Click here for previous

SPECIES

ТОМАТО (71)	83 43	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
OR BART (73)	61 57	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
ECH CRUS (75)	0 0	
ROTT EXA (76)	5 36	X XXXXXXX
DIG SANG (77)	0 0	
AMAR RET (78)	0 0	
BROM PEC (82)	0 0	
SNO POL (83)	000000000000000000000000000000000000000	
PHAL MIN (84)	0 0	
CYP ESCU (85)	0 0	
CYP ROTU (86)	5 29	X XXXXXX

NC 20484 0.25 kg/ha

NC 20484 1.0 kg/ha

XXXXXXXX

.

NC 20484 4.0 kg/ha

.

E-EMERGENCE SELECTIVITY TEST

PERSISTENCE OF NC 20484 species: perennial ryegrass

- 26 -

O-SURFACE

A-INCORPORATED

A 49 IN THE REPORT OF THE REPORT OF THE REPORT OF THE REPORT OF THE PARTY OF THE REPORT OF THE REPOR

- 27 -

MBR 18337

Code number

MBR 18337

Chemical name

N-[4-(ethylthio)-2-(trifluoromethyl)phenyl]methane sulphonamide

Structure

NHSO₂ CH₃ CH3 CH2 S' CF

FBC Limited Agrochemical Division Chesterford Park Research Station Saffron Walden Essex CB10 1XL UK

Information available and suggested uses

Grass growth retardation and seedhead suppression in all warm and cool season turf grasses at 0.14 and 2.24 kg a.i./ha depending on species; sucrose enhancement in sugar cane at 0.28 to 1.12 kg a.i./ha; weed control in cotton pre-emergence, pre-plant incorporated or post-emergence at 0.56 to 2.24 kg a.i./ha.

Formulation used24% w/v a.i. emulsifiable concentrateSpray volumefor activity experiment 386 1/hafor selectivity experiment 367 1/ha

RESULTS

.

Full results are given in the histograms on pages 30-36 and potential selectivities are summarised in the following table.

RATE (kg a.i./ha)	CROPS: vigour reduced by 15% or less	WEEDS: number or vigour reduced by 70% or more
4.0	None	None listed as no crops tolerant
1.0	pea rape kale radish cowpea groundnut*	Veronica persica Oryza barthii Echinochloa crus-galli Snowdenia polystachya + species below

(Continued overleaf)

RATE	CROPS: vigour reduced	WEEDS: number or vigour
(kg a.i./ha)	by 15% or less	reduced by 70% or more
0.25	<pre>species above + wheat + safener (NA) barley + safener (NA) dwarf bean field bean swede lettuce* fenugreek pigeon pea chickpea cotton kenaf sesamum*</pre>	Bromus sterilis Festuca rubra Avena fatua Alopecurus myosuroides Poa annua Poa trivialis Stellaria media Holcus lanatus Agropyron repens Rottboellia exaltata Digitaria sanguinalis Amaranthus retroflexus Bromus pectinatus Phalaris minor

- 28 -

* Note some reductions in number of plants

Comments on results

Activity experiment

The foliar spray was active on all six species causing inhibition of growth even at the lower doses. It tended to be more effective than the soil drenches on the broad-leaved species, but with the grasses effects of the two application methods were similar in degree. However, pre-emergence treatments were the most toxic of all four application methods on the grasses and <u>Polygonum amphibium</u>. The surface and incorporated treatments were similar in degree of effect on dwarf bean, kale and <u>Avena fatua</u>. Perennial ryegrass and <u>P. amphibium</u> were more susceptible to the surface rather than the incorporated treatment but the reverse was true for <u>Agropyron repens</u>. This should be considered when interpreting the results of the selectivity experiment where the herbicide was applied as a surface, pre-emergence spray.

Symptoms

A powerful inhibition of growth developed as a result of all four methods of application, particularly of the apical meristems, these often being swollen as a consequence of the inhibition. Darker green leaves usually developed which were often shiny in appearance. New leaves were sometimes fused together causing deformities such as twisting, cupping and crinkling. Necrosis usually developed at a later stage. With pre-emergence treatments at the higher doses, plants often failed to emerge either from the soil, or the coleoptile or died soon after. The degree of effect on the root system usually corresponded to those on the shoots. Thus, the symptoms are generally very similar to those of NC 20484 and are typical of many of the amide group of herbicides.

Persistence in the soil

Perennial ryegrass was used as the test species. Incorporated treatments at the two lower doses were undetectable after 11 weeks and 4.0 kg/ha after 33 weeks. Surface treatments at the lowest dose were undetectable after 11 weeks, but the two higher doses caused shoot fresh weight reductions of about 37 and 27%, 33 weeks after spraying.

Pre-emergence selectivity among temperate species

All grass weeds tested were killed or controlled at the lowest dose of 0.25 kg/ha. Only two broad-leaved weeds were controlled, however, <u>Stellaria</u> media at 0.25 kg/ha and Veronica persica at 1.0 kg/ha.

- 29 -

Pea and three of the brassicas (kale, rape and radish) were the only crops to tolerate 1.0 kg/ha. At 0.25 kg/ha all other legumes (dwarf bean, field bean and fenugreek) except white clover were tolerant, as were swede and lettuce. Perennial ryegrass and cereals, especially wheat and barley were highly sensitive. However, the NA seed dressing gave complete protection

of wheat and barley from 0.25 kg/ha.

Grass weed control was very impressive in a small range of broad-leaved crops but the weakness on broad-leaved weeds would have to be corrected by mixing with another herbicide or herbicides. The safening effect on wheat and barley has been confirmed in a later pot experiment where control of Bromus sterilis was again impressive. Provided that the two treatments (seed dressing and herbicide) are economical, it should offer potential for control of several important grass weeds including <u>Avena fatua</u>, <u>Alopecurus myosuroides</u> and others, such as volunteer cereals, as well as the more recent and more difficult problem of B. sterilis.

Selectivity among tropical species

All the tropical weeds were controlled by 1 kg/ha and several of the more important, including <u>Bromus pectinatus</u> at 0.25 kg/ha. Cowpea, groundnut, chickpea and cotton showed greatest tolerance and a good range of weeds could be selectively controlled in these crops. Maize and sorghum were only slightly protected by their respective safeners, a little surprising in view of the substantial protection of wheat by NA, noted above. The use of NA on wheat could perhaps enable this compound to be used selectively against <u>Bromus pectinatus</u> as well as <u>B. sterilis</u>.

Cyperus species were temporarily suppressed by 1 kg/ha. Suppression by 4 kg/ha lasted about six weeks after which there was strong recovery.

ACTIVITY EXPERIMENT

- 30 -

MBR 18337

0.5 kg/ha

2.5 kg/ha

F S

XXXXXXXXXXXXXXX XXXXXXXXXXXXXXX XXXXXXXXXXXXXX XXXXXXX

DWARF	D	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXX
BEAN	Ρ	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
	I	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
	F	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
VATE	S	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
ITUTIT	P	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
	I	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
	F	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
POLYGONUM	S	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
AMPHIBIUM	P	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXX XXXXXXXX
	I	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

.

.

XXXXXXXXX XXXXXX

XXXXXXXXXXXXXX XXXXXX

XXXXXXXXXXXXXX XXXXXXXXXX

XXXXXXXXXXXXXX XXXXXXXXXX

XXXXXXX XXXXXXX

XXXXXXXXXXXXX XXXXXXXX

	F	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
PERENNIAL	S	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
RYEGRASS	Ρ	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXX XXXX	8
	I	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXX XXXXXXXXX	0. O
	F	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
AVENA	S	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
FATUA	P	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXX XXX	8
	I	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XX XXX	8
	F	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
AGROPYRON	S	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
REPENS	P	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXX	00
	I	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	0	8

Key: F = post-emergence, foliar application S = post-emergence, soil drench P = pre-emergence, surface film I = pre-planting, incorporated

SPECIES		0.25 kg/ha		1.0 kg/ha		
WHEAT (1)	97 21	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	90 14	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	0000	
WHEAT + S (2)	102 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	83 29	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	51 14	XXXX
BARLEY (3)	100 43	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	94 14	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	0 0	
BARLEY + S (4)	89 93	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	89 43	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	96 14	XXXX
OAT (5)	91 71	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	78 14	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	0 0	
PER RYGR (6)	43 21	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	23 14	XXXXX XXX	0 0	
ONION (8)	73 71	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	13 29	XXX XXXXXXX	0 0	
DWF BEAN (9)	91 86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	104 57	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	91 29	XXX
FLD BEAN (10)	82 86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	95 57	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	109 43	XXX
PEA (11)	68 93	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	95 86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	68 36	XXX
W CLOVER (12)	90 57	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	29 43	XXXXXX XXXXXXXXX	0 0	

MBR 18337 0.25 kg/ha

.

.

٠

MBR 18337 1.0 kg/ha

÷

•

.

XX

. . .

XXXXXX

XXXXXXXXX

XXXXXXX

MBR 18337 4.0 kg/ha

XXXXXXXXX

XXXXXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXXXX

XXXXXXXXXXXXX

-

PRE-EMERGENCE SELECTIVITY TEST

the star

3

.

· • .

SPECIES		MBR 18337 0.25 kg/ha	*		MBR 18337 1.0 kg/ha		MB 4.
RAPE (14)	87 93	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	93 86		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	69 64	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
KALE (15)	114 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	95 86		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	118 57	XXXXXXXX
SWEDE (17)	106 86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	78 64		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	18 14	XXXX XXX
CARROT (18)	82 71	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	45 43		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	7 14	XXXX
LETTUCE (20)	60 86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	7 29		X XXXXXX	0 0	
FENUGREK (21)	100 86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	94 57		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	94 43	XXXXXXX
SUG BEET (22)	90 71	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	107 50		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	56 43	XXXXXXXX
BETA VUL (23)	99 64	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	99 50		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	53 43	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
BROM STE (24)	57	X X	000			000	
FEST RUB (25)	35 29	XXXXXXX XXXXXXX	00			0 0	
AVE FATU (26)	103 21	XXXXX +	51 14	R	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	00	

.

.

3R 18337 0 kg/ha

1

XXXXXXXX XXXXXXX

XXXXXXXXXXXXXXXX + XXXXX

XXXXXXXXXXXXX XXX

XXXXX XXX

XXXXX XXX

.

.

PRE EMERGENCE SELECTIVITY TEST

.

32

SPECIES

.

*

ALO MYOS (27)	73 14	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	00		0 0	
POA ANN (28)	0 0		00		0000	
POA TRIV (29)	4 7	x	00		000	
SIN ARV (30)	112 86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	91 64	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	43 50	XXXXXXXX
RAPH RAP (31)	93 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	103 86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	84 57	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
CHRY SEG (32)	125 57	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	175 50	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	75 36	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
TRIP MAR (33)	82 79	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	55 50	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	10 29	XX XXXXXX
SEN VUIG (34)	49 71	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	59 57	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	17 21	XXXX
GAL APAR (38)	50 64	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	69 64	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	19 14	XXXX XXX
CHEN ALB (39)	86 93	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	65 50	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	24 29	XXXXXX XXXXXX
STEL MED (40)	4 43	X XXXXXXXXX	2 36	X XXXXXXXX	00	

MBR 18337 0.25 kg/ha

.

•

MBR 18337 1.0 kg/ha

.

•

• .

:

.

MBR 18337 4.0 kg/ha

XXX XXXX

XXXXXXXXXXX XXXXX

XXXXXXXXX

PRE EMERGENCE S ELE(0 H 1 H H R TEST

.

33

*

*

SPECIES		MBR 18337 0.25 kg/ha		MBR 18337 1.0 kg/ha		MB 4.
VER PERS (42)	89 86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	14 43	XXX XXXXXXXXXX	0 0	
RUM OBTU (44)	100 93	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	54 64	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	38 21	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
HOLC LAN (45)	0 0		0 0		0 0	
AG REPEN (47)	000000000000000000000000000000000000000		0 0		0 0	
ALL VIN (49)	78 71	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	37 36	XXXXXXX XXXXXXX	18 29	XXXXX XXXXXX
CIRS ARV (50)	112 79	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	94 57	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	112 57	XXXXXXXX
TUS FARF (51)	95 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	109 71	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	109 57	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
MILLET (55)	34 64	XXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	0 0		0 0	
MAIZE + S (56)	91 57	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	26 29	XXXXX XXXXXX	0 0	
MAIZE (57)	75 36	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	12 14	XX XXX	0 0	
SORG + S (58)	85 29	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	00		0 0	

.

- 16

.

*

. .

.

.

.

34

.

xxxxxxxxxxxx + XXXXX

xxxxxxxxxxx + XXXXX

SPECIES

.

.

.

SORGHUM (59)	38 14	XXX
RICE (60)	23 43	XXX
PIGEON P (61)	257 R 86	XXX
COWPEA (62)	96 100	XXX
CHICKPEA (63)	93 93	XXX
GRNDNUT (64)	75 86	XXX
SOYABEAN (65)	105 64	XXX
COTTON (66)	89 86	XX
JUTE (67)	75 71	xx
KENAF (68)	80 100	XX
SESAMUM (70)	48 86	XX

MBR 18337 0.25 kg/ha

.

.

CXXXXX	0 0	
XXX XXXXXXX	00	
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	0 0	
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	120 93	XXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	103 79	XXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	56 86	XXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	135 43	XXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 79	XXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	8 21	XXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	87 64	XXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	27 43	XXXX

MBR 18337 1.0 kg/ha

.

. .

.

1

12.

• •

1

	0	
	0 0	
	0 0	
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	36 57	XXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	10 29	XXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	56 64	XXXXXXX
XXXXXXXXXXXXXXXX +	90 36	XXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	67 57	XXXXXXX
	00	
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 50	XXXXXXX
XXXXX	7 14	XXX

•

.

0

MBR 18337 4.0 kg/ha

XXXXX

XXXXX XXXXXXX

XXXXXXXXXXXX 5

XXXXXXX XXXXX

XXXXXXXXXXXXXXXX XXXXX

35

a the second second as an and an

		0.25 kg/ha		
ТОМАТО (71)	108 71	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	67 29	XXXXX
OR BART (73)	92 43	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	0 0	
ECH CRUS (75)	55 50	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	00	ACTUR 20
ROTT EXA (76)	0 0		0 0	
DIG SANG (77)	000		0 0	
AMAR RET (78)	7 71	X XXXXXXXXXXXXXXX	0 0	
BROM PEC (82)	16 14	XXX XXX	0 0	
SNO POL (83)	38 43	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	15 43	XXXX
PHAL MIN (84)	5 14	XXXX	0 0	
CYP ESCU (85)	75 86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	58 64	XXXXX
CYP ROTU (86)	67 79	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	31 50	XXXXXX

MBR 18337

SPECIES

.

MBR 18337 1.0 kg/ha

XXXXXXXXXX CXX

20.00

2. 2. 40 mil

XXXXX

.

XXXXXXXX XXXXXXXXX

XXXXX

and the second states

MBR 18337 4.0 kg/ha

and the second state of the second state of the second sec

.

PRE-EMERGENCE SELECTIVITY TEST

36

.

*

PERSISTENCE OF MBR 18337 species: perennial ryegrass

- 37 -

PERSISTENCE OF CYANAZINE species: perennial ryegrass

120

80

.

- 38 -

S PERSISTENCE OF SIMAZINE species: perennial ryegrass F 0 E S 1201 100

TIME OF SOWING weeks after treatment

ACKNOWLEDGEMENTS

We are grateful to the joint Letcombe/WRO Statistics Section for processing the experimental data; to Mr G P White, Miss D Stringer and Messrs R H Webster and R M Porteous for technical and practical assistance; to Mrs J Souch for the preparation and typing of this report; to Mrs S Cox and her staff for its duplication and to the commercial firms who provided the herbicides and relevant data.

The work of the ODA Tropical Weeds Group was carried out under Project D.11 (27) financed by HM Overseas Development Administration.

- 39 -

REFERENCES

.

PARKER, C. (1981) The selectivity of some herbicides against <u>Cyperus rotundus</u> in cotton. <u>Proceedings 8th Asian Pacific Weed Conference</u>, Bangalore, 249-253.

RICHARDSON, W.G. and DEAN, M.L. (1973) The pre-emergence selectivity of some recently developed herbicides: lenacil, RU 12068, metribuzin, cyprazine, EMD-IT 5914 and benthiocarb. <u>Technical Report Agricultural Research</u> Council Weed Research Organization, <u>25</u>, pp 57.

120 12

.

1 × ×

1 1 1 1 1 1 1 1 1 1 1 . . . 1 4 4 5 5 and the set of the set of the set 1000 - + ' . 1 1.4 + 4

Appendix 1. Species, abbreviations, cultivars and stage of growth at assessment

- 40 -

Designation and Cultivar computer or serial source number Depth No. of per planpot ting (cm) Stage of growth at assessment (untreated controls, leaf numbers exclusive of cotyledons)

Temperate species

.

.

8 Wheat WHEAT $7\frac{1}{2} - 9\frac{1}{2}$ leaves, Maris 1.0 (Triticum aestivum) (1)Huntsman tillering Wheat + safener 8 $7\frac{1}{2} - 9\frac{1}{2}$ leaves, WHEAT + S Maris 1.0 (Triticum aestivum) (2)Huntsman tillering 8 BARLEY Barley Sonja 1.0 6-8 leaves, (3) (Hordeum vulgare) tillering BARLEY + S Sonja Barley + safener 8 6-8 leaves, 1.0 (Hordeum vulgare) (4)tillering 8 . Oat TAO Pennal 8-10 leaves, 1.0 (5) (Avena sativa) tillering

Perennial ryegrass (Lolium perenne)	PER RYGR (6)	S 23	15	0.5	7-11 ¹ / ₂ leaves, tillering
Onion (Allium cepa)	ONION (8)	Hygro	15	0.5	2-2 ¹ / ₂ leaves
Dwarf bean* (Phaseolus vulgaris)	DWF BEAN (9)	Masterpiece	4	2.0	2 trifoliate leaves
Field bean (Vicia faba)	FLD BEAN (10)	Maris Blaze	4	2.0	5-6 leaves
Pea (Pisum sativum)	PEA (11)	Dark Skinned Perfection	4	1.5	8-9 leaves
White Clover (Trifolium repens)	W CLOVER (12)	Milkanova	20	0.5	2 ¹ / ₂ trifoliate leaves

Rape (Brassica napus oleifera	RAPE (14)	Rapora	15	0.5	4 leaves
Kale (Brassica oleracea acephala)	KALE (15)	Marrowstem	15	0.5	4-5 leaves
Swede (Brassica napus)	SWEDE (17)	Acme	12	0.5	3-4 leaves

* raised with tropical species until emergence, then transferred to lower temperature regime.

Designa-Cultivar tion and computer or serial source number

Depth of No. planper ting pot (cm)

Stage of growth at assessment (untreated controls, leaf numbers exclusive of cotyledons)

.

*

•

3-42 leaves 0.5 Chantenay 10 CARROT Carrot (18) (Daucus carota) Red Core

- 41 -

Lettuce (Lactuca sativa)

Fenugreek (Trigonella foenumgraecum)

Sugar beet (Beta vulgaris)

Beta vulgaris

Festuca rubra

8 leaves 0.5 15 Reskia LETTUCE (20) 0.5 5 trifoliate 10 FENUGREK Paul (21) leaves 31 leaves 1.0 15 SUG BEET Nomo (22) 31 leaves 0.5 WRO 1979 20 BETA VUL (23) 7-8 leaves, WRO 1979 0.5 12 BROM STE (24)tillering 0.25 43-7 leaves, FEST RUB Boreal CDN 25

	(25)	86-0192			tillering
Avena fatua	AVE FATU (26)	WRO 1978	10	1.0	6-9 leaves, tillering
Alopecurus myosuroides	ALO MYOS (27)	B and S Supplies 1979	25	0.25	3-62 leaves, several tillering
Poa annua	POA ANN (28)	B and S Supplies 1978	25	0.5	4-6 leaves, some tillering
Poa trivialis	POA TRIV (29)	WRO 1978	25	0.25	5 ¹ / ₂ -7 ¹ / ₂ leaves, tillering
Sinapis arvensis	SIN ARV (30)	WRO 1978	15	0.5	6 leaves

Raphanus raphanistrum	RAPH RAP (31)	Long Black Spanish	12	0.5	4 leaves
Chrysanthemum segetum	CHRY SEG (32)	WRO 1979	25	sur- face	6-8 leaves
Tripleurospermum maritium	TRIP MAR (33)	WRO 1978	35	sur- face	8 leaves

"then i of is the short is in the to the source is it

1

-

.

.

.

- 42 -

Designa-Cultivar tion and computer or serial source number

Stage of growth at Depth assessment (untreated plan-ting (cm) controls, leaf numbers exclusive of cotyledons) .

....

No. of

per

pot

5 leaves WRO 1979 SEN VULG 15 Senecio vulgaris sur-(34)face

Polygonum lapathifolium	POL LAPA (35)	WRO 1978	15	0.5	nil germination
Polygonum aviculare	POL AVIC (36)	B and S Supplies 1976	50	0.5	nil germination
Galium aparine	GAL APAR (38)	WRO 1978	12	1.0	Up to 16 whorls
Chenopodium album	CHEN ALB (39)	B and S Supplies 1977	30	0.5	6-7 leaves
Stellaria media	STEL MED (40)	B and S Supplies 1979	25	0.5	14 leaves
Veronica persica	VER PERS (42)	WRO 1977	15	0.5	8 leaves
Rumex obtusifolius	RUM OBTU (44)	B and S Supplies 1978	25	0.25	5 leaves
Holcus lanatus	HOLC LAN (45)	B and S Supplies 1977	20	0.5	5-13 leaves, tillering
Agropyron repens	AG REPEN (47)	WRO Clone 31	67	1.5	8-9 leaves, tillering
Allium vineale	ALL VIN (49)	WRO 1979	12+	1.0	3 leaves
Cirsium arvense	CIRS ARV (50)	WRO Clone 1	444	1.5	7 leaves
Tussilago farfara	TUS FARF (51)	WRO Clone 1	4/	2.0	4-5 leaves
Tropical species (grow	n under high	er temperature	regi	me)	
Millet (Pennisetum typhoideum)	MILLET (55)	ICRISAT 1977	15	0.5	5 ¹ / ₂ -6 leaves

.

.

.

. . .

Designation and Cultivar computer or serial source number Depth No. of per planpot ting (cm) Stage of growth at assessment (untreated controls, leaf numbers exclusive of cotyledons)

8

*

.

. .

Maize + safener MAIZE + S Julia 4 2.0 $5\frac{1}{2}-6\frac{1}{2}$ leaves (Zea mays) (56)

- 43 -

Maize (Zea mays)	MAIZE (57)	Julia	4	2.0	5 ¹ / ₂ -6 ¹ / ₂ leaves
Sorghum + safener (Sorghum vulgare)	SORG + S (58)	Funk G 268	8	1.0	5 ¹ / ₂ -6 leaves
Sorghum (Sorghum vulgare)	SORGHUM (59)	Funk G 268	8	1.0	5 ¹ / ₂ -6 leaves
Rice (Oryza sativa)	RICE (60)	IR 298	10	1.0	3-32 leaves
Pigeon pea (Cajanus cajan)	PIGEON P (61)	ICRISAT 1 G 1977	6	1.0	2-4 trifoliate leaves
Cowpea (Vigna unguiculata)	COWPEA (62)	ICRISAT 88-63 1977	5	1.0	3-4 trifoliate leaves

Chickpea (Cicer arietinum)	CHICKPEA (63)	ICRISAT G 62404 1977	6	1.0	1/2-15 pinnate leaves
Groundnut (Arachis hypogaea)	GRNDNUT (64)	Valencia 1980	5	2.0	Up to 6 pinnate leaves
Soyabean (Glycine max)	SOYABEAN (65)	Fiskby V.	6	1.0	3-4 trifoliate leaves
Cotton (Gossypium hirsutum)	COTTON (66)	Nigeria 26 J	6	2.0	2-4 leaves
Jute (Corchorus olitorius)	JUTE (67)	UAR 1971	15	0.5	3-6 leaves
Kenaf (Hibiscus cannabinus)	KENAF (68)	Ghana A63-440, 1978	12	0.5	4-6 leaves

Sesamum (Sesamum indicum)

Tomato (Lycopersicum esculentum)

Oryza barthii

SESAMUM Uganda 1972 20 0.5 4-6 leaves (70)

TOMATO Ailsa Craig 8 0.5 4-5 leaves (71)

OR BART Upper Volta 10 1.0 4 leaves (73) 1977

Eleusine indica

ELEU IND WRO 1977 12 0.5 Nil germination (74)

Designation and Cultivar computer or serial source number

- 44 -

Depth No. of plan-ting (cm) per pot

-

Stage of growth at assessment (untreated controls, leaf numbers exclusive of cotyledons)

-

Echinochloa crus-galli

-

.

.

•

.

¥

...

*

WRO 1976 ECH CRUS 4-6 leaves 15 0.5 (75)

Rottboellia exaltata	ROTT EXA (76)	Zambia 1978	15	0.5	41-51 leaves
Digitaria sanguinalis	DIG SANG (77)	WRO 1973	15	0.25	4-6 leaves
Amaranthus retroflexus	AMAR RET (78)	WRO 1970	100	0.25	4-6 leaves
Solanum nigrum	SOL NIG (81)	WRO 1977	50	0.25	Nil germination
Bromus pectinatus	BROM PEC (82)	Tanzania 1978	10	0.5	31-4 leaves
Snowdenia polystachya	SNO POL (83)	Ethiopia 1978	20	0.5	5-7 leaves

Oxalis latifolia	OXAL LAT (87)	WRO Clone 2 (Cornwall)	15 2.0 bulbs	Nil germination
<u>Cyperus</u> rotundus	CYP ROTU (86)	WRO Clone 1 (Zimbabwe)	6** 2.0	Up to 10 leaves
<u>Cyperus</u> esculentus	CYP ESCU (85)	WRO Clone 2 (ex South Africa)	8** 2.0	Up to 6 leaves
Phalaris minor*	PHAL MIN (84)	India 1977	15 0.25	32-4 leaves

* = raised with temperate species until emergence, then transferred to higher temperature regime ** = tubers

= one node rhizome fragments + H = 4 cm root fragments + = aerial bulbils

..

ABBREVIATIONS

. 1.

10

* *

angström	R	freezing point	f.p.
Abstract	Abs.	from summary	F.s.
acid equivalent*	a.e.	gallon	gal
acre	ac	gallons per hour	gal/h
active ingredient*	a.i.	gallons per acre	ga1/a
approximately equal to*	~	gas liquid chromatography	GLC
aqueous concentrate	a.c.	gramme	g

	bibliography	bibl.	hectare	ha
•	boiling point	b.p.	hectokilogram	hkg
	bushe1	bu	high volume	HV
	centigrade	C	horse power	hp
	centimetre*	cm	hour	h
	concentrated	concd	hundredweight*	cwt
•	concentration concentration x	concn	hydrogen ion concentration*	pH
	time product	ct .	inch	in.
	concentration required to kill		infra red	i.r.
	50% test animals	LC50	kilogramme	kg
	cubic centimetre*	cm	kilo (x10 ³)	k
	cubic foot*	ft ³	less than	<
	cubic inch*	in ³	litre	1.
	cubic metre*	m	low volume	LV
	cubic yard*	yď	maximum	max.
	cultivar(s)	cv.	median lethal dose	LD50
•	curie*	Ci	medium volume	MV
	degree Celsius*	°c	melting point	m.p.
•	degree centigrade	°c	metre	m
	degree Fahrenheit*	°F	micro (x10 ⁻⁶)	μ
	diameter	diam.	microgramme*	μg
	diameter at breast height	d.b.h.	<pre>micromicro (pico: x10⁻¹²)*</pre>	μμ
	divided by*	e or /	micrometre (micron)*	μm (or μ)
	dry matter	d.m.	micron (micrometre)*†	μm (or μ)
	emulsifiable concentrate	e.c.	miles per hour*	mile/h
	equal to*	=		m
	fluid	f1.	milliequivalent"	m.equiv.
	foot	ft	milligramme	mg
			millilitre	ml
	The name micrometre :	is preferred to	micron and µm is preferred	to µ.

......

-

millimetre*	m
millimicro* (nano: x10 ⁻⁹)	n
minimum	m
minus	-
minute	n
molar concentration*	M
molecule, molecular	I
more than	
multiplied by*	2

.

.

.

1.4

	millimetre*		pre-emergence	pre-em.
-	millimicro* _9.		quart	quart
	(nano: x10 ⁽)	n or mp	relative humidity	r.h.
	minimum	min.	revolution per minute*	rev/min
	minus	-	second	8
	minute	min	soluble concentrate	S.C.
	molar concentration*	M (small cap)	soluble powder	s.p.
	molecule, molecular	mol.	solution	soln
	more than	>	species (singular)	sp.
	multiplied by*	X	species (plural)	spp.
	normal concentration*	N (small cap)	specific gravity	sp. gr.
	not dated	n.d.	square foot*	ft ²
	oil miscible	O.M.C. (tables only)	square inch	in ²
	organic matter	O.M.	square metre*	m ²
	ounce	OZ	square root of*	~
	ounces per gallon	oz/gal	sub-species*	ssp.
	nage	D.	summary	8.
	naces	DDe	temperature	temp.
	paged		ton	ton
	parts per million	hbm	tonne	t
	parts per million by volume	ppmv	ultra-low volume	ULV
	parts per million		ultra violet	u.v.

「「「「「「「「「「「「「「「」」」」

parts per by weight ppmw % percent(age) pico (micromicro: x10⁻¹²) p or µµ pint pint pints/ac pints per acre + plus or minus* post-em post-emergence 16 pound 1b/ac pound per acre* lb/min pounds per minute $1b/in^2$ pound per square inch*

vapour density v.d. vapour pressure v.p. varietas var. V volt vol. volume V/V volume per volume water soluble powder W.S.P. (tables only) W watt weight wt w/w weight per volume* W/W weight per weight*

+

.

powder for dry application	p. (tables only)	wettable powder	w.p.	
power take off	p.t.o.	yard	yd	
precipitate (noun)	e (noun) ppt.	cipitate (noun) ppt. yards per m	yards per minute	yd/min

* Those marked * should normally be used in the text as well as in tables etc.

TECHNICAL REPORTS (Price includes surface mail; airmail £1.00 extra) (* denotes Reports now out of print)

- The botany, ecology, agronomy and control of Poa trivialis L. rough-6. stalked meadow-grass. November 1966. G P Allen. Price - £0.25
- Flame cultivation experiments 1965. October, 1966. G W Ivens. 7. Price - £0.25
- The development of selective herbicides for kale in the United Kingdom. 8. 2. The methylthiotriazines. Price - £0.25
- 10. The liverwort, Marchantia polymorpha L. as a weed problem in horticulture; its extent and control. July 1968. I E Henson. Price - £0.25
- Raising plants for herbicide evaluation; a comparison of compost 11. types. July 1968. I E Henson. Price - £0.25
- Studies on the regeneration of perennial weeds in the glasshouse; *12. I. Temperate species. May 1969. I E Henson. Price - £0.25
 - Changes in the germination capacity of three Polygonum species 13. following low temperature moist storage. June 1969. I E Henson. Price. - £0.25
 - Studies on the regeneration of perennial weeds in the glasshouse. 14. II. Tropical species. May 1970. . I E Henson. Price - £0.25
 - Methods of Analysis for herbicide residues. February 1977. 15. (second edition) - price £5.75
 - Report on a joint survey of the presence of wild oat seeds in cereal 16. seed drills in the United Kingdom during Spring 1970. November 1970. J G Elliott and P J Attwood. Price - £0.25
 - The pre-emergence selectivity of some newly developed herbicides, 17. Orga 3045 (in comparison with dalapon), haloxydine (PP 493), HZ 52.112, pronamide (RH 315) and R 12001. January 1971. W G Richardson, C Parker

and K Holly. Price - £0.25

.

.

٠

,

- A survey from the roadside of the state of post-harvest operations in 18. Oxfordshire in 1971. November 1971. A Phillipson. Price - £0.12
- The pre-emergence selectivity of some recently developed herbicides * 19. in jute, kenaf and sesamum, and their activity against Oxalis latifolia. December 1971. M L Dean and C Parker. Price - £0.25.

A survey of cereal husbandry and weed control in three regions of * 20. England. July 1972. A Phillipson, T W Cox and J G Elliott. Price - $\pounds 0.35$

- 7 -

- An automatic punching counter. November 1972. R C Simmons. 21. Price - £0.30
- 22. The pre-emergence selectivity of some newly developed herbicides: bentazon, BAS 3730H, metflurazone, SAN 9789, HER 52.123, U 27,267. December 1972. W G Richardson and M L Dean. Price - £0.25

A survey of the presence of wild oats and blackgrass in parts of the 23. United Kingdom during summer 1972. A Phillipson. Price - £0.25

.

*

- The conduct of field experiments at the Weed Research Organization. 24. February 1973. J G Elliott, J Holroyd and T O Robson. Price -£1.25
- 25. The pre-emergence selectivity of some recently developed herbicides: lenacil, RU 12068, metribuzin, cyprazine, EMD-IT 5914 and benthiocarb. August 1973. W G Richardson and M L Dean. Price - £1.75.
- The post-emergence selectivity of some recently developed herbicides: 26. bentazon, EMD-IT 6412, cyprazine, metribuzin, chlornitrofen, glyphosate, MC 4379, chlorfenprop-methyl. October 1973. W G Richardson and M L Dean. Price - £3.31
- Selectivity of benzene sulphonyl carbamate herbicides between various 27.
- pasture grasses and clover. October 1973. A M Blair. Price £1.05
- 28. The post-emergence selectivity of eight herbicides between pasture grasses: RP 17623, HOE 701, BAS 3790, metoxuron, RU 12068, cyprazine, MC 4379, metribuzin. October 1973. A M Blair. Price - £1.00
- The pre-emergence selectivity between pasture grasses of twelve * 29. herbicides: haloxydine, pronamide, NC 8438, Orga 3045, chlortoluron, metoxuron, dicamba, isopropalin, carbetamide, MC 4379, MBR 8251 and EMD-IT 5914. November 1973. A M Blair. Price - £1.30
 - Herbicides for the control of the broad-leaved dock (Rumex obtusifolius 30. L.). November 1973. A M Blair and J Holroyd. Price - £1.06
 - 31. Factors affecting the selectivity of six soil acting herbicides against Cyperus rotundus. February 1974. M L Dean and C Parker. Price - £1.10

The activity and post-emergence selectivity of some recently developed 32.

- herbicides: oxadiazon, U-29,722, U-27,658, metflurazone, norflurazone, AC 50-191, AC 84,777 and iprymidam. June 1974. W G Richardson and M L Dean. Price - £3.62
- A permanent automatic weather station using digital integrators. 33. September 1974. R C Simmons. Price £0.63.
- The activity and pre-emergence selectivity of some recently developed 34. herbicides: trifluralin, isopropalin, oryzalin, dinitramine, bifenox and perfluidone. November 1974. W G Richardson and M L Dean. Price - £2.50

35. A survey of aquatic weed control methods used by Internal Drainage Boards, 1973. January 1975. T O Robson. Price - £1.39

- 3 -

- 36. The activity and pre-emergence selectivity of some recently developed herbicides: Bayer 94871, tebuthiuron, AC 92553. March 1975. W G Richardson and M L Dean. Price - £1.54
- 37. Studies on Imperata cylindrica (L.) Beauv. and Eupatorium odoratum L. October 1975. G W Ivens. Price - £1.75
- 38. The activity and pre-emergence selectivity of some recently developed herbicides: metamitron, HOE 22870, HOE 23408, RH 2915, RP 20630.

.

.

.

2

March 1976. W G Richardson, M L Dean and C Parker. Price - £3.25

- 39. The activity and post-emergence selectivity of some recently developed herbicides: HOE 22870, HOE 23408, flamprop-methyl, metamitron and cyperquat. May 1976. W G Richardson and C Parker. Price - £3.20
- 40. The activity and pre-emergence selectivity of some recently developed herbicides: RP 20810, oxadiazon, chlornitrofen, nitrofen, flamprop--isopropyl. August 1976. W G Richardson, M L Dean and C Parker. Price - £2.75.
- 41. The activity and pre-emergence selectivity of some recently developed herbicides: K 1441, mefluidide, WL 29226, epronaz, Dowco 290 and triclopyr. November 1976. W G Richardson and C Parker. Price - £3.40.
- 42. The activity and post-emergence selectivity of some recently developed herbicides: KUE 2079A, HOE 29152, RH 2915, Triclopyr and Dowco 290.

March 1977. W G Richardson and C Parker. Price - £3.50

- 43. The activity and pre-emergence selectivity of some recently developed herbicides: dimefuron, hexazinone, trifop-methyl, fluothiuron, buthidazole and butam. November 1977. W G Richardson and C Parker. Price - £3.75.
 - 44. The activity and selectivity of the herbicides: ethofumesate, RU 12709 and isoproturon. December 1977. W G Richardson, C Parker, & M L Dean. Price - £4.00
 - 45. Methods of analysis for determining the effects of herbicides on soil soil micro-organisms and their activities. January 1978. M P Greaves, S L Cooper, H A Davies, J A P Marsh & G I Wingfield. Price - £4.00
 - 46. Pot experiments at the Weed Research Organization with forest crop and weed species. February 1978. D J Turner and W G Richardson. Price - £2.70
 - 47. Field experiments to investigate the long-term effects of repeated applications of MCPA, tri-allate, simazine and linuron - effects on the quality of barley, wheat, maize and carrots. July 1978. J D Fryer, P D Smith and J W Ludwig. Price - £1.20.
 - 48. Factors affecting the toxicity of paraquat and dalapon to grass swards. March 1978. A K Oswald. Price - £2.90
 - 49. The activity and post-emergence selectivity of some recently developed herbicides: NP 48, RH 5205 and Pyridate. May 1978. W G Richardson and C Parker. Price - £2.50

- 4 --

- 50. Sedge weeds of East Africa II. Distribution. July 1978. P J Terry. Price - £1.50
- 51. The activity and selectivity of the herbicides methabenzthiazuron, metoxuron, chlortoluron and cyanazine. September 1978. W G Richardson and C Parker. Price - £2.20.
- 52. Antidotes for the protection of field bean (Vicia faba L.) from damage by EPTC and other herbicides. February 1979. A M Blair. Price - £1.35
- 53. Antidotes for the protection of wheat from damage by tri-allate. February 1979. A M Blair. Price - £2.00
- 54. The activity and pre-emergence selectivity of some recently developed herbicices: alachlor, metolachlor, dimethachlor, alloxydim-sodium and fluridone. April 1979. W G Richardson and C Parker. Price - £3.00
- 55. The activity and selectivity of the herbicides carbetamide, methazole, R 11913 and OCS 21693. May 1979. W G Richardson and C Parker. Price - £1.80
- 56. Growing weeds from seeds and other propagules for experimental purposes. July 1979. R H Webster. Price - £1.10
- 57. The activity and pre-emergence selectivity of some recently developed herbicides: R 40244, AC 206784, pendimethalin, butralin, acifluorfen and FMC 39821. December 1979. W G Richardson, T M West and C Parker -Price - £3.55
- 58. The tolerance of fenugreek (Trigonella foenumgraecum L.) to various herbicides. December 1979. W G Richardson. Price £1.55
- 59. Recommended tests for assessing the side-effects of pesticides on the soil microflora. April 1980. M P Greaves, N J Poole, K H Domsch, G Jagnow and W Verstraete. Price - £2.00
- 60. Properties of natural rainfalls and their simulation in the laboratory for pesticide research. September 1980. R C Simmons. Price - £1.25
- 61. The activity and post-emergence selectivity of some recently developed for the herbicides: R 40244, DPX 4189, acifluorfen, ARD 34/02 (NP 55) and PP 009. November 1980. W G Richardson, T M West and C Parker. Price £3.75

7. 1

62. The activity and pre-emergence selectivity of some recently developed herbicides: UBI S-734, SSH-43, ARD 34/02 (= NP 55), PP 009 and DPX 4189. February 1981. W G Richardson, T M West and C Parker. Price - £3.50

63. The activity and post-emergence selectivity of some recently developed herbicides: SSH-41, MB 30755, AC 213087, AC 222293 and Dowco 433. May 1981. W G Richardson, T M West and C Parker. Price - £3.50

64. The activity and pre-emergence selectivity of some recently developed herbicides: chlomethoxynil, NC 20484 and MBR 18337. March 1982. W G Richardson, T M West and C Parker. Price - £3.00