SPECIES		AC 213087 $0.25 \mathrm{~kg} / \mathrm{ha}$		AC 213087 $1.0 \mathrm{~kg} / \mathrm{ha}$		AC 213087 $4.0 \mathrm{~kg} / \mathrm{ha}$
SOYABEAN	100	mxxxxxxxxxxxxxxxxxxx	100	xxxxxxxxxxxyxxxxxxxx	100	mxxxxxxxxxxxxxxxxxxxx
(65)	57	x $x \times x \times x \times x \times x$ x	43	xxxxxxxxx	29	xxxxxx
COTMON	100	mxxxxxxxxxxxxxxxxxyxx	100	mxxxxxxxxyxxxxxxxxxxx	100	mxxxxxxxxxxxxxxxxxxx
(66)	57	xxxxxxxxxxx	64	xxxxxxxxxxxxx	50	
JUTE	80	xxxxxxxxxxxxxxxx	0		0	
(67)	14	xxx	0		0	
KENAF	100	mxxxxxxxxxxxxxxxxxxx	100	xxxxxxxxxxxxxxxxxxxx	100	
(68)	71	xxxxxxxxxxxxxx	50	xxxxxxxxxx	36	xxxxxxx
TOBACCO	100	mxxxxxxxxxxxxxxxxxxx	100		100	mxxxxxxxxxxxxxxxxxxxx
(69)	64		57		43	x $x \times x \times x \times x \times x$
SESAMUM	100		100	xxxxxxxyxxxxxxxxxxxx	67	xxxxxxxxxxxxx
(70)	43	xxxxxxxxx	29	xxxxxx		xxx
TOMATO	67	R xxxxxxxxxxxxx	67	xxxxxxxxxxxxxx	0	
(71)	43	R xxxxxxxxx	29	xxxxxx	0	
OR BART	100	xxxxxxxxxxxxxxxxxxxxx	100	mxxxxxxxxxxxxxxxxxxx	100	
(73)	71		64		29	xxxxxx
ELEU IND	100		100	mxxxxxxxxxxxxxxxxxxx	87	xxxxxxxxxxxxxxxxxx
(74)	100	R x xxxxxxxxxxxxxxxxxxx	57	xxxxxxxxxxx	29	xxxxxx
ECH CRUS	100	xxxxxxxxxxxxxxxxxxxxx	100	mxxxxxxxxxxxxxxxxxxxx	100	
(75)	100		71		50	xxxxxxxxxx
ROTT EXA	100	mxxxxxxxxxxxxxxxxxxxx	100	zxxxxxxxxxxxxxxxxxxx	100	mxxxxxxxxxxxxxxxxxxx
(76)	93		79		36	xxxxxxx
DIG SANG	100	mxxxxxxxxxxxxxxxxxxxx	100	mxxxxxxixxxxxxxxxxxxix	100	mxxxxxxxxxxxxxxxxxxxix
(77)	71		79		64	Xxxxxxxxxxxxxx

SPECIES		AC 213087 $0.25 \mathrm{~kg} / \mathrm{ha}$		AC 213087 $1.0 \mathrm{~kg} / \mathrm{ha}$		AC 213087 $4.0 \mathrm{~kg} / \mathrm{ha}$
AMAR RET	100	mxxxxxxxxxxxxxxxxxxxx	100	mxxxxxxxxxxxxxxxxxxxix	94	xxxxxxxxxxxxxxxxxxxx
(78)	50	mxxxxxxxxx	43	xxxxxxxxx	29	xxxxxx
PORT OLE	100		100	mxxxxxxxxxxxixxxxxxxxix	100	mxxxxxxxxxxxxxxxxxxxxi
(79)	100		79		43	x xxxxxxxxx
SOL NIG	100	mxxxxxxxxxxxxxxxxxxxx	25	xxxxx	0	
(81)	29	x $x \times x x x$	29	xxxxxx	0	
BROM PEC	100	mxxxxxxxxxxxxxxxxxxxx	92		100	mxxxxxxxxxxxxxxxxxxxx
(82)	71	xxxxxxxxxxxxxx	50	xxxxxxxxxx	29	xxxxxx
SNOW POL	100	mxxxxxxxxxxxxxxxxxxxx	100		100	
(83)	79		64		50	xxxxxxxxxx
PHAL MIN	93	mxxxxxxxxxxxxxxxxxxx	100	mxxxxxxxxxxxxxxxxxxxx	57	xxxxxxxxxxxx
(84)	36	xxxxxxx	21	xxxx	14	xXX
CYP ESCU	100	mxxxxxxxxxxxxxxxxxxxx	100	xxxxxxxxxxxxxxxxxxxxxx	86	mxxxxxxxxxxxxxxxxx
(85)	43	x $x \times x \times x \times x x$	21	xxxx	14	xxx
CYP ROTU \dagger	-					
(86)	43	xxxxxxxxx	36	xxxxxxx	29	xxxxxx
OXAL LAT	100	mxxxxxxxxxxxxxxxxxxx	100	mxxxxxxxxxxxxxxxxxxxx	100	xxxxxxxxxxxxxxxxxxxx
(87)	43	xxxxxxxxx	36	xxxxxxx	21	xxxx
CYN DACT \dagger	-		-			
(88)	71	mxxxxxxxxxxxxx	79		29	xxxxxx

\dagger results based on vigour scores only

Code number AC 222293

Chemical name
Confidential

Structure

Source

Cyanamid International Ltd
Fareham Road
Gosport
Hants P013 OAS
UK

Information available and suggested uses
Control of Avena fatua and Alopecurus myosuroides in cereals, pre-emergence at $0.5-0.75 \mathrm{~kg}$ a.i./ha.

Formulation used $50 \% \mathrm{w} / \mathrm{w}$ a.i. wettable powder
Spray volume for activity experiment 370 1/ha
for post-emergence selectivity experiment 345 1/ha

RESULIS

Full results are given in the histograms on pages 38-44 and potential selectivities are summarised in the following table.

$\begin{gathered} \text { RATE } \\ (\mathrm{kg} \\ \mathrm{a} \cdot \mathrm{i} \cdot / \mathrm{ha}) \end{gathered}$	CROPS: vigour reduced by 15% or less	WEEDS: number or vigour reduced by 70% or more
4.0	```wheat + safener (NA) barley barley + safener (NA) lettuce```	Poa annua Polygonum lapathifolium Galium aparine Rumex obtusifolius Agrostis stolonifera Oryza barthii Cyperus esculentus Cyperus rotundus + species below
1.0	species above + wheat fenugreek pigeon pea	$\frac{\text { Avena fatua }}{\text { Raphanus raphanistrum }}$Solanum nigrum Phalaris minor + species below

Table continued overleaf

NB: AC 213087 is confidential, AC 222293 is imazamethabenz-methyl, Dowco 433 is fluroxypyr, MB 30755 is 1-(3,4-dichlorobenzyl)-4,5-dimethylcarbonamido) imidazole (May \& Baker),
SSH-41 is monisuron

- 36 -

RATE $(\mathrm{kg}$ a.i./ha)	CROPS: vigour reduced by 15\% or less	WEEDS: number or vigour reduced by 70\% or more
0.25	species above + perennial ryegrass carrot maize maize + safener (NA) cotton	$\frac{\text { Alopecurus myosuroides }}{\text { Poa trivialis }}$
Holcus lanatus		

Comments on results

Activity experiment

The foliar spray caused minor effects on dwarf bean, Avena fatua and Agropyron repens but the other three species were unaffected. Much more activity resulted from soil drenches to established plants with all species except A. repens. This difference was particularly noticeable with A. fatua. However, pre-emergence treatments were the most effective. Perennial ryegrass and A. repens were marginally more sensitive to the surface rather than the incorporated pre-emergence spray but with other species differences were either not apparent (Polygonum amphibium) or incorporated treatments were slightly more effective (dwarf bean, kale, A. fatua). Thus the pattern of activity and selectivity is very similar to the previous herbicide AC 213087 although the latter is marginally more effective pre-emergence while AC 222293 is just as active or slightly more so (A. fatua) when applied as a soil drench, postemergence.

Symptoms

These were identical to those caused by the previous herbicide, AC 213087, varying only in the degree of effect with certain species.

Post-emergence selectivity among temperate species

The weed control spectrum was generally similar to that found with the previous herbicide AC 213087. Some important grass weeds were controlled, Alopecurus myosuroides, Poa trivialis and Holcus lanatus at $0.25 \mathrm{~kg} / \mathrm{ha}$; Avena fatua at $1.0 \mathrm{~kg} / \mathrm{ha}$ and Poa annua and Agrostis stolonifera at $4.0 \mathrm{~kg} / \mathrm{ha}$. Agropyron repens was resistant. Solanum nigrum was the most susceptible broadleaved weed but this was raised as a tropical species at a higher temperature. The crucifer (Raphanus raphanistrum) at $1.0 \mathrm{~kg} / \mathrm{ha}$ and polygonaceous weeds (Polygonum lapathifolium and Rumex obtusifolius) and Galium aparine at $4.0 \mathrm{~kg} / \mathrm{ha}$ were the other susceptible weeds. In contrast to AC 213087 , Veronica persica was not controlled though it was reduced in vigour by about 50% at the higher doses. A shallow dose response of many weed species was another similarity between AC 222293 and AC 213087. All composite and caryophyllaceous weeds again showed the greatest degree of resistance, while Chenopodium album was not controlled.

The spectrum of tolerant crops was broadly similar to that found with AC 213087. The two cereals, wheat and in particular, barley showed good tolerance, which was increased by N.A. The other cereal, oat, was very sensitive. Tolerance by lettuce was outstanding and greater than with AC 213087. Fenugreek, at $1.0 \mathrm{~kg} / \mathrm{ha}$, carrot and perennial ryegrass at $0.25 \mathrm{~kg} / \mathrm{ha}$ were the only other tolerant species. Legumes other than fenugreek, all brassicas and sugar beet were very sensitive.

NB: AC 213087 is confidential, AC 222293 is imazamethabenz-methyl, Dowco 433 is fluroxypyr MB 30755 is 1-(3,4-dichlorobenzyl)-4,5-dimethylcarbonamido) imidazole (May \& Baker),

AC 222293 exhibited a number of very interesting and potentially useful characteristics in this trial. The control of A. fatua and A. myosuroides in wheat and barley deserves further investigation. The post-emergence activity would appear to be largely dependent upon activity and uptake via the soil. The conditions of relatively high soil moisture in this test may have favoured post-emergence activity and selectivity. The resistance of composite, caryophyllaceous and possibly other broad-leaved weeds will probably require studies in mixtures. This should be a relatively easy task in cereals as herbicides are available such as ioxynil, bromoxynil, bentazone and possibly phenoxyalkanoic herbicides, but in lettuce the problem is more difficult as herbicides are not yet available for controlling composite weeds. The high tolerance of lettuce post-emergence may warrant further investigations with AC 222293, however, either in transplant or block raised crops.

Selectivity among tropical species

This compound had somewhat lower activity than AC 213087 on most species with a few exceptions, notably sorghum, which was damaged even at the lowest dose of AC 222293. The protective effects of NA on maize and cyometrinil on sorghum were only very slight. Some species were markedly less affected by AC 222293 than by AC 213087 particularly pigeon pea, Amaranthus and Oxalis. No useful selectivity was demonstrated in the tropical annual crop species. As with AC 213087 there was an indication of possible selective control of Phalaris minor in wheat and of much greater sensitivity of Bromus pectinatus compared with B. sterilis. Differing conditions of growth, however, make both of these observations subject to reservation. Activity on Cyperus species was lower than that of AC 213087 but C. esculentus was completely suppressed by $4 \mathrm{~kg} / \mathrm{ha}$ and C. rotundus very nearly so.

AC 222293

DWARF
BEAN

PERFNNIAL
RYEGRASS
$\frac{\text { AVENA }}{\text { FATUA }}$
$0.25 \mathrm{~kg} / \mathrm{ha}$

F $\quad \begin{aligned} & \quad \times x \times x \times x \times x \times x \times x \\ & x \times x \times x \times x \times x \times x \times x\end{aligned}$
S $\frac{x x x x x x x x x x x x}{x \times x \times x \times x \times x \times x \times x}$
P $\quad \frac{x \times x \times x \times x \times x}{x \times x \times x \times x \times x \times x}$
I $\quad \frac{x x x x x x x x x x x x ~}{x \times x \times x \times x \times x \times x}$
F $\quad \frac{x \times x \times x \times x \times x \times x}{x \times x \times x \times x \times \times \times \times x \times x}$

P
I $\frac{x \times x \times x x x x x}{x \times x \times x}$
F
AGROPYRON REPENS

$$
\text { KEY: } \begin{aligned}
\text { F } & =\text { post-emergence, foliar application } \\
& S=\text { post-emergence, soil drench } \\
& P=\text { pre-emergence, surface film } \\
& I=\text { pre-planting, incorporated }
\end{aligned}
$$

UNTREATED $x x x x x x x x x x x x x x$ no. of survivors CONTROL xxxxxxxxxxxxxx vigour of survivors

NB: AC 213087 is confidential, AC 222293 is imazamethabenz-methyl, Dowco 433 is fluroxypyr,
MB 30755 is 1-(3,4-dichlorobenzyl)-4,5-dimethylcarbonamido) imidazole (May \& Baker),
SSH-41 is monisuron

SPECIES		$\begin{aligned} & \text { AC } 222293 \\ & 0.25 \mathrm{~kg} / \mathrm{ha} \end{aligned}$		AC 222293 $1.0 \mathrm{~kg} / \mathrm{ha}$		AC 222293 $4.0 \mathrm{~kg} / \mathrm{ha}$
WHEAT	100	mxxxxxxxxxxxxxxxxxxxx	100		100	xxxxxxxxxxxxxxxxxxxxx
(1)	100		93	zxxxxxxxxxxxxxxxxxx	71	
WHEAT + S	100	mxxxxxxxxxxxxxxxxxxxx	100		100	
(2)	100		93	mxxxxxxxxxxxxxxxxxxx	93	mxxxxxxxxxxxxxxxxxx
BARLEY	100	mxxxxxxxxxxxxxxxxxxxx	100		100	mxxxxxxxxxxxxxxxxxxix
(3)	100	mxxxxxxxxxxxxxxxxxxx	93		86	
BARLEY + S	100					
(4)	100	R xxxxxxxxxxxxxxxxxxxxx	100	xxxxxxxxxxxxxxxxxxxxx	100	xxxxxxxxxxxxxxxxxxxx
OAT	100	mxxxxxxxxxxxxxxxxxxxx	90	zxxxxxxxxxxxxxxxxxx	90	mxxxxxxxxxxxxxxxxx
(5)	43	xxxxxxxxx	29	xxxxxx	14.	xxx
PER RYGR	100	mxxxxxxixixxxxxxxxxxxi	92		92	mxxxxxxxxxxxxxxxxxx
(6)	86		50	x \times x $x \times x \times x \times x$	14	xxx
ONION	100			xxxxxxxx		xxxx
(8)	71	R xxxxxxxxxxxxxxxx	29	xxxxxx		xxx
DWF BEAN	100	mxxxxxxxxxxxxxxxxxxxx	100		100	
(9)	64	xxxxxxxxxxxxx	57		43	xxxxxxxxx
FLD BEAN	100	mxxxxxxxxxxxxxxxxxxxx	100	mxxxxxxxxyxxxxxxxxxxx	75	mxxxxxxxxxxxxxxx
(10)	43	xxxxxxxxx	29	xxxxxx	14	xxx
PEA	100	R mxxyxxxxxxxxyxxyxxyx	100		100	xxxxxxxxxxxxxxxxxxxxx
(11)	57	R xxxxxxxxxxx	57	xxxxxxxxxxx	43	xxxxxxxxx
W CLOVER	100	mxxxxxxxxxxxxxxxxxxxx	100	mxxxxxxxxxxxxxxxxxxx	42	xxxxxxxx
(12)	43	xxxxxxxxx	43	xxxxxxxxx	14	xxx
RAPE	100	mxxxxxxxxxxxxxxxxxxxx	83	xxxxxxxxxxxxxxxxxx	67	xxxxxxxxxxxxxx
(14)	43	xxxxxxxxx	29	x $x \times x x x$	14	xxx

$\begin{aligned} & \text { KALE } \\ & (15) \end{aligned}$	$\begin{array}{r} 100 \\ 71 \end{array}$	xxyxxxxxxxxxxxxxxxxxx xyxxxyxxxxyxxx
CABBAGE	100	mxxxxxxxxxxxxxxxxxxxx
(16)	57	x $x \times x x x x x x x x$
CARROT	100	
(18)	100	mxxxxxxxxxxxxxxxxxxx
PARSNIP	100	mxxxxxxxxxxxxxxxxxxxx
(19)	71	x $x \times x \times x \times x \times x \times x \times x$
LETTUCE	100	mxxxxxxxxxxxxxxxxxxxx
(20)	100	
FENUGREEK	100	
(21)	100	mxxxxxxxxxxxxxxxxxxx
SUG BEET	92	xxxxxxxxxxxxxxxxxx
(22)	50	mxxxyxxxxx
BETA VUL	100	mxxxxxxxxxxxxxxxxxxxi
(23)	64	mxxxxxxxxxxxx
BROM STE	100	mxxxxxxxxxxxxxxxxxxxx
(24)	100	x x xxxxxxxxxxxxxxxxxx
AVE FATU	100	xxxxxxxxxxxxxxxxxxxx
(26)	43	xxxxxxxxx
ALO MYOS	60	xxxxxxxxxxxx
(27)	14	xxx
POA ANN	100	
(28)	50	x $x \times x \times x x x x x$

AC 222293
$0.25 \mathrm{~kg} / \mathrm{ha}$

KXXXXXXXXXXXXXXXXXX

AC 222293
$1.0 \mathrm{~kg} / \mathrm{ha}$
 50 xxxxxxxxxx

100 xxxxxxxxxxyxxyyxuxxy 36

Xxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxx xxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxx
XXXXXXXXX
xXxxxxxxxxxxxxxxxxxxx XXXXXXXXX
xxxxxxxxxxxxxxxxxxxx

0
0
40
14
XXX

90
36 36 57
R

8
xXXXXXXXXXXXXXXXXX
XXXXXXX

AC 222293
$4.0 \mathrm{~kg} / \mathrm{ha}$
100 xxxxxxxxxxxxxxxxxxxx XXXXXX

100 xxxxxxxxxxxxxxxxxxxx xxxxxx

XXXXXXXXXXXXXXXXXXXX XXXXXXXXXX
xxxxxxxxxxxxxxxxx xxxxxx

Xxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxx

XXXXXXXXXXXXXXXXXXXX Xxxxxxxxxxx

Xxxxxxxxxxxx
xxxx
xxxxxxxxxxxxxxxxxxxx XXXXXXXXXX
xxxxxxxxxxxxxxxxxxxx xXXXXXXXXXXXXXXXX

SPECIES		$\begin{aligned} & \text { AC } 222293 \\ & 0.25 \mathrm{~kg} / \mathrm{ha} \end{aligned}$		$\begin{aligned} & \text { AC } 222293 \\ & 1.0 \mathrm{~kg} / \mathrm{ha} \end{aligned}$		AC 222293 $4.0 \mathrm{~kg} / \mathrm{ha}$
$\begin{aligned} & \text { AG REPEN } \\ & (47) \end{aligned}$	$\begin{array}{r} 100 \\ 86 \end{array}$	mxxxxxxxxxxxyxxxxxxxx xxxxyxxxxxxxxxxxx	$\begin{array}{r} 100 \\ 86 \end{array}$	xxxxxxxxxxxxxxxxx	$\begin{array}{r} 100 \\ 86 \end{array}$	xxxxxxxxxxxxxxxyxxxx xxxxxyxxxxxyxyxxx
$\begin{aligned} & \text { AG STOIO } \\ & (48) \end{aligned}$	$\begin{array}{r} 100 \\ 79 \end{array}$	xxxxxxxxxxyxxxxxxxxxx xxxxxxxxxxxxxxxxx	$\begin{array}{r} 100 \\ 57 \end{array}$	xxxxxxxxxxx	$\begin{aligned} & 75 \\ & 21 \end{aligned}$	xxxxxxxxxxxxxxx xxxx
$\begin{aligned} & \text { CIRS ARV } \\ & (50) \end{aligned}$	$\begin{array}{r} 100 \\ 86 \end{array}$	xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxx	$\begin{array}{r} 100 \\ 79 \end{array}$	xxxxxxxxxxxxxxxxx	$\begin{array}{r} 100 \\ 43 \end{array}$	xxxxxxxxxxxxxxxxxxxx xxxxxxxxx
$\begin{aligned} & \text { MAIZE } \\ & (56) \end{aligned}+S$	$\begin{array}{r} 100 \\ 86 \end{array}$	xxxxxxxxxxxxxxxxx	$\begin{gathered} 100 \\ 71 \end{gathered}$	xxxyxxyxxxxxxxxyxxxx xyxxxyxxzxyxxx	$\begin{array}{r} 100 \\ 57 \end{array}$	xxxxxxxxxxxxxxxyxxxx xxxxyxxxxxx
$\begin{gathered} \text { MAIZE } \\ \left(\begin{array}{c} 57 \end{array}\right) \end{gathered}$	$\begin{array}{r} 100 \\ 86 \end{array}$	xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxx	$\begin{array}{r} 100 \\ 64 \end{array}$	xxxxxxxxxxxxx	$\begin{array}{r} 100 \\ 43 \end{array}$	xyxxyxyxxxyxyxyxxxxx xxxxxxxxx
$\begin{aligned} & \text { SORG }+ \text { S } \\ & (58) \end{aligned}$	$\begin{array}{r} 100 \\ 64 \end{array}$	xxxxxxxxxxxxx	$\begin{array}{r} 100 \\ 50 \end{array}$	mxxxxxxxxxxxyxxxxxyxx xxxxxxxxxx	$\begin{array}{r} 100 \\ 43 \end{array}$	xxxxyxyxxxxxyxxxxxxx xxxxxxxxx
$\begin{aligned} & \text { SORGHOM } \\ & (59) \end{aligned}$	$\begin{array}{r} 100 \\ 64 \end{array}$	xxxxxxxxxxxxx	$\begin{array}{r} 100 \\ 43 \end{array}$	xxxxxxyxxxxxyxxxyxxx xxxxxxxxx	$\begin{array}{r} 100 \\ 43 \end{array}$	xxxxyxxxxxxyxxxxxyxx xxxxxxxxx
$\begin{aligned} & \text { RICE } \\ & (60) \end{aligned}$	$\begin{array}{r} 100 \\ 50 \end{array}$	xxxxxxxxxx	$\begin{array}{r} 100 \\ 43 \end{array}$	xxxxxxxxx	$\begin{array}{r} 100 \\ 29 \end{array}$	xxxxxx
$\begin{aligned} & \text { PIGEON P } \\ & (61) \text { (} 6 \text { (} \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \end{aligned}$	xxxxxxxxxxxxxxxxxxxxx	$\begin{array}{r} 100 \\ 86 \end{array}$	xxxxxxxxxxyxyxxyxxyxx xxxxxxxxxxxxxxxxx		xxxxyxxxxyxxyxxyxyxx xxxxxxxxx
$\begin{aligned} & \text { COWPEA } \\ & (62) \end{aligned}$	$\begin{array}{r} 100 \\ 71 \end{array}$	xxxxxxxxxxxxyxxyxxxx xxxxxxxxyxxxxx	$\begin{array}{r} 100 \\ 57 \end{array}$	xxxxxxxxxxx	$\begin{gathered} 100 \\ 36 \end{gathered}$	xxxxxxx
$\begin{aligned} & \text { CHICKPEA } \\ & (63) \end{aligned}$	$\begin{array}{r} 100 \\ 57 \end{array}$	xxxxxxxxxxx	$\begin{aligned} & 83 \\ & 29 \end{aligned}$	xxxxxxxxxxxxxxxxx xxxxxx	$\begin{aligned} & 50 \\ & 14 \end{aligned}$	xxxxxxxxxx xxx
$\begin{aligned} & \text { GRNDNUT } \\ & (64) \end{aligned}$	$\begin{array}{r} 100 \\ 71 \end{array}$	xxxxyxxxxxxyxxxyxxzx xxxxxxyxxxxxxx	$\begin{array}{r} 100 \\ 57 \end{array}$	xxxxxxxxxxxxxxxyxxyxx xxxxxxxxxxx	$\begin{array}{r} 100 \\ 57 \end{array}$	xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxx

SPECIES		AC 222293 $0.25 \mathrm{~kg} / \mathrm{ha}$
SOYABEAN	100	mxxxxxxxxxxxxxxxxxxx
(65)	64	xxxxxxxxxxxxx
COTMON	100	
(66)	86	xxxxxxxxxxxxxxxxxx
JUTE	80	xxxxxxxxxxxxxxxxx
(67)	14	xxx
KENAF	100	
(68)	71	
TOBACCO	100	xxxxxxxxxxxxxxxxxxxx
(69)	57	
SESAMUM	100	R xxxxxxxxxxxxxxxxxxxxx
(70)	57	R xxxxxxxxxxx
TOMATO	100	
(71)	43	xxxxxxxxxx
OR BART	100	xxxxxxxxxxxxxxxxxxxxx
(73)	50	xxxxxxxxxx
ETEU IND	100	R xxxxxxxxxxxxxxxxxxxx
(74)	86	xxxxxxxxxxxxxxxxxx
ECH CRUS	100	
(75)	100	
ROTT EXA	100	mxxxxxxxxxxxxxxxxxxxx
(76)	86	
DIG SANG	100	
(77)	86	

NB: AC 213087 is confidential, AC 222293 is imazamethabenz-methyl, Dowco 433 is fluroxypyr,
MB 30755 is 1-(3,4-dichlorobenzyl)-4,5-dimethylcarbonamido) imidazole (May \& Baker),
SSH-41 is monisuron

SPECIES		$\begin{aligned} & \text { AC } 222293 \\ & 0.25 \mathrm{~kg} / \mathrm{ha} \end{aligned}$		AC 222293 $1.0 \mathrm{~kg} / \mathrm{ha}$		AC 222293 $4.0 \mathrm{~kg} / \mathrm{ha}$
AMAR RET	100		100	mxxxxxxxxxxxxxxxxxxxix	100	mxxxxxxxxxxxxxxxxxxix
(78)	86	mxxxxxxxxxxxxxxxx	71	mxxxxxxxxxxxxx	57	xxxxxxxxxxx
PORT OLE	100		100	mxxxxxxxxxxxxxxxxxxxx	100	mxxxxxxxxxxxxxxxxxxxx
(79)	86		93	mxxxxxxxxxxxxxxxxxx	71	
SOL NIG	87	xxxxxxxxxxxxxxxxxx	0		0	
(81)	43	x $x \times x \times x \times x \times$	0		0	
BROM PEC	100	mxxxxxxxxxxxxxxxxxxxx	92	mxxxxxxxxxxxxxxxxxx	92	
(82)	79	xxxxxxxxxxxxxxxxx	50	x $x \times x \times x \times x \times x$	36	x \times x \times x \times x
SNOW POL	100	zxxxxxxxxxxxxxxxxxxxx	100		100	
(83)	100		79	x $x^{\prime} \times x \times x \times x \times x \times x \times x \times$	57	xxxxxxxxxxx
PHAL MIN	93		93	mxxxxxxxxxxxxxxxxxxx	57	xxxxxxxxxxx
(84)	57		29	xxxxxx	14	xxx
CYP ESCU	100	xxxxxxxxxxxxxxxxxxxxxx	100	xxxxxxxxxxxxxxxxxxxxx	100	xxxxxxxxxxxxxxxxxxxxx
(85)	50	x $x \times x \times x x x x x$	36	xxxxxxxx	21	xxxx
CYP ROTU \dagger	-		-			
(86)	56	xxxxxxxxxxx	43		29	xxxxxx
OXAL LAT	100	xxxxxxxxxxxxxxxxxxxxxx	100	xxxxxxxxxxxxxxxxxxxxx	100	mxxxxxxxxxxxxxxxxxxxx
(87)	71		57	xxxxxxxxxxx	57	xxxxxxxxxxx
CYN DACT \dagger			-			
(88)	86		93	xxxxxxxxxxxxxxxxxxxx	50	xxxxxxxxxx

\dagger results based on vigour scores only

Code number
Chemical name
Structure

Dowco 433
1'-methylheptyl-(4-amino-3,5-dichloro-6-fluoro-2-pyridinyl) -oxyacetate

Source
Dow Chemical Co Ltd
Kings Lynn
Norfolk PE30 2JD
UK
Information available and suggested uses
Control of various broad-leaved weeds in small grain crops.
Formulation used $250 \mathrm{~g} / \mathrm{l}$ a.e. emulsifiable concentrate
Spray volume for activity experiment $370 \mathrm{I} / \mathrm{ha}$
for post-emergence selectivity experiment $345 \mathrm{I} / \mathrm{ha}$
RESULTS
Full results are presented in the histograms on pages 48-54 and potential selectivities are summarised in the following table.

$\begin{gathered} \text { RATE } \\ (\mathrm{kg} \mathrm{a} \\ \mathrm{a} \cdot \mathrm{i} \cdot / \mathrm{ha}) \end{gathered}$	CROPS: vigour reduced by 15% or less	WEEDS: number or vigour reduced by 70% or more
0.90	wheat wheat + safener (NA) barley barley + safener (NA) perennial ryegrass	$\frac{\text { Tripleurospermum maritimum }}{\text { Polygonum lapathifolium }}$ $\frac{\text { Spergula arvensis }}{}$ $\frac{\text { Veronica persica }}{\text { Beta vulgaris }}$ $\frac{\text { Oxalis latifolia }}{\text { Oxis }}$ $\frac{\text { Cyodon dactylon }}{\text { C species below }}$
0.15	```species above + oat onion maize maize + safener (NA) sorghum sorghum + safener (cyometrinil) rice```	Senecio vulgaris Galium aparine Stellaria media Rumex obtusifolius Amaranthus retroflexus Portulaca oleracea Solanum nigrum + species below
0.025	None listed as no weeds controlled	None

Activity experiment
The foliar spray was active on the broad-leaved species, but not the three grasses. Kale and particularly dwarf bean were sensitive even at the lowest dose. Soil drenches to established plants produced effects but smaller than those with the foliar spray, although the latter treatment caused some symptoms on the grasses at the higher doses. These findings should be taken into consideration when interpreting the results of the post-emergence selectivity test where uptake via foliage and soil was possible.

There was considerable pre-emergence activity at the higher doses, Polygonum amphibium being killed at $1.0 \mathrm{~kg} / \mathrm{ha}$. Differences in activity between surface and incorporated treatments were small and varied depending on dose.

Symptoms

A severe epinasty of leaves, stems and petioles developed fairly rapidly on broad-leaved species. Eventually stems and petioles swelled to twice their normal size and often produced root primordia. Leaves frequently changed colour, becoming dark in some species and lighter in others. Necrosis usually followed the severe growth inhibition. Some inhibition of grasses was seen at the higher doses, often accompanied by a darkening of the leaves. Some plants of Poa annua became necrotic and died but usually grass species recovered well.

Similar symptoms were seen on broad-leaved species following pre-emergence treatment while at higher doses, plants often failed to emerge from the soil or died soon after. With grasses treated pre-emergence there was some growth retardation and a tendency for some leaves to be narrower and darker green, but these symptoms were seen only at the high dose.

These symptoms are very similar to those reported for triclopyr and 3,6-dichloropicolinic acid (Richardson and Parker, 1976) and also for phenoxyalkanoic herbicides such as 2,4-D and 2,4,5-T.

Post-emergence selectivity among temperate species

Only the annual broad-leaved weeds were controlled, all grasses being resistant. Five weeds were controlled at $0.15 \mathrm{~kg} / \mathrm{ha}$ and four more at 0.90 $\mathrm{kg} / \mathrm{ha}$. The annual composite weeds were particularly sensitive with Senecio vulgaris at $0.15 \mathrm{~kg} / \mathrm{ha}$ and Tripleurospermum maritium
at $0.9 \mathrm{~kg} / \mathrm{ha}$, being controlled. Polygonaceous weeds were also included (Rumex obtusifolius at $0.15 \mathrm{~kg} / \mathrm{ha}$ and Polygonum lapathifolium at $0.9 \mathrm{~kg} / \mathrm{ha}$). Perhaps of greater interest, however, is the control of Solanum nigrum and Galium aparine at $0.15 \mathrm{~kg} / \mathrm{ha}$ and Veronica persica at $0.9 \mathrm{~kg} / \mathrm{ha}$. The perennial composite, Cirsium arvense and the crucifer, Raphanus raphanistrum were notably resistant.

Monocotyledonous crops were tolerant. Wheat and barley tolerated the highest dose of $0.9 \mathrm{~kg} / \mathrm{ha}$ with $N A$ giving mild safeningeffects on both species. Oat and onion tolerated $0.15 \mathrm{~kg} / \mathrm{ha}$ but not $0.9 \mathrm{~kg} / \mathrm{ha}$. Perennial ryegrass was the most tolerant crop tested, with no symptoms apparent at the highest dose. Most broad-leaved crops were sensitive, notably all leguminous species as well as lettuce and sugar beet. All brassica crops and carrot tolerated the lowest dose.

Dowco 433 would appear to have considerable potential for annual broadleaved weed control in cereals, perennial ryegrass and possibly onion. The high level of control of Galium aparine gives it a distinct advantage over
many other herbicides. It has certain features in common with two previously tested herbicides from Dow Chemicals, triclopyr and 3,6-dichloropicolinic acid (Richardson and Parker, 1977). The sensitivity of Solanum nigrum (though raised as a tropical species) suggests that testing for control of volunteer potatoes may be worthwhile, as it was to some extent with the two other Dow herbicides (Iutman and Richardson, 1978). Unlike 3,6-dichloropicolinic acid, however, Dowco 433 does not show potential against Cirsium arvense. Sensitivity of legumes suggests that, as with triclopyr, testing for control of gorse (Ulex spp) and broom (Sarothamnus spp) may be worthwhile for grassland, amenity areas and forestry.

Selectivity among tropical species
The compound produced typical epinastic effects on broad-leaved species and was safe on the cereals (with or without protectant). A dose of $0.15 \mathrm{~kg} / \mathrm{ha}$ was tolerated but no very wide margin of selectivity was apparent even in these cereal crops and the results do not suggest any apparent advantage of this compound over available materials. All broad-leaved crops were susceptible. The high dose of $0.9 \mathrm{~kg} / \mathrm{ha}$ killed Oxalis but Cyperus spp recovered strongly.

NB：AC 213087 is confidential，AC 222293 is imazamethabenz－methyl，Dowco 433 is fluroxypyr， MB 30755 is 1－（3，4－dichlorobenzyl）－4，5－dimethylcarbonamido）imidazole（May \＆Baker）， SSH－41 is monisuron

ACTIVITY EXPERIMENT

DOWCO 433

$$
0.04 \mathrm{~kg} / \mathrm{ha} \quad 0.20 \mathrm{~kg} / \mathrm{ha} \quad 1.0 \mathrm{~kg} / \mathrm{ha}
$$

 $\frac{x x^{x}}{x \times x x x x x x x x x x}$䋜㸚xxx ${ }_{x}^{x} \times$

xxwxxoxxxxxxxxx

努xxxx xxxxxx x $\times x \times$
xxxxxxxxxxxx

爻xxxxxxxxxxxxxx xxxxxxyxxxxxxx xxxxxxxxxx
$\frac{\text { POLYGONUM }}{\text { AMPHIBIUM }}$
PERENNIAL RYEGRASS
$\frac{\text { AVENA }}{\text { FATUA }}$

	F	
AGROPYRON	S	
REPENS	P	x ${ }^{\text {xxxxxxxxxxxxx }}$＋
	I	

 $\frac{x \times x \times x \times x \times x}{x \times x \times x \times x \times x}$ ㅈxxxxxxxxxx

KEY：$F=$ post－emergence，foliar application
S＝post－emergence，soil drench
$\mathrm{P}=$ pre－emergence，surface film
I＝pre－planting，incorporated
UNTREATED xxxxxxxxxxxxxx no．of survivors
CONTROL xxxxxxxxxxxxxx vigour of survivors

WHEAT	100	
(1)	100	mxxxxxxxxxxxxxxxxxxxx
WHEAT + S	100	mxxxixxixixixxxxxxxxix
(2)	100	
BARIEY	100	
(3)	100	mxxxxxxxxxxxxxxxxxxx
BARIEY + S	100	
(4)	100	
OAT	90	mxxxxxxxxxxxxxxxxxxx
(5)	86	
PER RYGR	100	mxxxxxxxxxxxxxxxxxxxx
(6)	100	mxxxxxxxxxxxxxxxxxxx
ONION	100	R xxxxxxxxxxxxxxxxyxxx
(8)	86	R xxxxxxxxxxxxxxxxxx
DWF BEAN	100	mxxxxxxxxxxxxxxxxxxxx
(9)	36	xxxxxxx
FLD BEAN	100	mxxxxxxxxxxxxyxxyxxx
(10)	50	xxxxxxxxxx
PEA	100	R xxxxxxxxxxxxyxxxxxxxx
(11)	43	R xxxxxxxxxx
W CLOVER	100	mxxxxxxixxxxxxxxxxyxx
(12)	64	
RAPE	100	mxxxxxxxxxyxxxxxxxxy
(14)	100	mxxxxxxxxxxxxxxxxxxx

Dowco 433
 $0.15 \mathrm{~kg} / \mathrm{ha}$

100 R xxxxxxxxxxxxxxxxxxxx
100 R xxxxxxxxxxxxxxxxxxxx

90	mxxxxxxxxxxxxxxxxxx
	XXXXXXXXXXXXXXXXX
100	xxxxxxxxxxxxxxxxxxxx
100	XXXXXXXXXXXXXXXXXXXX
100	Xxxxxxxxxxxxxxxxxxxxx
	xxxxxxxxyxxxxxxxx

0
0
$100 \quad \mathrm{xx} \times \mathrm{x}$
29 xxxxxx
0 R
0 R
67
43
$100 \quad \mathrm{XxXXXXXXXXxxxxxxxxxx}$
64 xxxxxxxxxxxxx

Dowco 433

$0.9 \mathrm{~kg} / \mathrm{ha}$

100 R xxxxxxxxxxxxxxxxxxxx
100 R xxxxxxxxxxxxxxxxxxxx

100	Xxxxxxxxxxxxxxxxxxxx
79	XXXXXXXXXXXXXXXXX
100	
100	Xxxxxxxxxxxxxxxxxxxx
100 R	Xxxxxxxxxxxxxxxxxxxxx
57 R	XxXxxxxxxxx
0	
0	
25	XxXxx
7	X

NB: AC 213087 is confidential, AC 222293 is imazamethabenz-methyl, Dowco 433 is fluroxypyr
MB 30755 is 1-(3,4-dichlorobenzyl)-4,5-dimethylcarbonamido) imidazole (May \& Baker), SSH-41 is monisuron

SPECIES		Dowco 433 $0.025 \mathrm{~kg} / \mathrm{ha}$		Dowco 433 $0.15 \mathrm{~kg} / \mathrm{ha}$		Dowco 433 $0.9 \mathrm{~kg} / \mathrm{ha}$
KAIE	100	XxXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXX	80	XxXXXXXXXXXXXXXXX
(15)	71	XXXXXXXXXXXXXXX	57	XxXxxxxxxxxx	36	XXXXXXX
CABBAGE	100	xxxxxxxxxxxxxxxxxxxxx	80	XXXXXXXXXXXXXXXX	100	xxxxxxxxxxxxxxxxxxxx
(16)	86	Kxxxxxxxxxxxxxxxxx	57	XXXXXXXXXXXX	29	xxxxxx
CARROT	100	xxxxxxxxxxxxxxxxxxxx	100	Xxxxxxxxxxxxxxxxxxxx	90	XxXxxxxxxxxxxxxxxx
(18)	86		64	Xxxxxxxxxxxxx	29	XXXXXX
PARSNIP	100	xxxxxxxxxxxxxxxxxxxx	100	XxXXXXXXXXXXXXXXXXXX	75	XXXXXXXXXXXXXXX
(19)	79	XXXXXXXXXXXXXXXXX	64	XXXXXXXXXXXXX	29	XxXXXX
LEITUCE	100	Xxxxxxxxxxxxxxxxxxxxx	0		0	
(20)	43		0		0	
FENUGREK	100	xxxxxxxxxxxxxxxxxxxx	100	XxXXXXXXXXXXXXXXXXXX	25	Xxxxx
(21)	57	XXXXXXXXXXX	43	XXXXXXXXXX	14	XXX
SUG BEET	100	xxxxxxxxxxxxxxxxxxxxx	67	Xxxxxxxxxxxxxx	0	
(22)	13	XXXXXXXXX	21	xXXX	0	
BETA VUL	100	Xxxxxxxxxxxxxxxxxxxx	100	Kxxxxxxxxxxxxxxxxxxx	100	XXXXXXXXXXXXXXXXXXXX
(23)	50	xxxxxxxxxx	36	XXXXXXX	29	xxxxxx
BROM STE	100	xxxxxxxxxxxxxxxxxxxxx	100	Kxxxxxxxxxxxxxxxxxxx	100	$\mathrm{XxXxx} \times \mathrm{xxxxxxxxxxxxxx}$
(24)	100	XXXXXXXXXXXXXXXXXXXX	100	xxxxxxxxxxxxxxxxxxxx	86	Xxxxxxxxxxxxxxxxx
AVE FATU	100	Xxxxxxxxxxxxxxxxxxxxx	100	Xxxxxxxxxxxxxxxxxxxx	100	xxxxxxxxxxxxxxxxxxxx
(26)	100	XXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXX	93	XxxXXXXXXXXXXXXXXXX
ALO MYOS	60	XXXXXXXXXXXXX	90		70	Xxxxxxxxxxxxxx
(27)	64	XxXXXXXXXXXXX	93	XXXXXXXXXXXXXXXXXXX	86	XxXxxxxxxxxxxxxxxx
POA ANN	100	xxxxxxxxxxxxxxxxxxxxx	60		40	xxxxxxxx
(28)	100	XXXXXXXXXXXXXXXXXXXX	71	xxxxxxxxxxxxxx	43	xxxxxxxxx

SPECIES		Dowco 433 $0.025 \mathrm{~kg} / \mathrm{ha}$		Dowco 433 $0.15 \mathrm{~kg} / \mathrm{ha}$		Dowco 433 $0.9 \mathrm{~kg} / \mathrm{ha}$	
POA TRIV	100		100		100		
（ 29 ）	100		100	mxxyxxxxxxxxxxxxxxxxx	93	mxxxxxxxxxxxxxxxxxxx	
RAPH RAP	100		100		100	mxxxxxxxxxxxxxxxxxxxx	
（ 31 ）	100	mxxxxxxxxxxxxxxxxxxx	79	mexxxxxxxxxxxxxxx	43	xxxx	
TRIP MAR	100	mxxxxxxxxxxxxxxxxxxx	62	xxxxxxxxxxxx	0		
（ 33 ）	71		43	xxxxxxxxx	0		
SEN VUIG	138		62	xxxxxxxxxxxx	0		
（ 34 ）	64		29	xxxxxx	0		
POL LAPA	100	mxxxxxxxxxxxxxxxxxxxx	83		42	xxxxxxxx	1
（ 35 ）	71	xxxxxxxxxxxxxx	50	xxxxxxxxxx	21	xxxx	閾
GAL APAR	100		0				菌
（ 38 ）		xxxxxxxxxxx	0				N
CHEN ALB	100		100	mxxxxxxxxxxxxxxxxxxx	100		泡
（ 39 ）	100		84	xxxxxxxxxxxxxxxxxx	43		臥
STEL MED	100		19	xxxx	0		－
（ 40 ）	64	Xxxxxxxxxxxxx	21	xxxx	0		寝
SPER ARV	100	mxxxxxxxxxxxxxxxxxxxx	100	mxxxxxxxxxxxxxxxxxxxx	42	xxxxxxxx	島
（ 41 ）	57	xxxxxxxxxxx	36	x \times x \times x ${ }^{\text {x }}$	14	xxx	
VER PERS	100		100	mxxxxxxxxxyxxxxyxxyxx	100	mxxxxxxxxxxxxxxxxxxxx	
（ 42 ）	86	xxxxxxxxxxxxxxxxx	71		29	xxxxxx	
RUM OBTU	60	mxxxxxxxxxxx	10	XX	0		
（ 44 ）	64	xxxxxxxxxxxxx	14	xxx	0		
HOLC LAN	100	mxxxxxxxxxxxxxxxxxxxx	100		100	mxxxxxxxxxxxxxxxxxxx	
（ 45 ）	100	xxxxxxxxxxxxxxxxxxxxx	100	mxxxxxxxxxxxxxxxxxxxx	86	xxxxxxxxxxxxxxxxxx	

SPECIES

> Dowco 433 $0.025 \mathrm{~kg} / \mathrm{ha}$

AG REPEN	100	
(47)	100	mxxxxxxxxxxxxxxxxxxx
AG STOLO	100	
(48)	100	mxxxxxxxxxxxxxxxxxxx
CIRS ARV	100	
(50)	100	mxxxxxxxxxxxxxxxxxxx
MAIZE + S	100	
(56)	100	mxxxxxxxxxxxxxxxxxxx
MAIZE	100	
(57)	100	
SORG + S	100	mxxxxxxyxxxxxxxxxxxx
(58)	100	mxxxxxxxxxxxxxxxxxxx
SORGHUM	100	
(59)	100	
RICE	100	
(60)	100	
PIGEON P	0	
(61)	0	
COWPEA	100	
(62)	36	xxxxxxx
CHICKPEA	100	mxxxxxxxxxxxxxxxxxxx
(63)	79	
GRNDNUT	100	xxxxxxxxxxxxxxxxxxxx
(64)	71	xxxxxxxxxxxxxx

Dowco 433
$0.15 \mathrm{~kg} / \mathrm{ha}$

100	xxxxxxxxxxxxxxxxxxxxx	100	xxxxxxxxxxxxxxxxxxxxxxx
100	Xxxxxxxxxxxxxxxxxxxx	100	XXXXXXXXXXXXXXXXXXXX
100	Xxxxxxxxxxxxxxxxxxxx	100	
100	XXXXXXXXXXXXXXXXXXXX	71	Xxxxxxxxxxxxxx
100	Xxxxxxxxxxxxxxxxxxxx	100	
100	Xxxxxxxxxxxxxxxxxxxx	64	xxxxxxxxxxxxx
100	Xxxxxxxxxxxxxxxxxxxx	100	XXXXXXXXXXXXXXXXXXXX
93	Xxxxxxxxxxxxxxxxxxx	57	Xxxxxxxxxxx
100	Xxxxxxxxxxxxxxxxxxxx	100	
86		57	X XxXxxxxxx .
100	Xxxxxxxxxxxxxxxxxxxx	100	Xxxxxxxxxxxxxxxxxxxxx
93	Kxxxxxxxxxxxxxxxxxx	57	$\mathrm{xxxxx} \times \times \mathrm{xxxx}$
100	Xxxxxxxxxxxxxxxxxxxx	100	Xxxxxxxxxxxxxxxxxxxxx
100	xxxxxxxxxxxxxxxxxxxxx	57	xxxxxxxxxxx
100	XxXxxxxxxxxxxxxxxxxx	100	Xxxxxxxxxxxxxxxxxxxx
86		71	xxxxxxxxxxxxxx
$\bigcirc \mathrm{R}$		0	
		0	
100	XxXXXXXXXXXXXXXXXXXX	100	Xxxxxxxxxxxxxxxxxxxxxx
21	XXXX	14	Xxx
50	xxxxxxxxxxx	0	
14	XXX	0	
100 R	XXXXXXXXXXXXXXXXXXXXX	0	
57 R	xxxxxxxxxxx	0	

SPECIES		$\begin{gathered} \text { Dowco } 433 \\ 0.025 \mathrm{~kg} / \mathrm{ha} \end{gathered}$		Dowco 433 $0.15 \mathrm{~kg} / \mathrm{ha}$		Dowco 433 $0.9 \mathrm{~kg} / \mathrm{ha}$	
SOYABEAN	100	xxxxxxxxxxxxxxxxxxxyx	100		0		
（ 65 ）	43	xxxxxxxxx	29	xxxxxx	0		
COTMON	100	mxxxxxxxxxxxxxxxxxxxx	100		100	xxxxxxxxxxxxxxxxxxxxx	
（ 66 ）	43	xxxxxxxxx	29	xxxxxx	21	xxxx	
JUTE	100	xxxxxxxxxxxxxxxxxxxyx	10	xx	0		
（ 67 ）	43	xxxxxxxxx	7	x	0		
KENAF	100	xxxxxxxxxxxxxxxxxxxx	100		87		
（ 68 ）	57	xxxxxxxxxxx	14	xxx	14	xxx	\％
TOBACCO	50	xxxxxxxxxi	10	xx	0		1
（ 69 ）	43	xxxxxxxxx	7	x	0		気
SESAMUM	100		83	R xxxxxxxxxxxxxxxxxx	0		罝
（ 70 ）	57		29	$\mathrm{R}_{\text {xxxxxx }}$	0	R	सิ
tomato	67	R xxxxxxxxxxxxxx	0	R	0	R	国
（ 71 ）	14	$\mathrm{R} \times \mathrm{xx}$	0	R	0	R	$\begin{aligned} & \text { 堛 } \\ & \hline \end{aligned}$
OR BART	100	mxxxxxxxxxxxxxxxxxxxx	100	xxxxxxxxxxxxxxxxxxxxx	100	xxxxxxxxxxxxxxxxxxxxx	
（ 73 ）	79		86		71		星
ELEU IND	100	R xxxxxxxxxxxxxxxxxxxx	100	R mxxxxxxxxxxxxxxxxxxx	100		止
（ 74 ）	86	R xxxxxxxxxxxxxxxxxx	71		43	R $x^{\prime} \times x \times x x x x x$	
ECH CRUS	100		100		100		
（ 75 ）	100		86		43		
ROTT EXA	100	mxxxxxxxxxxxxxxxxxxxx	100		100		
（ 76 ）	93	mxxxxxxxxxxxxxxxxxx	100	mxxxxxxxxxxxxxxxxxxx	64		
DIG SANG	92	mxxxxxxxxxxxxxxxxxx	92	mxxxxxxxxxxxxxxxxxx	100		
（ 77 ）	86		79	xxxxxxxxxxxxxxxx	36	x xxxxxx	

SPECIES		$\begin{gathered} \text { Dowco } 433 \\ 0.025 \mathrm{~kg} / \mathrm{ha} \end{gathered}$		Dowco 433 $0.15 \mathrm{~kg} / \mathrm{ha}$		Dowco 433 $0.9 \mathrm{~kg} / \mathrm{ha}$	
AMAR RET	100		81	xxxxxxxxxxxxxxxxx	0		
（ 78 ）	71	xxxxxxxxxxxxxxx	29	xxxxyx	0		
PORT OLE	100	mxxxxxxxxxxxxxxxxxxxix	0		0		
（ 79 ）	43	xxxxxxxxx	0		0		
SOL NIG	100	mxxxxxxxxxxxxxxxxxxxx	25	xxxxx	0		
（ 81 ）	43	xxxxxxxxx	7	x	0		
BROM PEC	100				100		
（ 82 ）	79		64	xxxxxxxxxxxxx	71	xxxxxxxxxxxxxxx	－
SNOW POL	100		100	mxxxxxxxxxxxxxxxxxxxix	100	mxxxxxxxxxxxxxxxxxxxx	品
（ 83）	93		79		64	xxxxxxxxxxxxx	國
PHAL MIN	100		100	xxxxxxxxxxxxxxxxxxxx	100		靣
（ 84 ）	79	x xxxxxxxxxxxxxxxx	71	xxxxxxxxxxxxxx	71	xxxxxxxxxxxxxx	入入
CYP ESCU	100	xxxixixxxxxxxxxxxxixix	100	mxxxxxxxxxxxxxxxxxxx	100		込
（ 85 ）	79		79	xxxxxxxxxxxxxxxxx	71	xxxxxxxxxxxxxx	图
CYP ROTU \dagger	－				－		$\stackrel{+}{5}$
（ 86 ）	93	mxxxxxxxxxxxxxxxxxx	86	xxxxxxxxxxxxxxxxx	43	xxxxxxxxx	毠
OXAL LAT	100	mxxxxxxxxxxxxxxxxxxxx	100	mxxxxxxxxxxxxxxxxxxxx	0		元
（ 87）	57	xxxxxxxxxxx	36	xxxxxxx	0		${ }^{\text {告 }}$
CYN DACT \dagger	－		－		－		
（88）	100	mxxxxxxxxxxxxxxxxxxx	71	$\underline{x x x x x x x x x x x x x x ~}$	29	xxxxxx	

ACKNOWLEDGEMENTS

We are most grateful to the joint Letcombe/WRO Statistics Section for processing the experimental data; to Mr G P White, Miss D Stringer and Messrs, R H Webster, R M Porteous and S L Burbank for technical and practical assistance; to Mrs J Souch for the preparation and typing of this report; to Mrs S Cox and her staff for its duplication and to the commercial firms who provided the herbicides and relevant data.

The work by the ODA Tropical Weeds Group was carried out under Project D11 (27) financed by H M Overseas Development Administration.

REFERENCES
LUTMAN, P.J.W. and RICHARDSON, W.G. (1978) Investigations into the control of potatoes with several post-emergence herbicides. Proceedings British Crop Protection Conference - Weeds, 393-400.

RICHARDSON, W.G. and DEAN, M.L. (1974) The activity and post-emergence selectivity of some recently developed herbicides: oxadiazon, U-29,722, U-27,658, metflurazone, norflurazone, AC 50-191, AC 84,777 and iprymidam. Technical Report Agricultural Research Council Weed Research Organization, 32, pp 74.

RICHARDSON, W.G. and PARKER, C. (1976) The activity and pre-emergence selectivity of some recently developed herbicides: K 1441, mefluidide, WL 29226, epronaz, Dowco 290 and triclopyr. Technical Report Agricultural Research Council Weed Research Organization, 41, pp 65.

RICHARDSON, W.G. and PARKER, C. (1977) The activity and post-emergence selectivity of some recently developed herbicides: KUE 2079A, HOE 29152, RH 2915, triclopyr and Dowco 290. Technical Report Agricultural Research Council Weed Research Organization, 42, pp 53.

Appendix 1 1. Species, abbreviations, varieties and stages of growth at spraying and assessment for post-emergence selectivity test.

	Designation and computer serial number	Cultivar or source	Stage of growth at spraying	Stage of growth at assessment (untreated controls, leaf numbers exclusive of cotyledons)
Temperate species				
Wheat (Triticum aestivum)	WHEAT (1)	Maris Huntsman	3-41 1 leaves	14-30 leaves, up to 10 tillers
Wheat + safener	$\begin{aligned} & \text { WHEAT + S } \\ & \text { (2) } \end{aligned}$		3-41	14-30 leaves, up to 10 tillers
Barley (Hordeum vulgare)	BARLEY (3)	Athene	3-4 $\frac{1}{2}$ leaves	10-20 leaves, up to 4-7 tillers
Barley + safener	$\begin{aligned} & \text { BARLFY }+S \\ & (4) \end{aligned}$		$2 \frac{1}{2}-3$ leaves	10-20 leaves, up to $4-7$ tillers
Oat (Avena sativa)	$\begin{aligned} & \text { OAT } \\ & (5) \end{aligned}$	Pennal	3 leaves	13-20 leaves, up to 6 tillers
Perennial ryegrass (Lolium perenne)	PER RYGR (6)	S 23	2-3 leaves	15-20 leaves, up to 7 tillers
Onion (Allium cepa)	ONION (8)	Hygro	$2 \frac{1}{2}-3$ leaves	4 leaves
Dwarf bean (Phaseolus vulgaris)	DWF BEAN (9)	The Prince	2 unifoliate leaves	4 trifoliate leaves, flowering
Field bean (Vicia faba)	FLD BEAN (10)	Maris Blaze	$2 \frac{1}{2}-3 \frac{1}{2}$ leaves	10 leaves
Pea (Pisum sativum)	PEA (11)	Dark Skinned Perfection	4 leaves	10 leaves
White clover (Trifolium repens)	$\begin{aligned} & \text { W CLOVER } \\ & \text { (12) } \end{aligned}$	Milkanova	1 trifoliate leaf	20 trifoliate leaves
Rape $\frac{\text { (Brassica napus }}{\text { oleifera) }}$	$\begin{aligned} & \text { RAPE } \\ & (14) \end{aligned}$	Rapora	2 leaves	$3 \frac{1}{2}$ leaves
Kale (Brassica oleracea acephala)	$\begin{aligned} & \text { KALE } \\ & \text { (15) } \end{aligned}$	Marrow Stem	2-21 2 leaves	$4-5 \frac{1}{2}$ leaves
Cabbage \qquad capitata)	$\begin{aligned} & \text { CABBAGE } \\ & (16) \end{aligned}$	Derby Day	2-2 2 leaves	5-6 leaves

	Designation and computer serial number	Cultivar or source	Stage of growth at spraying	Stage of growth at assessment (untreated controls, leaf numbers exclusive of cotyledons)
Carrot (Daucus carota)	$\begin{aligned} & \text { CARROT } \\ & (18) \end{aligned}$	Chantenay Red Core	$2 \frac{1}{2}-3$ leaves	6-7 leaves
Parsnip (Pastinaca sativa)	$\begin{aligned} & \text { PARSNIP } \\ & \text { (19) } \end{aligned}$	Avonresister	$1 \frac{1}{2}-2$ leaves	$3-3 \frac{1}{2}$ leaves
Lettuce (Lactuca sativa)	$\begin{aligned} & \text { LETMUCE } \\ & (20) \end{aligned}$	Reskia	4-5 leaves	7-9 leaves
Fenugreek (Trigonella foenumgraecum)	FHNUGREEK (21)	Paul	1 trifoliate leaf	5 trifoliate leaves, anthesis
Sugar beet (Beta vulgaris)	SUG BEET (22)	Nomo	2-2 $\frac{1}{2}$ leaves	7-9 leaves
Beta vulgaris	BETA VUL (23)	WRO 1979 ex Attleborough	4 leaves	9 leaves
Bromus sterilis	$\begin{aligned} & \text { BROM STE } \\ & (24) \end{aligned}$	WRO 1979	4-6 leaves, tillering	30 leaves, up to 15 tillers
Avena fatua	$\begin{aligned} & \text { AVE FATU } \\ & (26) \end{aligned}$	WRO 1978	3 leaves	8-9 leaves, 1-2 tillers
$\frac{\text { Alopecurus }}{\text { myosuroides }}$	$\begin{aligned} & \text { ALO MYOS } \\ & (27) \end{aligned}$	$B \& S$ Supplies 1979	2-3 leaves	14-36 leaves, up to 12 tillers
Poa annua	POA ANN (28)	B \& S Supplies 1977	3-4 leaves	10-20 leaves, 2-5 tillers
Poa trivialis	$\begin{aligned} & \text { POA TRIV } \\ & \text { (29) } \end{aligned}$	WRO 1978	3-4 leaves	25-30 leaves, up to 20 tillers
Sinapis arvensis	$\begin{aligned} & \text { SIN ARV } \\ & (30) \end{aligned}$	WRO 1965	inadequate germination	-
Raphanus raphanistrum	$\begin{aligned} & \text { RAPH RAP } \\ & (31) \end{aligned}$	Long Black Spanish	2-4 leaves	$4 \frac{1}{2}$ leaves
Tripleurospermum maritimum	TRIP MAR (33)	WRO 1976	6-8 leaves	Numerous leaves, flowers developing
Senecio vulgaris	SEN VULG (34)	WRO 1979	7-9 leaves	Anthesis
$\frac{\text { Polygonum }}{\text { Iapathifolium }}$	POL J.APA (35)	WRO 1978	$5 \frac{1}{2}-6$ leaves	9 leaves, seeding
$\frac{\text { Polygonum }}{\text { aviculare }}$	$\begin{aligned} & \text { POI AVIC } \\ & (36) \end{aligned}$	B \& S Supplies 1978	inadequate germination	-

	Designation and computer serial number	Cultivar or source	Stage of growth at spraying	Stage of growth at assessment (untreated controls, leaf numbers exclusive of cotyledons)
Cowpea (Vigna unguiculata)	$\begin{aligned} & \text { COWPEA } \\ & (62) \end{aligned}$	Upper Volta 1977	1-2 trifoliate leaves	3-4 trifoliate leaves
Chickpea (Cicer arietinum)	CHICKPEA (63)	India 1977	10-11 pinnate leaves	16 pinnate leaves
Groundnut (Arachis hypogaea)	GRNDNUT (64)	Mani Pinta (Ghana)	1 pinnate leaf.	8 pinnate leaves
Soyabean (Glycine max)	SOYABEAN (65)	Fiskeby V	$\begin{aligned} & 2-3 \text { tri- } \\ & \text { foliate } \\ & \text { leaves } \end{aligned}$	4 trifoliate leaves
Cotton (Gossypium hirsutum)	$\begin{aligned} & \text { COMTON } \\ & (66) \end{aligned}$	$\begin{aligned} & \text { S } 71 \\ & \text { (Nigeria) } \end{aligned}$	$1 \frac{1}{2}-2$ leaves	4-5 leaves
Jute (Corchorus olitorius)	$\begin{aligned} & \text { JUPE } \\ & (67) \end{aligned}$	Egypt 1971	3-5 leaves	8-10 Leaves
Kenaf (Hibiscus cannabinus)	$\begin{aligned} & \text { KHENAF } \\ & (68) \end{aligned}$	A $63-440$ (Ghana)	4-6 leaves	8-10 leaves
Tobacco (Nicotiana tabacum)	$\begin{aligned} & \text { TOBACCO } \\ & (69) \end{aligned}$	Yellow Mammoth	2-31	6 leaves
Sesamum (Sesamum indicum)	$\begin{aligned} & \text { SES AMUM } \\ & (70) \end{aligned}$	E 8, India 1977	2.1 eaves	6 leaves
Tomato $\frac{\text { (Lycopersicum }}{\text { esculentum) }}$	tOMATO (71)	Ailsa Craig	$1 \frac{1}{2}-3 \frac{1}{2}$ pinnate leaves	5-6 pinnate leaves
Oryza barthii	OR BART (73)	Upper Volta 1974	3 leaves	6 leaves
Eleusine indica	ELEEU IND (74)	$\begin{aligned} & \text { Zimbabwe } \\ & 1967 \end{aligned}$	3-41	7-9 leaves
$\frac{\text { Echinochloa }}{\text { crus-galli }}$	ECH CRUS (75)	WRO 1976	3-4 leaves	7-8 leaves
$\frac{\text { Rottboellia }}{\text { exaltata }}$	ROT EXAL (76)	$\begin{aligned} & \text { Zambia } \\ & 1978 \end{aligned}$	2-3 leaves	7 leaves
$\frac{\text { Digitaria }}{\text { Sanguinalis }}$	DIG SANG (77)	WRO 1973	4-5i ${ }^{\text {2 }}$ leaves	8 leaves
$\frac{\text { Amaranthus }}{\text { retroflexus }}$	AMAR RET (78)	WRO 1979	8-9 leaves	10-12 leaves

	Designation and computer serial number	Cultivar or șurce	Stage of growth at spraying	Stage of growth at assessment (untreated controls, leaf numbers exclusive of cotyledons)
$\frac{\text { Portulaca }}{\text { oleracea }}$	$\begin{aligned} & \text { PORT OLE } \\ & (79) \end{aligned}$	WRO 1970	10-14 leaves	S eeding
Solanum nigrum	$\begin{aligned} & \text { SOL NIG } \\ & (81) \end{aligned}$	WRO 1976	$2 \frac{1}{2}-3 \frac{1}{2}$ leaves	8-9 leaves, flowering
Bromus pectinatus	$\begin{aligned} & \text { BROM PEC } \\ & (82) \end{aligned}$	$\begin{aligned} & \text { Tanzania } \\ & 1978 \end{aligned}$	3 leaves	6-7 leaves
Snowdenia polystachya	$\begin{aligned} & \text { SNOW POL } \\ & (83) \end{aligned}$	Ethiopia 1978	5-7 leaves	7-8 leaves
Phalaris minor	PHAL MTN (84)	$\begin{aligned} & \text { Jordan } \\ & 1977 \end{aligned}$	3 leaves	7-8 leaves
Cyperus esculentus	$\begin{aligned} & \text { CYP ESCU } \\ & (85) \end{aligned}$	WRO Clone 2^{*} (ex South Africa)	3-5 leaves	10 leaves
Cyperus rotundus	$\begin{aligned} & \text { CYP ROTU } \\ & \text { (86) } \end{aligned}$	WRO Clone ${ }^{*}$ (ex Zimbabwe)	5-6 leaves	15 leaves
Oxalis latifolia	OXAL LAT (87)	WRO Clone 2** (ex Cornwall)	1-4 trifoliate leaves	Flowering
Cynodon dactylon	$\begin{aligned} & \text { CYN DACT } \\ & (88) \end{aligned}$	WRO Clone 2° (ex Sudan)	7-8 leaves	Flowering

ABBREVIATIONS

angstrom	8	freezing point	f.p.
Abstract	Abs.	from summary	F.S.
acid equivalent*	a.e.	gallon	gal
acre	ac	(adions per hour	gal/h
active ingredient*	a.i.	gallons per acre	gal/ac
approximately equal to	\sim	gas liquid chromatography	GLC
aqueous concentrate	a.c.	gramme	g
bibliography	bibl.	hectare	ha
boiling point	b.p.	hectokilogram	hikg
bushe1	bu	high volume	HV
centigrade	C	horse power	hp
centimetre*	cm	hour	h
concentrated	concd	hundredweight*	cwt
concentration concentration x	concn	hydrogen ion concentration*	pH
time product	ct	inch	in.
concentration required to kill		infra red	i.r.
50\% test animals	LC50	kilogramme	kg
cubic centimetre*	cm^{3}	kilo ($\times 10^{3}$)	k
cubic foot"	$f t^{3}$	less than	\leqslant
cubic inch*	in ${ }^{3}$	litre	1.
cubic metre*	m^{3}	low volume	LV
cubic yard*	$y d^{3}$	maximum	max.
cultivar (s)	cv.	median lethal dose	LD50
curie*	Ci	medium volume	MV
degree Celsius*	${ }^{\circ} \mathrm{C}$	melting point	m.p.
degree centigrade	${ }^{\circ} \mathrm{C}$	metre	m
degree Fahrenheit*	${ }^{\circ} \mathrm{F}$	micro ($\times 10^{-6}$)	μ
diameter	diam.	microgramme*	$\mu \mathrm{g}$
diameter at breast height	d.b.h.	$\begin{aligned} & \text { micromicro } \\ & \left(\text { pico: } \times 10^{-12}\right) \end{aligned}$	145
divided by*	$\%$ or /	micrometre (micron)*	$\mu \mathrm{m}$ (or μ)
dry matter	d.m.	micron (micrometre)* \ddagger	$\mu \mathrm{m}$ (or μ)
emulsifiable		miles per hour*	$\mathrm{mile} / \mathrm{h}$
concentrate	e.c.	$\operatorname{mil1i}\left(\times 10^{-3}\right)$	m
equal to*	$=$	milliequivalent*	moequiv.
fluid	f1.	milligramme	
foot	$f t$	millilitre	m1

[^0]
WEED RESEARCH ORGANIZATION

TECHNICAL REPORTS

(Price includes surface mail; airmail $£ 0.50$ extra)
6. The botany, ecology, agronomy and control of Poa trivialis L. roughstalked meadow-grass. November 1966. G P Allen. Price - £0. 25
7. Flame cultivation experiments 1965. October, 1966. G W Ivens. Price - £0. 25
8. The development of selective herbicides for kale in the United Kingdom. 2. The methylthiotriazines. Price - £0. 25
10. The liverwort, Marchantia polymorpha L. as a weed problem in horticulture; its extent and control. July 1968. I E Henson. Price - £0. 25
11. Raising plants for herbicide evaluation; a comparison of compost types. July 1968. I E Henson. Price - £0. 25
12. Studies on the regeneration of perennial weeds in the glasshouse; I. Temperate species. May 1969. I E Henson. Price - £0. 25
13. Changes in the germination capacity of three Polygonum species following low temperature moist storage. June 1969. I E Henson. Price. - £0. 25
14. Studies on the regeneration of perennial weeds in the glasshouse. II. Tropical species. May 1970. I E Henson. Price - £0. 25
15. Methods of Analysis for herbicide residues. February 1977. (second edition) - price $£ 5.75$
16. Report on a joint survey of the presence of wild oat seeds in cereal seed drills in the United Kingdom during Spring 1970. November 1970. J G Elliott and P J Attwood. Price - £0. 25
17. The pre-emergence selectivity of some newly developed herbicides, Orga 3045 (in comparison with dalapon), haloxydine (PP 493), HZ 52.112, pronamide (RH 315) and R 12001. January 1971. W G Richardson, C Parker and K Holly. Price - £0. 25
18. A survey from the roadside of the state of post-harvest operations in Oxfordshire in 1971. November 1971. A Phillipson. Price - £0. 12
19. The pre-emergence selectivity of some recently developed herbicides in jute, kenaf and sesamum, and their activity against oxalis latifolia. December 1971. M L Dean and C Parker. Price-£0. 25.
20. A survey of cereal husbandry and weed control in three regions of England. July 1972. A Phillipson, T W Cox and J G Elliott. Price - £0. 35
21. An automatic punching counter. November 1972. R C Simmons. Price - £0. 30
22. The pre-emergence selectivity of some newly developed herbicides: bentazon, BAS 3730 H , metflurazone, SAN 9789, HER 52.123, U 27,267. December 1972. W G Richardson and M L Dean. Price - £0. 25
23. A survey of the presence of wild oats and blackgrass in parts of the United Kingdom during summer 1972. A Phillipson. Price - £0. 25
24. The conduct of field experiments at the Weed Research Organization. February 1973. J G Elliott, J Holroyd and T O Robson. Price £1. 25
25. The pre-emergence selectivity of some recently developed herbicides: lenacil, RU 12068, metribuzin, cyprazine, EMD-IT 5914 and benthiocarb. August 1973. W G Richardson and M L Dean. Price - £1.75.
26. The post-emergence selectivity of some recently developed herbicides: bentazon, EMD-IT 6412, cyprazine, metribuzin, chlornitrofen, glyphosate, MC 4379, chlorfenprop-methyl. October 1973. W G Richardson and M L Dean. Price - £3.31
27. Selectivity of benzene sulphonyl carbamate herbicides between various pasture grasses and clover. October 1973. A M Blair. Price - £l. 05
28. The post-emergence selectivity of eight herbicides between pasture grasses: RP 17623, HOE 701, BAS 3790, metoxuron, RU 12068, cyprazine, MC 4379, metribuzin. October 1973. A M Blair. Price - £1.00
29. The pre-emergence selectivity between pasture grasses of twelve herbicides: haloxydine, pronamide, NC 8438, Orga 3045, chlortoluron, metoxuron, dicamba, isopropalin, carbetamide, MC 4379, MBR 8251 and EMD-IT 5914. November 1973. A M Blair. Price - £1. 30
30. Herbicides for the control of the broad-leaved dock (Rumex obtusifolius L.). November 1973. A M Blair and J Holroyd. Price - £1.06
31. Factors affecting the selectivity of six soil acting herbicides against Cyperus rotundus. February 1974. M L Dean and C Parker. Price - £1. 10
32. The activity and post-emergence selectivity of some recently developed herbicides: oxadiazon, $\mathrm{U}-29,722, \mathrm{U}-27,658$, metflurazone, norflurazone, AC 50-191, AC 84,777 and iprymidam. June 1974. W G Richardson and M L Dean. Price - £3.62
33. A permanent automatic weather station using digital integrators. September 1974. R C Simmons. Price £0.63.
34. The activity and pre-emergence selectivity of some recently developed herbicides: trifluralin, isopropalin, oryzalin, dinitramine, bifenox and perfluidone. November 1974. W G Richardson and M L Dean. Price - £2. 50
35. A survey of aquatic weed control methods used by Internal Drainage Boards, 1973. January 1975. T O Robson. Price - £1. 39
36. The activity and pre-emergence selectivity of some recently developed herbicides: Bayer 94871, tebuthiuron, AC 92553. March 1975. W G Richardson and M L Dean. Price - £1.54
37. Studies on Imperata cylindrica (L.) Beauv. and Eupatorium odoratum L. October 1975. G W Ivens. Price - £1. 75
38. The activity and pre-emergence selectivity of some recently developed herbicides: metamitron, HOE 22870, HOE 23408, RH 2915, RP 20630. March 1976. W G Richardson, M L Dean and C Parker. Price - £3. 25
39. The activity and post-emergence selectivity of some recently developed herbicides: HOE 22870, HOE 23408, flamprop-methyl, metamitron and cyperquat. May 1976. W G Richardson and C Parker. Price - £3. 20
40. The activity and pre-emergence selectivity of some recently developed herbicides: RP 20810, oxadiazon, chlornitrofen, nitrofen, flamprop--isopropy1. August 1976. W G Richardson, M L Dean and C Parker. Price - £2.75.
41. The activity and pre-emergence selectivity of some recently developed herbicides: K 1441, mefluidide, WL 29226, epronaz, Dowco 290 and triclopyr. November 1976. W G Richardson and C Parker. Price - £3.40.
42. The activity and post-emergence selectivity of some recently developed herbicides: KUE 2079A, HOE 29152, RH 2915, Triclopyr and Dowco 290. March 1977. W G Richardson and C Parker. Price - £3.50
43. The activity and pre-emergence selectivity of some recently developed herbicides: dimefuron, hexazinone, trifop-methyl, fluothiuron, buthidazole and butam. November 1977. W G Richardson and C Parker. Price - £3.75.
44. The activity and selectivity of the herbicides: ethofumesate, RU 12709 and isoproturon. December 1977. W G Richardson, C Parker, \& M L D Dean. Price - £4.00
45. Methods of analysis for determining the effects of herbicides on soil soil micro-organisms and their activities. January 1978. M P Greaves, S L Cooper, H A Davies, J A P Marsh \& G I Wingfield. Price - £4.00
46. Pot experiments at the Weed Research Organization with forest crop and weed species. February 1978. D J Turner and W G Richardson.
Price - £2.70
47. Field experiments to investigate the long-term effects of repeated applications of MCPA, tri-allate, simazine and linuron - effects on the quality of barley, wheat, maise and carrots. July 1978. J D Fryer, P D Smith and J W Ludwig. Price - £1.20.
48. Factors affecting the toxicity of paraquat and dalapon to grass swards. March 1978. A K Oswald. Price - £2.90
49. The activity and post-emergence selectivity of some recently developed herbicides: NP 48, RH 5205 and Pyridate. May 1978. W G Richardson and C Parker. Price - £2.50
50. Sedge weeds of East Africa - II. Distribution. July 1978. P J Terry. Price - £1. 50
51. The activity and selectivity of the herbicides methabenzthiazuron, metoxuron, chlortoluron and cyanazine. September 1978. W G Richardson and C Parker. Price - £2.20.
52. Antidotes for the protection of field bean (Vicia faba L.) from damage by EPTC and other herbicides. February 1979. A M Blair. Price - £1. 35
53. Antidotes for the protection of wheat from damage by tri-allate. February 1979. A M B1air. Price - £2.00
54. The activity and pre-emergence selectivity of some recently developed herbicices: alachlor; metolachlor, dimethachlor, alloxydim-sodium and fluridone. April 1979. W G Richardson and C Parker. Price - $£ 3.00$
55. The activity and selectivity of the herbicides carbetamide, methazole, R 11913 and OCS 21693. May 1979. W G Richardson and C Parker. Price - £1.80
56. Growing weeds from seeds and other propagules for experimental purposes. July 1979. R H Webster. Price - £1. 10
57. The activity and pre-emergence selectivity of some recently developed herbicides: R 40244, AC 206784, pendimethalin, butralin, acifluorfen and FMC 39821. December 1979. W G Richardson, T M West and C Parker Price - £ 3.55
58. The tolerance of fenugreek (Trigone11a foenumgraecum L.) to various herbicides. December 1979. W G Richardson. Price-£1.55
59. Recommended tests for assessing the side-effects of pesticides on the soil microflora. April 1980. M P Greaves, N J Poole, K H Domsch, G Jagnow and W Verstraete. Price - £2.00
60. Properties of natural rainfalls and their simulation in the laboratory for pesticide research. September 1980. R C Simmons. Price - £1. 25
61. The activity and post-emergence selectivity of some recently developed herbicides: R 40244, DPX 4189, acifluorfen, ARD 34/02 (NP 55) and PP 009. November 1980. W G Richardson, T M West and C Parker. Price - £3.75
62. The activity and pre-emergence selectivity of some recently developed herbicides: UBI S-734, SSH-43, ARD 34/02 ($=$ NP 55) , PP 009 and DPX 4189. February 1981. W G Richardson, T M West and C Parker. Price - £3.50
63. The activity and post-emergence selectivity of some recently developed herbicides: SSH-41, MB 30755, AC 213087, AC 222293 and Dowco 433. May 1981. W G Richardson, T M West and C Parker. Price - £3.50

[^0]: * Those marked * should normally be used in the text as well as in tables etc.

