	100		100		100		葱
（ 38 ）	86		86		71		N
STEL MED	100		100		95	mxxxxxxxxxxixixixix	ค
（ 40 ）	71		57	mxxxxxixixix	43	mxxxxxxx	
SPER ARV	81		100		87		$\stackrel{11}{\circ}$
（ 41 ）	57	xxxxxxxxxx	57	mxxxxixixixi	36	xxxxyxx	H
VER PERS	100		100		100		昆
（ 42 ）	93		71	mexxxixixixixix	57	mxxxxxixixix	比
RUM OBTU	100		100		100		
（ 44 ）	86		57	xxxxxyxxyxx	57	mexxxxxixix	
HOLC LAN	80	mxxxxxxyxxxxxxxm	80		30	xxxxxx	
（ 45 ）	64		29	xxxxxx	7	x	
AG REPEN	100		100		100		
（ 47 ）	57	xxxxxxxxyxx	43	xxxxxxxxx	36	xxxxyxx	
AG STOLO	100		100		90		
（ 48 ）	71	mxxxxxxxxxxxx	29	xxxxxx	21	xxxx	

SPECIES		$\begin{array}{ll} \text { MBR } & 18337 \\ 0.1 & \mathrm{~kg} / \mathrm{ha} \end{array}$		MBR 18337 $0.4 \mathrm{~kg} / \mathrm{ha}$		MBR 18337 $1.6 \mathrm{~kg} / \mathrm{ha}$
CIRS ARV	75	mxxxxxxxxxxxxxx	75	mxxxxxxxxxxxxyx	100	
(50)	100		93		71	mxxxxxxxxxxxx
MILLET	100		100		90	
(55)	71	mxxxxxxxxxxxx	29	xxxx	36	xxxxxx
MAIZE + S	100		100		100	
(56)	79		43	xxxyxxxxx	29	xxxxx
MAIZE	100		100		100	
(57)	43	mxxxxxexx	36	xxxxxxx	29	xxxxxx
SORG + S	100		100	mxxxxxxxxxxxxxxxxxxi	100	
(58)	43	mexexxyxx	29	mxxxxx	29	xxxxxx
SORGHUM	100		100		100	
(59)	43		29	xxxxx	29	xxxxxy
PIGEON P	100		100		100	
(61)	71		50	xxxxxxxxxx	43	xxxxxixix
COWPEA	100		100		100	
(62)	86		57	mxxxxixixix	50	mxxmxixymi
CHICKPEA	100		100		100	
(63)	100		86		71	mxxixixixixixi
GRNDNUT	100		100		100	
(64)	86		71	xxxxxx	57	mxxxixixixix
SOYABEAN	100		100		100	
(65)	57	mxxxxxxxxxx	50	mxxxxxxxx	36	xxxxxxx
COTTON	100		100		100	
(66)	86		64	mxxxxxxxxxxx	50	mxxxxxxxx

SPECIES		MBR 18337 $0.1 \mathrm{~kg} / \mathrm{ha}$		$\begin{array}{ll} \text { MBR } & 18337 \\ 0.4 & \mathrm{~kg} / \mathrm{ha} \end{array}$		MBR 18337 $1.6 \mathrm{~kg} / \mathrm{ha}$
PORT OLE	100	mxxxxxxxxxxxxxxxxxyx	100	mxxxxxxxxxxxxxxxxxxx	100	dxxixixxxixixixixixixix
(79)	64		50	xxxxxxxxxx	43	xxxxxxxx
SOL NIG	100		100		100	
(81)	64	mxxxxixixixix	57	mxxxxxxxxxx	43	xxxxxxxx
BROM PEC	100		100		100	
(82)	57	xxxxyxxyxxy	36	xxxxxx	29	xxxxxx
SNO POL	100		100		100	
(83)	57	mxxxxxxyxix	50	mxxxxxxxx	43	xxxxxxxxx
PHAL MIN	100		100		100	
(84)	93		57	xxxxxxxxyxx	29	xxxxxx
CYP ESCU	-		-		-	
(85)	93		79	mexxxxxxxxxxxxix	43	mxxxxxxix
CYP ROTU	-		-		-	
(86)	79		57	mexxixxxxixix	29	xxxxx
OXAL LAT	-		-		-	
(87)	79	mxxxxxxxxxxxxxxx	57		43	xxxxxxxx
CYN DACT	-		-		-	
(88)	93		50	mexxxixxyx	29	xxxxxx

Code number
Chemical name

NC 20484
2,3-dihydro-3,3-dimethyl-5-benzofuranyl ethanesulphonate

Structure

Source
FBC Limited
Agrochemical Division
Chesterford Park Research Station
Saffron Walden
Essex CB10 1XL
Information available and suggested uses
Control of Cyperus spp and annual grass and broad-leaved weeds in cotton at 0.5 to 2.0 kg a.i./ha pre-plant or pre-emergence; tobacco 0.5 to 2.0 kg a.i./ha pre- or post-transplanting; orchard/plantation crops, pre-weed emergence.

Formulation used $40 \% \mathrm{w} / \mathrm{v}$ a.i. emulsifiable concentrate
Spray volume for post-emergence selectivity experiment $371 \mathrm{I} / \mathrm{ha}$

RESULTS

Full results are given in the histograms on pages $44-49$ and potential selectivities are summarised in the following table.

RATE (kg a.i./ha)	CROPS: vigour reduced by 15% or less	WEEDS: number or vigour reduced by 70% or more
3.20	```parsnip rice + safener (NA)```	Poa annua Galium aparine Spergula arvensis Veronica persica Holcus lanatus Agropyron repens Eleusine indica Echinochloa crus-galli Digitaria sanguinalis Portulaca oleracea Cyperus rotundus + species below
0.80	species above + perennial ryegrass maize + safener (NA)	Festuca rubra Alopecurus myosuroides Poa trivialis Stellaria media Rumex obtusifolius Bromus pectinatus
0.20	None listed as no weeds controlled	None

Activity and pre-emergence selectivity data were published previously (Richardson et al, 1982) together with soil persistence data and symptoms on susceptible species. As with MBR 18337, pre-emergence treatments were more effective than post-emergence. In the latter, broad-leaved species were more susceptible to the foliar spray than to soil drenches, again corresponding to MBR 18337 but with the grasses NC 20484 was much more active as a soil drench than as a foliar spray. This should be borne in mind when considering the results of the present post-emergence test where the possibility existed for soil and foliar uptake and activity. Symptoms produced on susceptible species in the present test were similar to those observed and described in the earlier activity experiment, these closely resembling the effects of the previous herbicide MBR 18337 and other herbicides of the amide and anilide groups.

Post-emergence selectivity among temperate species
Several annual grass and broad-leaved weeds were controlled. At $0.8 \mathrm{~kg} / \mathrm{ha}$ Alopecurus myosuroides and Festuca rubra were susceptible. At $3.2 \mathrm{~kg} / \mathrm{ha}$ Galium aparine and Veronica persica were among the weed species controlled.

Parsnip was the only crop to withstand the high dose of $3.2 \mathrm{~kg} / \mathrm{ha}$. Perennial ryegrass was the only other tolerant crop at $0.8 \mathrm{~kg} / \mathrm{ha}$. White clover and beans (dwarf and field) were very sensitive as were some of the brassica crops (kale, cabbage and radish). The cereals too were rather susceptible, especially wheat. No safening effect of NA was found with these two cereals, contrasting with a moderate to good effect, found in the earlier pre-emergence test (Richardson et al, 1982).

The control of F. rubra and A. myosuroides in perennial ryegrass is of interest and perhaps worthy of further investigation. Unfortunately this species is sensitive pre-emergence. The weed spectrum was wider and the level of activity greater, pre- rather than post-emergence (Richardson et al, 1982), while a few more crops were tolerant, pre-emergence.

Selectivity among tropical species

The symptoms of stunting and distortion from this compound were almost indistinguishable from those of the previous compound MBR. 18337 and there was a comparable lack of selectivity on most crops. Even chickpea failed to show tolerance, but there was a more pronounced protection of maize and rice by NA, and a range of weeds could theoretically be selectivity controlled in rice at the highest dose of $3.2 \mathrm{~kg} / \mathrm{ha}$. Further work with NA and NC 20484 on maize and rice will be published elsewhere. Effects on sorghum were not reduced by cyometrinil. Perennials were affected quite severely at first, as they were by MBR 18337. Recovery was a little slower but almost complete after about three months.

SPECIES		$\begin{array}{r} \text { NC } 20484 \\ 0.2 \mathrm{~kg} / \mathrm{ha} \end{array}$		$\begin{array}{r} \text { NC } 20484 \\ 0.8 \mathrm{~kg} / \mathrm{ha} \end{array}$		NC 20484 $3.2 \mathrm{~kg} / \mathrm{ha}$
WHEAT	100		100		100	mxxxxxxxxxxxxxxxxxxx
(1)	71	mexxxxxxxxxxxi	43	xxxxxxxxx	29	xxxxxx
WHEAT + S	100		100		100	
(2)	64	mxxxxxxxxxxx	43	mxxxxxxx	29	xxxxxx
BARLEY	100		100		100	mxxxxxxxxxxxxxxxxxxx
(3)	86		71		36	xxxxxxx
BARLEY + S	100		100		100	
(4)	86		64	mxxxxxixixixix	36	xxxxxxx
OAT	100		100		100	
(5)	86		64	mxxxxxxxxxxx	43	xxyxxyxx
PER RYGR	100		100		100	
(6)	100		86		43	mxxxxxixi
ONION	100		100		86	
(8)	71		57	mxxxexxxxx	43	xxxxxxxxx
DWF BEAN	100		100		100	
(9)	50	xxxxxxxxx	43	xxxxxxxxx	29	xxxxxx
FLD BEAN	100		100		100	
(10)	43	xxxxxxxxx	29	xxxxxx	29	xxxxxx
PEA	100		100		100	
(11)	79		79	xxxxxxixixixixix	57	dxixixxixix
W CLOVER	81		75	mxxxxxxixixixixix	44	mxxxxxxxx
(12)	36	dxxxxxx	29	xxxxx	29	xxxxxx
RAPE	100		100		100	
(14)	79		57	mxxxxxxxyxx	43	xxxxxxxx

SPECIES		$\begin{array}{r} \text { NC } 20484 \\ 0.2 \mathrm{~kg} / \mathrm{ha} \end{array}$		$\begin{array}{r} \text { NC } 20484 \\ 0.8 \mathrm{~kg} / \mathrm{ha} \end{array}$		NC 20484 $3.2 \mathrm{~kg} / \mathrm{ha}$
KALE	100		100	nxxxxxxxxxxxxxxxxxxx	100	
(15)	50	mxxyxixixix	43	xxxxxxxx	36	xxxxxxx
CABBAGE	100		100		100	xxxxxxxxxxxxxxxxxxxx
(16)	43	mxxexxyxx	50		43	xxxxxxxxx
CARROT	95		105		105	
(18)	86		79		57	mxxxxxxxxxx
PARSNIP	100		100		100	
(19)	100		86		86	xxxxxxxxxxxxxxxxx
SUG BEET	100		100		100	
(22)	79		57	mxxxxixixx	50	xxxixixixx
BETA VUL	100		100		100	
(23)	86		64	mxxxxxxxxxxx	64	xxxxxxxxixxxx
BROM STE	100		100		100	
(24)	93		64	mexxxxixixixix	43	xxxyxyxxx
FEST RUB	56	dxxxixixixix	0		25	xxxxx
(25)	50	mxxixixixi	0		14	
AVE FATU	100		100		100	
(26)	100		79	mxxxxxxxxxxxxxx	50	dxxixxxxxx
ALO MYOS	80		80		90	
(27)	50	mxxxxxxxx	29	xxxxx	29	xxxxxx
POA ANN	100		94		62	
(28)	86		36	xxxxxxx	29	xxxxxx
POA TRIV	100		87		62	mexxxixixixix
(29)	79		29	xxxxx	29	xxxxx

SPECIES		$\begin{array}{r} \text { NC } 20484 \\ 0.2 \mathrm{~kg} / \mathrm{ha} \end{array}$			$\begin{array}{r} \text { NC } 20484 \\ 0.8 \mathrm{~kg} / \mathrm{ha} \end{array}$		$\begin{array}{r} \text { NC } 20484 \\ 3.2 \mathrm{~kg} / \mathrm{ha} \end{array}$
SIN ARV	100		100			100	
(30)	57	mxxxxxixixi	43		mxxxixixx	36	xxxxxyx
RAPH RAP	80		100			100	
(31)	57	mxxxxxyxxix	43		mxxyxixix	43	mexixixixi
TRIP MAR	100		100			100	
(33)	79	mxxxxxxxxxxxxxx	71		mexixixixixixide	36	xxxyxx
POL LAPA	100		100			100	
(35)	86		86			64	mxxixixixixix
GAL APAR	100		100			100	
(38)	64		36		xxxyxix	29	x $x \times x \times x$
STEL MED	100		100			100	
(40)	36	mxxxxx	29		xxxxy	29	xxxxxx
SPER ARV	100		94			87	
(41)	79		43		mxxyxxyx	29	xxxxx
VER PERS	100		80		mexxxxxxixixixixix	50	mexixixixix
(42) .	71	dxxxixixixixixx	50		mxxyxixixix	29	xxxxxx
RUM OBTU	100		100	R		100	
(44)	43	mxxxxxxx	29		xxxxxx	29	xxxxx
HOLC LAN	100		30		xxxxxx	60	dxxxixixixixid
(45)	79		50		mexexxexxid	14	xxx
AG REPEN	100		100			100	
(47)	71	mexixixixixixix	57		mexiexixixix	29	xxxxx
AG STOLO	100		100			100	
(48)	86		50		XXXXXXXXXX	36	xxxxxxx

SPECIES		$\begin{array}{r} \text { NC } 20484 \\ 0.2 \mathrm{~kg} / \mathrm{ha} \end{array}$		$\begin{array}{r} \text { NC } 20484 \\ 0.8 \mathrm{~kg} / \mathrm{ha} \end{array}$		$\begin{array}{r} \text { NC } 20484 \\ 3.2 \mathrm{~kg} / \mathrm{ha} \end{array}$
CIRS ARV	75		75		75	
(50)	57	mxxxixixixix	71	mxxxxxxxxxxxxx	50	xxxxxxxxxx
MILLET	100		100		100	
(55)	93		64	xxxxxxxxxxxxx	43	mxxxxxxx
MAIZE + S	100		100		100	
(56)	100		93	fxxxxxxxxxyxxxxxxx	36	xxxxxx
MAIZE	100		100		100	
(57)	93	mxxxxxxxxxxxyxxxxx	57	xxxxxxxxxx	29	xxxxxx
SORG + S	100		100		100	
(58)	100		43	xxxxxxxxx	29	xxxxxx
SORGHUM	100		100		100	
(59)	93		43	xxxxxxxx	29	xxxxxx
PIGEON P	100		100		100	
(61)	43	xxxxyxxyx	29	xxxxxx	29	xxxxxx
COWPEA	100		100		100	
(62)	64	Xxxxxxxx	57	dxxxxxxxxx	57	mxxxxixixyxx
CHICKPEA	100		100		100	
(63)	86		71	mxxxyxixixixx	57	xxxxxxxxxx
GRNDNUT	100		100		100	
(64)	71	mexixixixixixix	57	mxxxxxxxyxx	43	xxxxxxxx
SOYABEAN	100		100		100	
(65)	71	mxxxxxxxxxxxx	64	mxxxxxxxxxyxx	50	xxxxxxxxx
COTTON	100		100		100	
(66)	93		57		50	xxxxxxxxxx

$$
\begin{array}{rl}
\mathrm{NC} & 20484 \\
3.2 & \mathrm{~kg} / \mathrm{ha}
\end{array}
$$

xXxxxxxxxxxxxxxxxxxx xxxxxx
xxxxxxxxxxxxxxxxxxxx XXXXXXX
xxxxxxxxxxxxxxxxxxxx XXXXXXXXX
xxxxxxxxxxxxxxxxxxxx XXXXXXXXX
xxxxxxxxxxxxxxxxxxxx XXXXXXX
xxxxxxxxxxxxxxxxxxxx XXXXXXXXXX
xxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxx XXXXXX
xxxxxxxxxxxxxxxxxx XXXXXX
xxxxxxxxxxxxxxxxxxxx XXXXXXXXX

XXXXXXXXXXXXXXXXXXXX xXXXXX

XXXXXXXXXXXXXXXXXXXX XXXXXXXXX

SPECIES		$\begin{array}{rl} \text { NC } & 20484 \\ 0.2 & \mathrm{~kg} / \mathrm{ha} \end{array}$		$\begin{array}{rl} \text { NC } & 20484 \\ 0.8 & \mathrm{~kg} / \mathrm{ha} \end{array}$		NC 20484 $3.2 \mathrm{~kg} / \mathrm{ha}$
PORT OLE	100	xxxxxxxxxxxxxxxxxxxx	100		75	Xxxxxxxxxxxxxxx
(79)	57	XXXXXXXXXXX	36	XXXXXXX	29	XXXXXX
SOL NIG	100	xxxxxxxxxxxxxxxxxxxx	100	Xxxxxxxxxxxxxxxxxxxx	100	XXXXXXXXXXXXXXXXXXXX
(81)	64	XXXXXXXXXXXXX	50	XXXXXXXXXX	36	XXXXXXX
BROM PEC	100	Exxxxxxxxxxxxxxxxxxx	100	XXXXXXXXXXXXXXXXXXXX	100	Xxxxxxxxxxxxxxxxxxxx
(82)	71	XXXXXXXXXXXXXX	29	XXXXXX	29	XXXXXX
SNO POL	100		100	XXXXXXXXXXXXXXXXXXXX	100	Xxxxxxxxxxxxxxxxxxxx
(83)	50	XXXXXXXXXX	43	XXXXXXXXX	36	XXXXXXX
PHAL MIN	100	Exxxxxxxxxxxxxxxxxxx	100	Exxxxxxxxxxxxxxxxxxx	92	xxxxxxxxxxxxxxxxxx
(84)	100		79	XXXXXXXXXXXXXXXX	50	XXXXXXXXXX
CYP ESCU	-		-		-	
(85)	71	Sxxxxxxxxxxxxx	50	xxxxxxxxxx	36	XXXXXXX
CYP ROTU	-		-		-	
(86)	86	XXXXXXXXXXXXXXXXX	50	XXXXXXXXXX	29	x $x \times x \times x$
OXAL LAT	-				-	
(87)	57	Xxxxxxxxxxx	50	XXXXXXXXXX	36	Xxxxxxx
CYN DACT	-		-		-	
(88)	100	XXXXXXXXXXXXXXXXXXXX	64	XXXXXXXXXXXXX	36	XXXXXXX

ACKNOWLEDGEMENTS

We are most grateful to the joint Letcombe/WRO Statistics Section for processing the experimental data; to Mr G P White, Miss D Stringer and Messrs. R H Webster, R M Porteous and S L Burbank for technical and practical assistance; to Mrs J Souch for the preparation and typing of this report; to Mrs S Cox and her staff for its duplication and to the commercial firms who provided the herbicides and relevant data.

The work of the Tropical Weeds Group was carried out under Project D11 (27) financed by H M Overseas Development Administration.

REFERENCES

RICHARDSON, W.G. and DEAN, M.L. (1974) The activity and post-emergence selectivity of some recently developed herbicides: oxadiazon, U-29,722, U-27,658, metflurazone, norflurazone, AC 50,191, AC 84,777 and iprymidam. Technical Report Agricultural Research Council Weed Research Organization 32, pp 74.

RICHARDSON, W.G. and PARKER, C. (1977) The activity and post-emergence selectivity of some recently developed herbicides: KUE 2079A, HOE 29152, RH 2915, triclopyr and Dowco 290. Technical Report Agricultural Research Council Weed Research Organization, 42, pp 53.

RICHARDSON, W.G., WEST, T.M. and PARKER, C. (1982) The activity and pre-emergence selectivity of some recently developed herbicides: chlomethoxynil, NC 20484 and MBR 18337. Technical Report Agricultural Research Council Weed Research Organization, 64, pp 43.

Appendix 1. Species, abbreviations, varieties and stages of growth at spraying and assessment for post-emergence selectivity test.

	Designation and computer serial number	Cultivar or source	Stage of growth at spraying	Stage of growth at assessment (untreated controls, leaf numbers exclusive of cotyledons)
Temperate species				
Wheat (Triticum aestivum)	$\begin{aligned} & \text { WHEAT } \\ & (1) \end{aligned}$	Mardler	$2 \frac{1}{2}$ leaves	10-12 leaves. 2 tillers.
Wheat + safener	$\begin{aligned} & \text { WHEAT }+S \\ & (2) \end{aligned}$	Mardler	$2 \frac{1}{2}$ leaves	10-12 leaves, 2 tillers
Barley (Hordeum vulgare)	$\begin{aligned} & \text { BARLEY } \\ & (3) \end{aligned}$	Sonja	$2 \frac{1}{2}$ leaves	10-20 leaves, up to 7 tillers
Barley + safener	$\begin{aligned} & \text { BARIEY }+S \\ & (4) \end{aligned}$	Sonja	$2 \frac{1}{2}$ leaves	10-20 leaves, up to 7 tillers
Oat (Avena sativa)	$\begin{aligned} & \text { OAT } \\ & (5) \end{aligned}$	Pennal	2-2 2 leaves	14-17 leaves, up to 3 tillers
Perennial ryegrass (Lolium perenne)	PER RYGR (6)	S 23	$3 \frac{1}{2}-4 \frac{1}{2}$ leaves, tillering	Up to 4 tillers
Onion (Allium cepa)	ONION (8)	Hygro	$1 \frac{1}{2}-2$ leaves	4 leaves
Dwarf bean (Phaseolus vulgaris)	DWF BEAN (9)	The Prince	2 unifoliate leaves	4 trifoliate leaves, flowering
Field bean (Vicia faba)	FLD BEAN (10)	Maris Bead	2-2 $\frac{1}{2}$ leaves	9 leaves
Pea (Pisum sativum)	$\begin{aligned} & \text { PEA } \\ & (11) \end{aligned}$	Dark Skinned Perfection	2-2 $\frac{1}{2}$ leaves	Up to 10 leaves
White Clover (Trifolium repens)	$\begin{aligned} & \text { W CLOVER } \\ & (12) \end{aligned}$	Milkanova	1 trifoliate leaf	12 trifoliate leaves
Rape $\frac{\text { (Brassica napus }}{\text { oleifera) }}$	$\begin{aligned} & \text { RAPE } \\ & (14) \end{aligned}$	Rapora	$2 \frac{1}{2}$ leaves	7 leaves
Kale (Brassica oleracea acephala	$\begin{aligned} & \text { KALE } \\ & (15) \end{aligned}$	Marrow Stem	$2 \frac{1}{2}$ leaves	4-4 $\frac{1}{2}$ leaves
Cabbage (Brassica oleracea capitata)	$\begin{aligned} & \text { CABBAGE } \\ & (16) \end{aligned}$	Derby Day	2-2 $\frac{1}{2}$ leaves	6-7 leaves
Carrot (Daucus carota)	CARROT (18)	Chantenay Red Core	$1 \frac{1}{2}-2$ leaves	6 leaves

	Designation and computer serial number	Cultivar or source	Stage of growth at spraying	Stage of growth at assessment (untreated controls, leaf numbers exclusive of cotyledons)
Parsnip (Pastinaca sativa)	PARSNIP (19)	Albino	$1 \frac{1}{2}-2$ leaves	4 leaves
Lettuce (Lactuca sativa)	$\begin{aligned} & \text { IETTUCE } \\ & (20) \end{aligned}$	Reskia	Inadequate germination	
$\begin{aligned} & \text { Fenugreek } \\ & \text { (Trigonella } \\ & \text { foenumgraecum) } \end{aligned}$	FENUGREEK (21)	Paul	Inadequate germination	-
Sugar beet (Beta vulgaris)	$\begin{aligned} & \text { SUG BEET } \\ & \text { (22) } \end{aligned}$	Vytomo	2-2 2 leaves	7-8 leaves
Beta vulgaris	$\begin{aligned} & \text { BETA VUL } \\ & (23) \end{aligned}$	WRO 1979 ex Attleborough	2 leaves	7 leaves
Bromus sterilis	$\begin{aligned} & \text { BROM STE } \\ & (24) \end{aligned}$	WRO 1979	4-4 $\frac{1}{2}$ leaves, tillering	35 leaves, up to 10 tillers
Festuca rubra	$\begin{aligned} & \text { FEST RUB } \\ & \text { (25) } \end{aligned}$	Boreal	2 leaves	Up to 7 tillers
Avena fatua	AVE FATU (26)	WRO 1978	3-4 $\frac{1}{2}$ leaves, some tillering	10-14 leaves 2 tillers
$\frac{\text { Alopecurus }}{\text { myosuroides }}$	ALO MYOS (27)	WRO 1979	2-3 leaves	Up to 12 tillers
Poa annua	POA ANN (28)	B \& S Supplies 1978	4-5 leaves, some tillering	Up to 12 tillers
Poa trivialis	$\begin{aligned} & \text { POA TRIV } \\ & \text { (29) } \end{aligned}$	WRO 1978	5-7 leaves, tillering	Up to 20 tillers
Sinapis arvensis	$\begin{aligned} & \text { SIN ARV } \\ & (30) \end{aligned}$	WRO 1971	3-5 leaves	5-6 leaves, flowering
$\begin{aligned} & \text { Raphanus } \\ & \text { raphanistrum } \end{aligned}$	RAPH RAP (31)	Long Black Spanish	4-5 leaves	7-8 leaves
$\begin{aligned} & \text { Tripleurospermum } \\ & \text { maritimum } \end{aligned}$	$\begin{aligned} & \text { TRIP MAR } \\ & (33) \end{aligned}$	WRO 1978	4 leaves	Numerous leaves, flowers developing
Senecio vulgaris	SEN VULG (34)	WRO 1977	Inadequate germination	-
$\begin{aligned} & \text { Polygonum } \\ & \text { lapathifolium } \end{aligned}$	POL LAPA (35)	WRO 1980	$2 \frac{1}{2}$ leaves	10 leaves, flowering
$\begin{aligned} & \text { Polygonum } \\ & \hline \text { aviculare } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { POL AVIC } \\ & (36) \end{aligned}$	B \& S Supplies 1978	Inadequate germination	-

	Designation and computer serial number	Cultivar or source	Stage of growth at spraying	Stage of growth at assessment (untreated controls, leaf numbers exclusive of cotyledons)
Galium aparine	GAL APAR (38)	WRO 1979	3-5 whorls	Up to 13 whorls
Chenopodium album	$\begin{aligned} & \text { CHEN ALB } \\ & \text { (39) } \end{aligned}$	B \& S Supplies 1977	Inadequate germination	
Stellaria media	$\begin{aligned} & \text { STEL MED } \\ & (40) \end{aligned}$	B \& S Supplies 1977	$6 \text { leaves }$	Numerous leaves, flowering
Spergula arvensis	$\begin{aligned} & \text { SPER ARV } \\ & (41) \end{aligned}$	B \& S Supplies 1977	$2 \text { whorls }$	Numerous whorls, flowering
Veronica persica	VER PERS (42)	WRO 1977	4-5 leaves	Numerous leaves, flowering
Rumex obtusifolius	RUM OBTU (44)	B \& S Supplies 1978	1-2 $\frac{1}{2}$ leaves	4-4 ${ }^{\frac{1}{2}}$ leaves
Holcus lanatus	HOLC LAN (45)	B \& S Supplies 1979	2-3 leaves	6-10 tillers
Agropyron repens	AG REPEN (47)	WRO Clone 31*	$2 \frac{1}{2}-3$ leaves	14-20 leaves, 2-3 tillers
Agrostis stolonifera	$\begin{aligned} & \text { AG STOLO } \\ & \text { (48) } \end{aligned}$	B \& S Supplies 1976	4-7 leaves, tillering	8-13 stolons
Cirsium arvense	$\begin{aligned} & \text { CIRS ARV } \\ & \text { (50) } \end{aligned}$	WRO Clone 1**	3-5 leaves	7-10 leaves
Tropical species (grown under higher temperature regime)				
Millet (Pennisetum americanum)	$\begin{aligned} & \text { MILLET } \\ & \text { (55) } \end{aligned}$	$\begin{aligned} & \text { Ex ICRISAT } \\ & 1977 \end{aligned}$	$2 \frac{1}{2}-3$ leaves	$5 \frac{1}{2}-7 \frac{1}{2}$ leaves
Maize + safener (Zea mays)	$\begin{aligned} & \text { MAIZE + } \\ & (56) \end{aligned}$	Julia	3-31	$6 \frac{1}{2}-7 \frac{1}{2}$ leaves
Maize (Zea mays)	$\begin{aligned} & \text { MAIZE } \\ & \text { (57) } \end{aligned}$	Julia	$3-3 \frac{1}{2}$ leaves	$6 \frac{1}{2}$ leaves
Sorghum + safener (Sorghum bicolor)	$\begin{aligned} & \text { SORG }+S \\ & (58) \end{aligned}$	Funk G 623	$3 \frac{1}{2}-4$ leaves	$7 \frac{1}{2}$ leaves
Sorghum (Sorghum bicolor)	$\begin{aligned} & \text { SORGHUM } \\ & \text { (59) } \end{aligned}$	Funk G 623	$3 \frac{1}{2}-4$ leaves	$7 \frac{1}{2}$ leaves
Pigeon pea (Cajanus cajan)	$\begin{aligned} & \text { PIGEON P } \\ & (61) \end{aligned}$	ICRISAT 1977	1 trifoliate leaf	5-7 trifoliate leaves

	Designation and computer serial number	Cultivar or source	Stage of growth at spraying	Stage of growth at assessment (untreated controls, leaf numbers exclusive of cotyledons)
Cowpea (Vigna unguiculata)	COWPEA (62)	ICRISAT 1977	1 trifoliate leaf	3-4 trifoliate leaves
Chickpea (Cicer arietinum)	CHICKPEA (63)	Jygthi 1981	8-9 pinnate leaves	18 pinnate leaves
Groundnut (Arachis hypogaea)	GRNDNUT (64)	Mani Pinta (Ghana)	3-4 pinnate leaves	6-7 pinnate leaves
Soyabean (Gilycine max)	$\begin{aligned} & \text { SOYABEAN } \\ & (65) \end{aligned}$	Bragg (USA)	1-2 trifoliate leaves	5 trifoliate leaves
Cotton (Gossypium hirsutum)	$\begin{aligned} & \text { COTTON } \\ & (66) \end{aligned}$	$\begin{aligned} & \text { S } 71 \\ & \text { (Nigeria) } \end{aligned}$	2 leaves	4-5 leaves
Jute (Corchorus olitorius)	$\begin{aligned} & \text { JUTE } \\ & (67) \end{aligned}$	Egypt 1971	3-4 Ieaves	8-11 leaves
Kenaf (Hibiscus cannabinus)	$\begin{aligned} & \text { KENAF } \\ & (68) \end{aligned}$	A $63-440$ (Ghana)	3-4 leaves	8-9 leaves
Tobacco (Nicotiana tabacum)	$\begin{aligned} & \text { TOBACCO } \\ & (69) \end{aligned}$	Yellow Mammoth	4-5 leaves	7-8 leaves
Sesamum (Sesamum indicum)	$\begin{aligned} & \text { SESAMUM } \\ & (70) \end{aligned}$	Sudan, 1981	2 leaves	6-8 leaves
Tomato $\frac{\text { (Lycopersicum }}{\text { esculentum) }}$	TOMATO (71)	Ailsa Craig	2-4 pinnate leaves	7-9 pinnate leaves
Rice (Oryza sativa)	$\begin{aligned} & \text { RICE } \\ & (72) \end{aligned}$	IR 298	3-31	$6 \frac{1}{2}-7$ leaves, 0-2 tillers
Rice + safener (Oryza sativa)	$\underset{(73)}{\mathrm{RICE}}+\mathrm{S}$	IR 298	3-31	$6 \frac{1}{2}-7$ leaves, 0-1 tiller
Eleusine indica	$\begin{aligned} & \text { ELEU IND } \\ & (74) \end{aligned}$	WRO 1977	2-31	8-9 leaves, 2-3 tillers
$\begin{aligned} & \text { Echinochloa } \\ & \hline \text { crus-galli } \\ & \hline \end{aligned}$	ECH CRUS (75)	WRO 1976	$3-3 \frac{1}{4}$ leaves	$6 \frac{1}{2}-8$ leaves
$\frac{\text { Rottboellia }}{\text { exaltata }}$	ROT EXAL (76)	$\begin{aligned} & \text { Zimbabwe } \\ & 1978 \end{aligned}$	$2 \frac{1}{2}-3$ leaves	6 leaves
$\begin{aligned} & \text { Digitaria } \\ & \text { sanguinalis } \end{aligned}$	DIG SANG (77)	WRO 1973	4-5 leaves	7-9 leaves, 2-4 tillers
$\frac{\text { Amaranthus }}{\text { retroflexus }}$	AMAR RET (78)	WRO 1979	5-7 leavers	6-12 leaves

$\left.\left.\begin{array}{llll}\hline & \begin{array}{l}\text { Designa- } \\ \text { tion and } \\ \text { computer } \\ \text { serial } \\ \text { number }\end{array} & \begin{array}{l}\text { Cultivar } \\ \text { or } \\ \text { source }\end{array} & \begin{array}{l}\text { Stage of } \\ \text { growth at } \\ \text { spraying }\end{array} \\ \hline & & \begin{array}{l}\text { Stage of growth } \\ \text { at assessment } \\ \text { (untreated }\end{array} \\ \text { controls, leaf }\end{array}\right] \begin{array}{l}\text { numbers exclusive } \\ \text { of cotyledons) }\end{array}\right]$

* tubers
bulbs
\dagger runners

angstrom	\&	freezing point	f.p.
Abstract	Abs.	from summary	F.s.
acid equivalent*	a.e.	gallon	gal
acre	ac	gallons per hour	gal/h
active ingredient*	a.i.	gallons per acre	ga1/ac
approximately equal to*	\simeq	gas liquid chromatography	GLC
aqueous concentrate	a.c.	gramme	g
bibliography	bib1.	hectare	ha
boiling point	b.p.	hectokilogram	hkg
bushel	bu	high volume	HV
centigrade	C	horse power	hp
centimetre*	cm	hour	h
concentrated	concd	hundredweight*	cwt
concentration concentration x time product	conen	hydrogen ion concentration*	pH
concentration required to kill 50\% test animals	ct	inch	in.
		infra red	i.r
	LC50	kilogramme	kg
cubic centimetre*	cm^{3}	kilo ($\times 10^{3}$)	k
cubic foot*	ft^{3}	less than	<
cubic inch*	in^{3}	litre	1.
cubic metre*	m^{3}	low volume	LV
cubic yard*	yd^{3}	maximum	max.
cultivar(s)	cv.	median lethal dose	LD50
curie*	Ci	medium volume	MV
degree Celsius*	${ }^{\circ} \mathrm{C}$	melting point	m.p.
degree centigrade	${ }^{\circ} \mathrm{C}$	metre	m
degree Fahrenheit*	${ }^{\circ} \mathrm{F}$	micro ($\mathrm{x}_{10}{ }^{-6}$)	μ
diameter	diam.	microgramme*	$\mu \mathrm{g}$
diameter at breast height	d.b.h.	micromicro $\left(\text { pico: } \times 10^{-12}\right)^{*}$	$\mu \mathrm{H}$
divided by*	\%or /	micrometre (micron)*	$\mu \mathrm{m}$ (or μ)
dry matter	d.	micron (micrometre)* \dagger	$\mu \mathrm{m}$ (or μ)
emulsifiable concentrate		miles per hour*	mile/h
	e.c.	milli ($\mathrm{x}^{10^{-3} \text {) }}$	
equal to*	$=$	milliequivalent*	m.equiv.
fluid	f1.		
foot	ft	milligramme	
		millilitre	m

[^0]
WEED RESEARCH ORGANIZATION

TECHNICAL REPORTS

(Price includes surface mail; airmail £1.00 extra)
(* denotes Reports now out of print)
6. The botany, ecology, agronomy and control of Poa trivialis L. roughstalked meadow-grass. November 1966. G P Allen. Price - £0. 25
7. Flame cultivation experiments 1965. October, 1966. G W Ivens. Price - £0. 25
8. The development of selective herbicides for kale in the United Kingdom. 2. The methylthiotriazines. Price - £0. 25
10. The liverwort, Marchantia polymorpha L. as a weed problem in horticulture; its extent and control. July 1968. I E Henson. Price - £0. 25
11. Raising plants for herbicide evaluation; a comparison of compost types. July 1968. I E Henson. Price - £0. 25
*12. Studies on the regeneration of perennial weeds in the glasshouse; I. Temperate species. May 1969. I E Henson. Price - £0. 25
13. Changes in the germination capacity of three Polygonum species following low temperature moist storage. June 1969. I E Henson. Price. - £0. 25
14. Studies on the regeneration of perennial weeds in the glasshouse. II. Tropical species. May 1970. . I E Henson. Price - £0. 25
15. Methods of Analysis for herbicide residues. February 1977.
(second edition) - price £5.75
16. Report on a joint survey of the presence of wild oat seeds in cereal seed drills in the United Kingdom during Spring 1970. November 1970. J G Elliott and P J Attwood. Price - £0. 25
17. The pre-emergence selectivity of some newly developed herbicides, Orga 3045 (in comparison with dalapon), haloxydine (PP 493), HZ 52.112, pronamide (RH 315) and R 12001. January 1971. W G Richardson, C Parker and K Holly. Price - £0. 25
18. A survey from the roadside of the state of post-harvest operations in Oxfordshire in 1971. November 1971. A Phillipson. Price - £0. 12

* 19. The pre-emergence selectivity of some recently developed herbicides in jute, kenaf and sesamum, and their activity against 0xalis latifolia. December 1971. M L Dean and C Parker. Price-£ 0.25.
* 20. A survey of cereal husbandry and weed control in three regions of England. July 1972. A Phillipson, T W Cox and J G Elliott. Price - £0. 35

21. An automatic punching counter. November 1972. R C Simmons. Price - £0. 30
22. The pre-emergence selectivity of some newly developed herbicides: bentazon, BAS 3730H, metflurazone, SAN 9789, HER 52.123, U 27,267. December 1972. W G Richardson and M L Dean. Price - £0. 25
23. A survey of the presence of wild oats and blackgrass in parts of the United Kingdom during summer 1972. A Phillipson. Price - £0. 25
24. The conduct of field experiments at the Weed Research Organization. February 1973. J G Elliott, J Holroyd and T O Robson. Price £1. 25
25. The pre-emergence selectivity of some recently developed herbicides: lenacil, RU 12068, metribuzin, cyprazine, EMD-IT 5914 and benthiocarb. August 1973. W G Richardson and M L Dean. Price - £1.75.
26. The post-emergence selectivity of some recently developed herbicides: bentazon, EMD-IT 6412, cyprazine, metribuzin, chlornitrofen, glyphosate, MC 4379, chlorfenprop-methy1. October 1973. W G Richardson and M L Dean. Price - £3.31
27. Selectivity of benzene sulphonyl carbamate herbicides between various pasture grasses and clover. October 1973. A M Blair. Price - £1.05
28. The post-emergence selectivity of eight herbicides between pasture grasses: RP 17623, HOE 701, BAS 3790, metoxuron, RU 12068, cyprazine, MC 4379, metribuzin. October 1973. A M Blair. Price - £ 1.00

* 29. The pre-emergence selectivity between pasture grasses of twelve herbicides: haloxydine, pronamide, NC 8438, Orga 3045, chlortoluron, metoxuron, dicamba, isopropalin, carbetamide, MC 4379, MBR 8251 and EMD-IT 5914. November 1973. A M Blair. Price - £ 1.30

30. Herbicides for the control of the broad-leaved dock (Rumex obtusifolius L.). November 1973. A M Blair and J Holroyd. Price -£1.06
31. Factors affecting the selectivity of six soil acting herbicides against Cyperus rotundus. February 1974. M L Dean and C Parker. Price - £1. 10
32. The activity and post-emergence selectivity of some recently developed herbicides: oxadiazon, $\mathrm{U}-29,722, \mathrm{U}-27,658$, metflurazone, norflurazone, AC 50-191, AC 84,777 and iprymidam. June 1974. W G Richardson and M L Dean. Price - $£ 3.62$
33. A permanent automatic weather station using digital integrators. September 1974. R C Simmons. Price £ 0.63.
34. The activity and pre-emergence selectivity of some recently developed herbicides: trifluralin, isopropalin, oryzalin, dinitramine, bifenox and perfluidone. November 1974. W G Richardson and M L Dean.
Price - £2. 50
35. A survey of aquatic weed control methods used by Internal Drainage Boards, 1973. January 1975. T O Robson. Price - £1. 39
36. The activity and pre-emergence selectivity of some recently developed herbicides: Bayer 94871, tebuthiuron, AC 92553. March 1975. W G Richardson and M L Dean. Price - £1.54
37. Studies on Imperata cylindrica (L.) Beauv. and Eupatorium odoratum L. October 1975. G W Ivens. Price - £1. 75
38. The activity and pre-emergence selectivity of some recently developed herbicides: metamitron, HOE 22870, HOE 23408, RH 2915, RP 20630. March 1976. W G Richardson, M L Dean and C Parker. Price - £3. 25
39. The activity and post-emergence selectivity of some recently developed herbicides: HOE 22870, HOE 23408, flamprop-methy1, metamitron and cyperquat. May 1976. W G Richardson and C Parker. Price - £3.20
40. The activity and pre-emergence selectivity of sone recently developed herbicides: RP 20810, oxadiazon, chlornitrofen, nitrofen, flamprop--isopropy1. August 1976. W G Richardson, M L Dean and C Parker. Price - £2.75.
41. The activity and pre-emergence selectivity of some recently developed herbicides: K 1441, mefluidide, WL 29226, epronaz, Dowco 290 and triclopyr. November 1976. W G Richardson and C Parker. Price - £3.40.
42. The activity and post-emergence selectivity of some recently developed herbicides: KUE 2079A, HOE 29152, RH 2915, Triclopyr and Dowco 290. March 1977. W G Richardson and C Parker. Price - £3.50
43. The activity and pre-emergence selectivity of some recently developed herbicides: dimefuron, hexazinone, trifop-methy1, fluothiuron, buthidazole and butam. November 1977. W G Richardson and C Parker. Price - £3.75.
44. The activity and selectivity of the herbicides: ethofumesate, RU 12709 and isoproturon. December 1977. W G Richardson, C Parker, \& M L Dean. Price - $£ 4.00$
45. Methods of analysis for determining the effects of herbicides on soil soil micro-organisms and their activities. January 1978. M P Greaves, S L Cooper, H.A Davies, J A P Marsh \& G I Wingfield. Price - £4.00
46. Pot experiments at the Weed Research Organization with forest crop and weed species. February 1978. D J Turner and W G Richardson. Price - £2. 70
47. Field experiments to investigate the long-term effects of repeated applications of MCPA, tri-allate, simazine and linuron - effects on the quality of barley, wheat, maire and carrots. July 1978. J D Fryer, P D Smith and J W Ludwig. Frice - £1.20.
48. Factors affecting the toxicity of paraquat and dalapon to grass swards. March 1978. A K Oswald. Price - £2. 90
49. The activity and post-emergence selectivity of some recently developed herbicides: NP 48, RH 5205 and Pyridate. May 1978. W G Richardson and C Parker. Price - £2.50
50. Sedge weeds of East Africa - II. Distribution. July 1978. P J Terry. Price - £1. 50
51. The activity and selectivity of the herbicides methabenzthiazuron, metoxuron, chlortoluron and cyanazine. September 1978.
W G Richardson and C Parker. Price - £2.20.
52. Antidotes for the protection of field bean (Vicia faba L.) from damage by EPTC and other herbicides. February 1979. A M B1air. Price - £1. 35
53. Antidotes for the protection of wheat from damage by tri-allate. February 1979. A M B1air. Price - £2.00
54. The activity and pre-emergence selectivity of some recently developed herbicices: alachlor, metolach1or, dimethachlor, alloxydim-sodium and fluridone. April 1979. W G Richardson and C Parker. Price - £3.00
55. The activity and selectivity of the herbicides carbetamide, methazole, R 11913 and OCS 21693. May 1979. W G Richardson and C Parker. Price - £1.80
56. Growing weeds from seeds and other propagules for experimental purposes. July 1979. R H Webster. Price - £1. 10
57. The activity and pre-emergence selectivity of some recently developed herbicides: R 40244, AC 206784, pendimethalin, butralin, acifluorfen and FMC 39821. December 1979. W G Richardson, T M West and C Parker Price - £3. 55
58. The tolerance of fenugreek (Trigonella foenumgraecum L.) to various herbicides. December 1979. W G Richardson. Price - £1. 55
59. Recommended tests for assessing the side-effects of pesticides on the soil microflora. April 1980. M P Greaves, N J Poole, K H Domsch, G Jagnow and W Verstraete. Price - £2. 00
60. Properties of natural rainfalls and their simulation in the laboratory for pesticide research. September 1980. R C Simmons. Price - £1. 25
61. The activity and post-emergence selectivity of some recently developed herbicides: R 40244, DPX 4189, acifluorfen, ARD 34/02 (NP 55) and PP 009. November 1980. W G Richardson, T M West and C Parker. Price - £3.75
62. The activity and pre-emergence selectivity of some recently developed herbicides: UBI S-734, SSH-43, ARD 34/02 (= NP 55), PP 009 and DPX 4189. February 1981. W G Richardson, T M West and C Parker. Price - £3. 50
63. The activity and post-emergence selectivity of some recently developed herbicides: SSH-41, MB 30755, AC 213087, AC 222293 and Dowco 433. May 1981. W G Richardson, T M West and C Parker. Price - £3.50
64. The activity and pre-emergence selectivity of some recently developed herbicides: chlomethoxynil, NC 20484 and MBR 18337. March 1982. W G Richardson, T M West and C Parker. Price - £3.00
65. A system for monitoring environmental factors in controlled environment chambers and glasshouses. June 1982. R C Simmons. Price - £1.50
66. The activity and pre-emergence selectivity of some recently developed herbicides: AC 213087 and AC 222293. December 1982. W G Richardson, T M West and C Parker. Price - £2.00
67. The activity and post-emergence selectivity of some recently developed herbicides: trifopsime, glufosinate, RH 8817, MBR 18337 and NC 20484. December 1982. W G Richardson, T M West and C Parker. Price - £3. 25

[^0]: * Those marked * should normally be used in the text as well as in tables etc.

