Click here for previous

NB: ARD 34/02 (NP55) is sethoxydim, DPX 4189 is chlorsulfuron, PP 009 is fluazifop-butyl, SSH-43 is isouron, UBI S-734 is 2-[1-(2,5-dimethylphenyl)ethylsulfonyl]-1-oxidopyridin-1-ium (Uniroyal)

SPECIES		'ARD 34/02 0.1 kg/ha		ARD 34/02 0.4 kg/ha		ARD 34/0 1.6 kg/h
MAIZE + A (56)	97 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	106 79	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	- 62 36	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
MAIZE (57)	103 86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	69 57	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	0.0	
SORG + A (58)	86 43	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	43 29	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	000000000000000000000000000000000000000	
SORGHUM (59)	104 36	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	98 21	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	0 0	
RICE (60)	6 29	X XXXXXX	0 0		0 0	
PIGEON P (61)	169 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	1	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	+ 169 93	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
COWPEA (62)	110 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	120 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	+ 90 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
CHICKPEA (63)	103 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
GRNDNUT (64)	109 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	+ 109 ^I 71	R XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
SOYABEAN (65)	91 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	91 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
COTTON (66)	104 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	127 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	+ 115 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
JUTE (67)	135 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	116 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	+ 106 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
KENAF (68)	89 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	115 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	+ 96 93	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

'02 ha

* XXXXXXXXX + XXXXXXXX

XXXXXXX XXXXXXXXX

XXXXXXXX XXXXXX

XXXXXXXXX + XXX

XXXXXXX XXXXXXXXX

+ XXXXXXXXX + XXXXXXXXX

XXXXXXXXX + XXXXXXXXX

XXXXXXXX XXXXXXXX

PRE-EMERGENCE SELECTIVITY TEST

NB: SSI

B: ARD 34/02 (NP SH-43 is isouron, SPECIES	P55) is se UBI S-73	thoxydim, DPX 4189 is chlorsul 4 is 2-[1-(2,5-dimethylphenyl)et ARD 34/02 0.1 kg/ha	furon, PP hylsulfony NB: ARD SSH-43 i	009 is fluazifop-butyl, I]-1-oxidopyridin-1-ium (Uniroyal) 0 34/02 (NP55) is sethoxydim, DPX is isouron, UBI \$-734 is 2-[1-(2,5-d	4189 is c imethylph	ARD 34/0 hlorsulfuron, PP 00 enyl)ethylsulforryl]-
SESAMUM	177	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	41	XXXXXXXX
(70)	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	71	XXXXXXXXXXXXX
TOMATO	86 M	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	93	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXX
(71)	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	93	XXXXXXXXXXXXXXXX
ECH CRUS	0		0		0	
(75)	0		. 0		0	
ROTT EXA	43	XXXXXXXXX	0		0	
(76)	36	XXXXXX	0		0	
DIG SANG	0		0		0	
(77)	0		0		0	
SOL NIG	60	XXXXXXXXXXXXX	87	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	87	XXXXXXXXXXXXX
(81)	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	93	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
BROM PEC	56	XXXXXXXXXXX	0		0	
(82)	36	XXXXXXX	0		0	
SNOW POL	0		0		0	
(83)	0		0		0	
PHAL MIN	0		0		0	
(84)	0		0		0	
CYP ESCU	02	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	77	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
(85)	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	93	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
CYP ROTU	07	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	83	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	93	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
(86)	93 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
OVAT TAT	150		136		123	XXXXXXXXXXXXXXXX
OXAL LAT (87)	150 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	129	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

009 is fluazifop-butyl, []-1-oxidopyridin-1-ium (Uniroyal)

.....

1

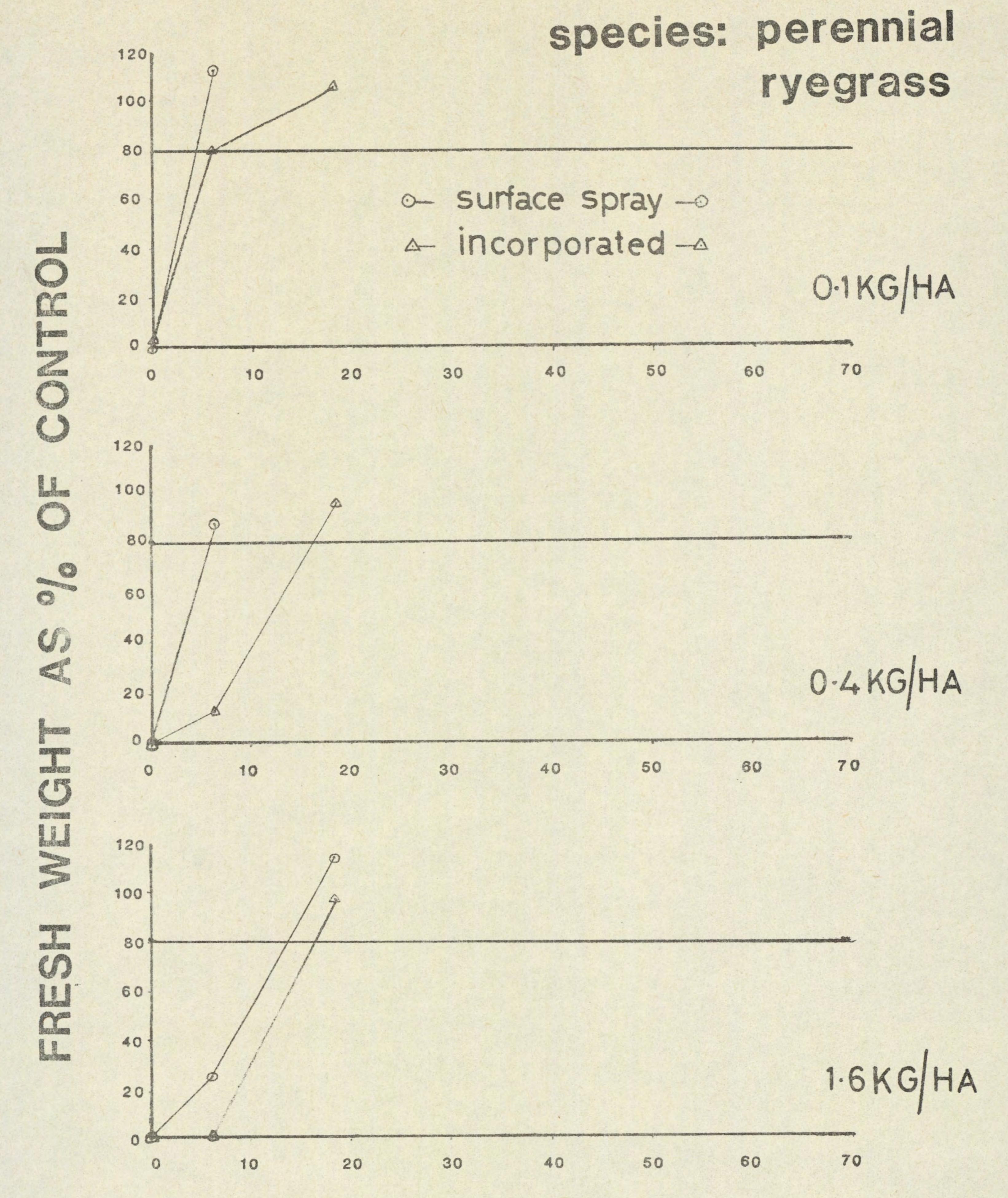
XX

XXXXXXXXX XXXXXXXX

XXXXXX XXXXXXXX

XXXXXXXXX XXXXXXXX

XXXXXXXX XXXXXXXXXX


+ XXXXXXXXX + XXXXXXXXX

PRE-EMERGENCE SELECTI VITY TEST

33

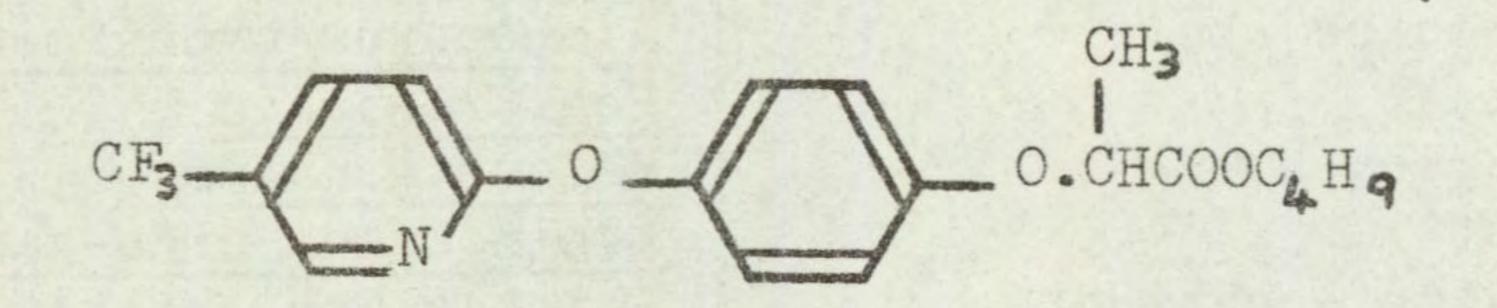
transforman and

1. 367-3°

TIME OF SOWING weeks after treatment

PP 009

Code number


Proposed common name f.

fluazifop-butyl

Chemical name

Butyl 2-[4-(5-trifluoromethyl-2-pyridyloxy) phenoxy]propionate

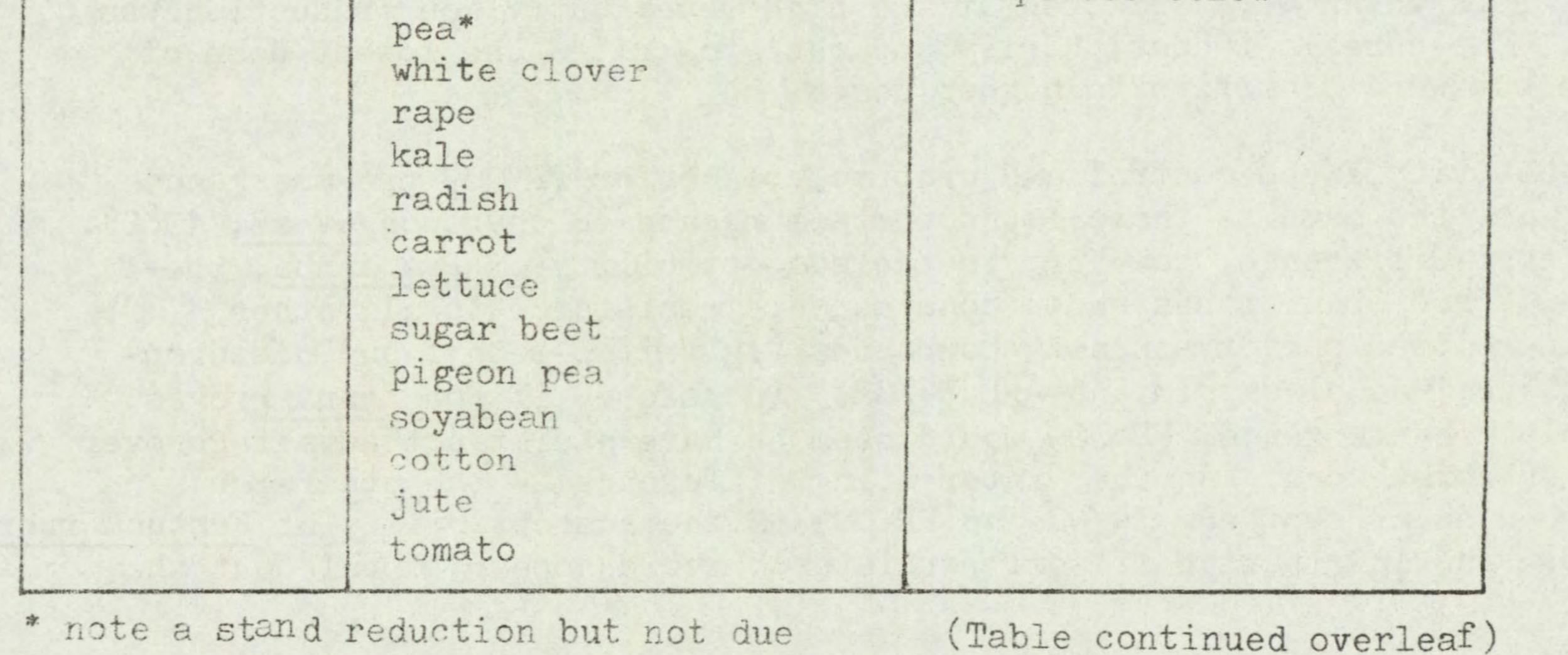
Structure

Source

ICI Plant Protection Ltd Jealott's Hill Research Station Bracknell Berks RG12 6EY UK

Information available and suggested uses

Post-emergence control of annual and perennial grass weeds and selfsown cereals in a wide range of temperate and tropical broad-leaved crops.


Formulation used 25% w/v a.i. emulsifiable concentrate

Spray volume pre-emergence selectivity experiment 370 1/ha

RESULTS

Full results are given in the histograms on pages 38-42 and potential selectivities are summarised in the following table.

RATE	CROPS: vigour reduced	WEEDS: number or vigour
(kg a.i./ha)	by 15% or less	reduced by 70% or more
1.6	onion field bean	Veronica persica + species below

to herbicide

RATE (kg a.i./ha)	CROPS: vigour reduced by 15% or less	WEEDS: number or vigour reduced by 70% or more
0.4	species above + dwarf bean fenugreek cowpea chickpea groundnut kenaf sesamum	Bromus sterilis Festuca rubra Avena fatua Poa annua Agropyron repens Bromus pectinatus + species below
0.1	species above + wheat barley oat maize + antidote	Alopecurus myosuroides Poa trivialis Holcus lanatus Echinochloa crus-galli Rottboellia exaltata Digitaria sanguinalis Snowdenia polystachya Phalaris minor

Comments on results

Activity experiment results, together with symptoms caused on susceptible species, and post-emergence selectivity, were reported earlier (Richardson et al, 1980). As with the preceding herbicide (ARD 34/02) a high level of pre- and postemergence activity was found on grasses, with broad-leaved species highly tolerant.

Persistence in the soil

The graph on page 43 shows a considerable period of persistence of PP 009 in the soil. Surface and incorporated treatments were either no longer or only just detectable 18 weeks after treatment at 0.1 kg/ha. At 0.4 kg/ha the incorporated treatment could not be detected after 38 weeks but the surface treatment was still severely affecting perennial ryegrass even after 53 weeks. At 1.6 kg/ha, after 53 weeks both surface and incorporated treatments were still very active.

Pre-emergence selectivity among temperate species

All grass weeds were controlled at 0.4 kg/ha or lower. Broad-leaved weeds were resistant, with the exception of <u>Veronica persica</u> which was susceptible at the high dose.

Onion and broad-leaved crops were tolerant. Dwarf bean and fenugreek were the only crops which were affected at the high dose, but vigour reduction was only 21%. The cereals (wheat, barley and oat) tolerated the lowest dose of 0.1 kg/ha but were sensitive to higher doses.

The activity, weed control and crop tolerance for PP 009 pre-emergence are generally the same as those found post-emergence (Richardson et al, 1980). One important difference, however, is the susceptibility of <u>Poa annua</u>, preemergence. This species has shown considerable resistance to all other recently developed phenoxy-phenoxy compounds (eg trifop-methyl and diclofopmethyl) as well as alloxydim and ARD 34/02. Therefore, if <u>Poa annua</u> proves susceptible pre-emergence, PP 009 would seem to have a distinct advantage over these other herbicides. Another interesting difference in the otherwise similar weed spectra of ARD 34/02 and PP 009 is the susceptibility of <u>Festuca rubra</u> to PP 009. The long period of soil persistence would appear to rule out the Type text here - 37 -

possibility of using PP 009 to control grass weeds in stubble prior to drilling cereals. However, it may well prove an advantage in broad-leaved crops and onion where control of late germinating weeds is desirable. The control of Veronica persica, though at high, probably uneconomic doses, is of academic interest, in that this was the only broad-leaved weed controlled by the other phenoxy-phenoxy herbicides, eg diclofop-methyl and clofop-isobutyl.

Selectivity among tropical species

This compound showed very similar effects to those of ARD 34/02 but with slightly greater general activity, providing complete kill of all but one of the annual grass weeds at 0.1 kg/ha and slightly more damage on broad-leaved species (crops and weeds) at 1.6 kg/ha. This damage, however, was still very mild and selectivity against grass weeds remains equally impressive.

Maize was quite well protected by NA and selectivity appears just feasible at about 0.1 kg/ha. Protection of sorghum by cyometrinil was inadequate to prevent eventual kill at 0.1 kg/ha. Fresh weights at six weeks are indicated in the table below. More recent work with post-emergence applications of JBI S-734 is 2-[1-(2,5-dimethylph PP 009 10 days after sowing have confirmed moderate protection of both maize and sorghum by NA but not enough to provide clear selectivity against <u>Rottboellia</u>.

Table 6. Shoot fresh wt as % of untreated at 6 weeks

PP 009 kg/ha Control 0.1 0.4 1.6 8, 72 100 0 Maize 85 74 70 0 Maize + NA 100 Sorghum 87 0 Sorghum + cyometrinil

NB: ARD 34/02 (NP55) is sethoxydim, DPX 4189 is chlorsulfuron, PP 009 is fluazifop-butyl, SSH-43 is isouron, UBI S-734 is 2-[1-(2,5-dimethylphenyl)ethylsulfonyl]-1-oxidopyridin-1-ium (Uniroyal)

WHEAT (1)	102 86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	82 14	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	00	
BARLEY (2)	104 86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	78 50	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	13 7	XXX X
OAT (3)	102 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	51 14	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	00	
PER RYGR (4)	57	x	00		00	
ONION (8)	82 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	88 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
DWF BEAN (9)	100 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 79	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
FLD BEAN (10)	104 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	91 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	104 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
PEA (11)	120 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	90 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	75 93	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
W CLOVER (12)	105 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	105 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	90 93	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
RAPE (14)	104 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	104 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
KALE (15)	97 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	101 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	105 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
CARROT (18)	104 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	86 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	92 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
LETTUCE (20)	129 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	90 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 93	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

• PP 009 0.1 kg/ha

PP 009 0.4 kg/ha

 	-	 	

XXXXXXXXX XXXXXXXXX

XXXXXXXXX XXXXX

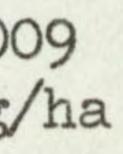
XXXXXXXXX + XXXXXXXXX

XXXX XXXXXXXX

XXXXXXX XXXXXXXX

+ XXXXXXXX + XXXXXXXXX

XXXXXXXXX + XXXXXXXX


XXXXXX XXXXXXXX

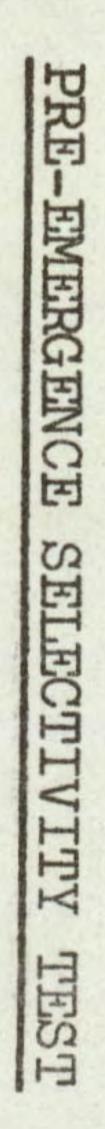
XXXXXXXX XXXXXXX

PRE-EMERGENCE SELECTI < H TT TEST

SPECIES		. PP 009 0.1 kg/ha		PP 009 0.4 kg/ha		PP 009 1.6 kg/ha
SUG BEET (21)	95 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	105 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
FENUGREK (22)	94 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 79	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
BROM STE (24)	31 71	XXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	00		0 0	
FEST RUB (25)	80 93	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	14 43	XXX XXXXXXXXX	000	
AVE FATU (26)	104 86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	61 14	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	00	
ALO MYOS (27)	12 14	XX XXX	000		000	
POA ANN (28)	75 79	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	0		00	
POA TRIV (29)	000		00		00	
SIN ARV (30)	105 93	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	112 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	82 64	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
RAPH RAP (31)	88 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	111 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	102 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
CHRY SEG (32)	115 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	77 93	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	38 57	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
TRIP MAR (33)	106 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	99 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	99 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
SEN VULG (34)	70 93	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	51 93	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	48 86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

PP 009

XXXXXXXXXX XXXXXXXXXX


XXXXXXXXXX XXXXX

XXXXX XX

XXXXXXXXX + XXXXXXXXXX

XXXXXXXXX XXXXXXXXX

XXXXXX

POL LAPA (35)	91 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	97 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	111 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
POL AVIC	106	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	119	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	124	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
(36)	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
GAL APAR (38)	101	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	101	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	93	XXXXXXXXXXXXX
()0)	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
CHEN ALB (39)	103 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	103 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	79 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
STEL MED	89	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	84	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	98	XXXXXXXXXXXXX
(40)	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXX
VER PERS	163	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	111	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	17	XXX
(42)	86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	93	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	50	XXXXXXXXXX
RUM OBTU	39	XXXXXXX	39	XXXXXXXX	117	XXXXXXXXXXXX
(44)	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXX
HOLC LAN	0		0		0	
(45)	0		0		0	
AG REPEN	51	XXXXXXXXX	0		0	
(47)	64	XXXXXXXXXXXX	0		0	
ALL VIN	105	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	105	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	114	XXXXXXXXXXXX
(49)	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXX
CIRS ARV	71	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	124	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	88	XXXXXXXXXXXXX
(50)	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXX
TUS FARF	109	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	109	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	109	XXXXXXXXXXXXX
(51)	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXX
MILLET	0		0		0	
(55)	0		0		0	

. PP 009 0.1 kg/ha

0	

PP 009 4 kg/ha

PP 009 1.6 kg/ha

XXXXXXXXX + XXXXXXXXXX

* XXXXXXXXX + XXXXXXXXXX

XXXXXXXX XXXXXXXXX

XXXXX XXXXXXXXXX

XXXXXXXXXX XXXXXXXXX

XXXXXXXXX + XXXXXXXXX

+ XXXXXXXXX + XXXXXXXXXX

XXXXXXX XXXXXXXXX

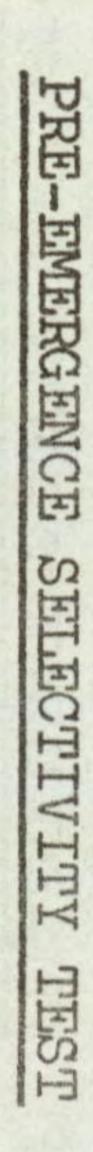
XXXXXXXXX + XXXXXXXXX

PRE-EMERGENCE SELECTIVITY TEST

97 86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		88 57	XXXXXXXX
69 64	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		9 21	XX XXXX
29 21	XXXXXX XXXX		000	
0 0			000	
00			00	
150 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	+	75	R XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
110 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		110 100	XXXXXXXXX
56 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		94 100	XXXXXXXX
109 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		109	R XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
98 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		98 100	XXXXXXXXX
115 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		1	XXXXXXXXX
19 100	XXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		97 93	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
109 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		96 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
	 86 69 64 29 21 0 0 0 0 0 0 0 100 10	86 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	86 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	86 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

P	P 009	
	kg/ha	

PI	2 009
0.4	kg/ha

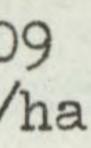

XXXXXXXXXXXX XXXXX

XXXXXXXX XXXXXXXXXXXXXX + XXXXXXXXXXXXXXX + XXXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXXXX + XXXXXXXXXXXXXXXX + XXXXXXXXXXXXXX XXXXXXXXXXXXXX XXXXXXXXXXXXX XXXXXXXXXXXXX + XXXXXXXXXXXXXX . XXXXXXXXXXXXX XXXXXXXXXXXXX XXXXXXXXXXXXX XXXXXXXXXXXXXX

XXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXX XXXXXXXXXXX XXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXXX

PP 009 1.6 kg/ha


SESAMUM (70)	100 R 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 F 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
TOMATO (71)	114 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	121 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
ECH CRUS (75)	000		000	
ROTT EXA (76)	000		000	
DIG SANG (77)	000		00	
SOL NIG (81)	73 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
BROM PEC (82)	44 43	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	00	
SNOW POL (83)	00		000	
PHAL MIN (84)	000		000	
CYP ESCU (85)	92 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	23 100	XXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
CYP ROTU (86)	129 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	103 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
OXAL LAT (87)	95 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	136 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

PP 009 0.1 kg/ha

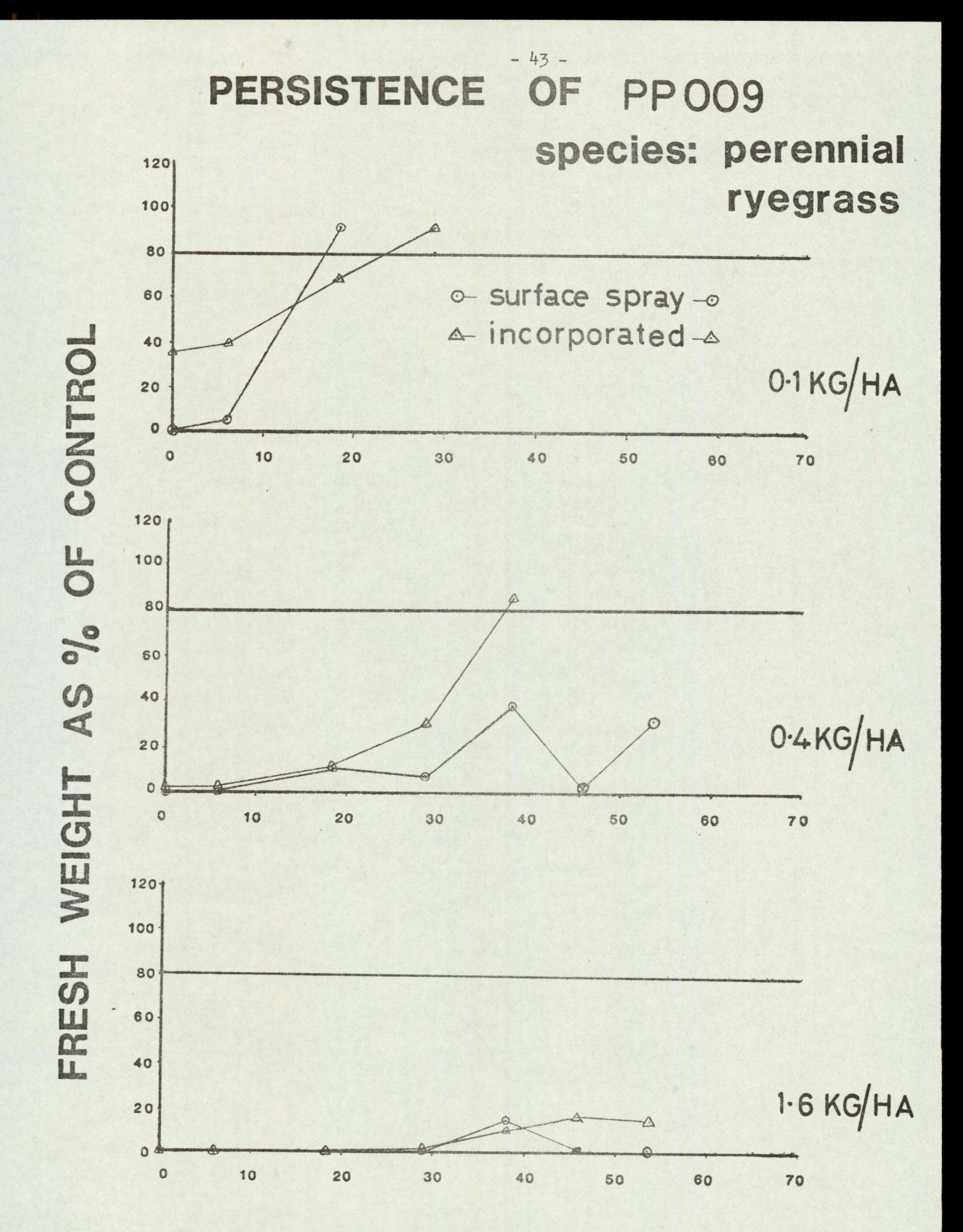
PP 009 0.4 kg/ha

PP 009 1.6 kg/ha

28 43	R	XXXXXXX XXXXXXXX
79 86		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0		
000		
00		
47 71		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
00		
000		
000		
77		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
119		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
95 71		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

XXXXX XXXXXX

cxx


XXX XXXXXXXXX

XXXXXXXX + XXXXXXXXX

XXXXXXX XXX

PRE-EMERGENCE SELECTIVITY TEST

1

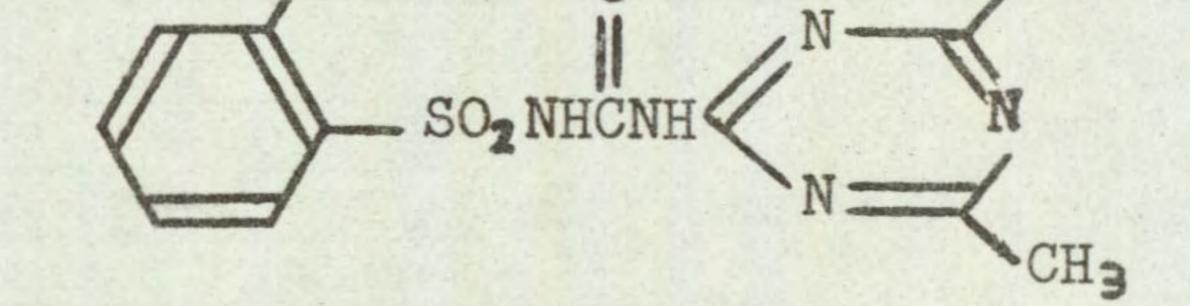
TIME OF SOWING weeks after treatment

The other and the second termination and and and and the transformer and the second termination of termination

Code number

DPX 4189

C1


1

Chemical name

2-chloro-N-[(4-methoxy-6-methyl-1,3,5-triazin-2-yl) aminocarbonyl]benzenesulphonamide

OCHa

Structure

0

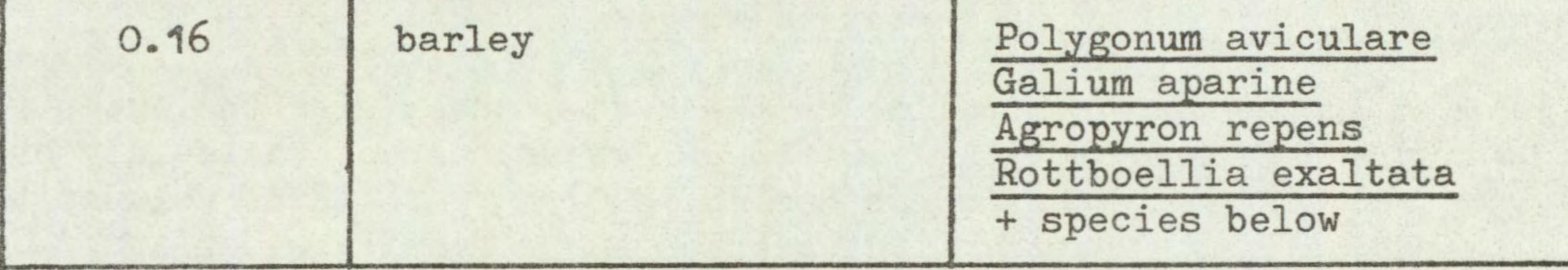
- 44 -

Source

Du Pont (UK) Ltd Biochemicals Department Maylands Avenue Hemel Hempstead Herts HP2 7DP UK

Information available and suggested uses

Pre- or post-emergence control of broad-leaved and certain grass weeds in spring and winter cereals (wheat, barley, rye and oats) and possibly flax post-emergence at doses ranging from 0.005-0.060 kg (5-60 g) a.i./ha. Also promising for use in non-crop land, pastures, grass seed crops and in reduced tillage fallow systems.


Formulation used 80% w/w a.i. wettable powder

Spray volume for pre-emergence selectivity experiment 370 1/ha

RESULTS

Full results are given in the histograms on pages 47-51 and potential selectivities are summarised in the following table.

RATE	CROPS: vigour reduced	WEEDS: number or vigour
(kg a.i./ha)	by 15% or less	reduced by 70% or more

(Table continued overleaf)

RATE (kg a.i./ha)	CROPS: vigour reduced by 15% or less	WEEDS: number or vigour reduced by 70% or more
0.04	species above + wheat maize + antidote	Alopecurus myosuroides Poa annua Echinochloa crus-galli Digitaria sanguinalis Solanum nigrum Phalaris minor + species below
0.01	species above + oat sorghum + antidote	Festuca rubra Poa trivialis Sinapis arvensis Raphanus raphanistrum Chrysanthemum segetum Tripleurospermum maritimum Senecio vulgaris Polygonum lapathifolium Chenopodium album Stellaria media Veronica persica Rumex obtusifolius Holcus lanatus Allium vineale Cirsium arvense Tussilago farfara Snowdenia polystachya Oxalis latifolia

Comments on results

Activity, post-emergence selectivity and symptoms caused on susceptible species were the subject of a recent report (Richardson et al, 1980). A very high level of pre- and post-emergence activity was evident due to a powerful inhibition of meristems in both shoots and roots. In pre-emergence treatments it was not possible to establish differences between surface and incorporated treatments, both being equally effective even at the lowest dose of 0.025 kg/ha.

Persistence in the soil

The graph on page 52 shows that persistence in the soil is long. The test species, sugar beet, was still severely affected or killed, 53 weeks after treatment at the lowest dose, whether applied to the surface or incorporated.

Pre-emergence selectivity among temperate species

All weeds tested were controlled at the highest dose with the exception of <u>Avena fatua</u> and <u>Bromus sterilis</u>. Of the 24 weeds tested, 16 (mainly broadleaved) were controlled by the lowest dose of 0.01 kg/ha. This included the perennial weeds, <u>Allium vineale</u>, <u>Cirsium arvense</u> and <u>Tussilago farfara</u>. Composite, cruciferous and most polygonaceous weeds were susceptible and significantly, <u>Veronica persica</u>. Three grass weeds were also susceptible the higher dose of 0.04 kg/ha being required to control <u>Poa annua</u> and <u>Alopecurus myosuroides</u>, but both were reduced in vigour by greater than 50% at the lowest dose. Similarly with <u>Galium aparine</u>, the highest dose of 0.16 kg/ha was required to secure adequate control, but plants were reduced in vigour by 50% or more at the lower doses. In fact growth virtually ceased for a period of several weeks before axillary shoots and leaves developed and plants recovered.

- 46 -

Crop tolerance was confined to the cereals. Barley tolerated the highest dose, wheat the medium dose and oat the lowest dose. Although symptoms were seen at the high dose on wheat at the main assessment 5-6 weeks after spraying, as slightly darker green-coloured and narrower leaves with some slight retardation of growth, plants recovered and headed normally and fresh weights of shoots were the same as in the untreated controls. Barley exhibited an enhanced red pigmentation on the lower stems but no depression of shoot fresh weights was found at harvest. All other crops tested were highly sensitive with the possible exception of dwarf and field bean, which were reduced in vigour by only 29 and 36% respectively at the lowest dose of 0.01 kg/ha.

DPX 4189 would appear to offer outstanding potential for pre-emergence

control of a very broad spectrum of annual and perennial weeds in wheat and barley, paralleling results found earlier post-emergence (Richardson et al, 1980). Control of grass weeds was more effective pre- rather than post-emergence. The long period of persistence could prove an advantage in the continuous growing of cereals and in fallow when long term weed control, including control of late germinating weeds is desirable, but some caution is necessary regarding the use of crops other than cereals in the rotation. The control of <u>Allium</u> <u>vineale</u> in cereals found in this test deserves further investigation, postas well as pre-emergence, as this weed tends to persist in some areas and available treatments such as repeated application of 2,4-D butyl ester still only give partial control or temporary suppression. The resistance of <u>Avena</u> <u>fatua</u> is unfortunate, necessitating mixture studies primarily with herbicides of specific use on this weed.

Selectivity among tropical species

Although showingdramatically high activity on most of the tropical annual weeds species, this compound is almost as damaging to all the crops too at 0.01 kg (10 g) per ha. It is hardly valid to make direct comparisons between the tropical and temperate halves of the experiment but it is interesting to note the probable selectivity against <u>Phalaris minor</u> and <u>Snowdenia polystachya</u> in wheat at 0.04 kg/ha. <u>Bromus pectinatus</u> was somewhat less susceptible but recovery from 0.16 kg/ha was very doubtful.

<u>Cyperus</u> species were highly tolerant but <u>Oxalis latifolia</u> showed even greater susceptibility pre-emergence than that already observed from postemergence application (Richardson et al, 1980). After 16 weeks there was still good suppression by 0.01 and 0.04 kg/ha and most bulbs had been killed at 0.16 kg/ha.

The only selectivity within the tropical crops was demonstrated with maize when treated with NA. The degree of protection was quite outstanding (see table below) well over four-fold and approaching 16-fold, such that there was good tolerance of 0.04 kg/ha and hence selectivity against a wide range of weeds. This range barely includes <u>Rottboellia</u> but subsequent work already published elsewhere (Parker et al, 1980) suggests that the possibility of such selectivity is well worth exploring further. Sorghum shows only moderate protection by cyometrinil. It has since been shown to be protected more efficiently by NA (Parker et al, 1980) but the safe dose is still substantially lower than that for maize and practical value is doubtful.

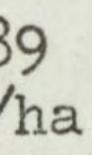
 Table 7.
 Shoot fresh wt as % of untreated at 6 weeks

 DPX 4189 kg/ha

 Control
 0.01
 0.04
 0.16

 Maize
 100
 69
 3
 1

Maize + NA	85	91	90	47
Sorghum	100	44	9	1
Sorghum + cyometrinil	87	61	35	2


WHEAT (1)	109 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	102 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	102 79	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
BARLEY (2)	98 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	104 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	104 86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
OAT (3)	96 93	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	96 79	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	102 57	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
PER RYGR (4)	61 29	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	10 29	XX XXXXXX	15 14	XXX XXX
ONION (8)	6 14	X XXX	00		00	
DWF BEAN (9)	100 71	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	80 36	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	40 14	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
FLD BEAN (10)	104 64	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	104 43	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	91 36	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
PEA (11)	45 21	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	00		00	
W CLOVER (12)	109 14	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	101 14	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	82 14	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
RAPE (14)	00		19 7	XXXX X	22 7	XXXX X
KALE (15)	47 14	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	39 14	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	55 14	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
CARROT (18)	67 29	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	37 14	XXXXXXX XXX	37 14	XXXXXXX XXX
LETTUCE (20)	90 29	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 21	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	105 14	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

NB: ARD 34/02 (NP55) is sethoxydim, DPX 4189 is chlorsulfuron, PP 009 is fluazifop-butyl, SSH-43 is isouron, UBI S-734 is 2-[1-(2,5-dimethylphenyl)ethylsulfonyl]-1-oxidopyridin-1-ium (Uniroyal)

DPX 4189 0.01 kg/ha

DPX 4189 0.04 kg/ha

DPX 4189 0.16 kg/ha

PRE EMERGEN NCE SEI E 0 H H < H TY TEST

SPECIES	Type text here	· DPX 4189 0.01 kg/ha Type text here	Type text	DPX 4189 0.04 kg/ha		DPX 4189 0.16 kg/h
SUG BEET	9	XX	14	XXX	9	XX
(21)	7	x	14	XXX	7	x
FENUGREK	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	94	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	87	XXXXXXXXXXXXXX
(22)	29	XXXXXX	14	XXX	14	XXX
BROM STE	97	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	102	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	97	XXXXXXXXXXXXXX
(24)	86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	57	XXXXXXXXXXX	43	XXXXXXXXX
FEST RUB	46	XXXXXXXX	23	XXXXX	17	XXX
(25)	29	XXXXXX	29	XXXXXX	29	XXXXXX
AVE FATU	73	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	104	XXXXXXXXXXXXXXX
(26)	93	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	71	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	64	XXXXXXXXXXXXX
ALO MYOS	129	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	76	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	71	XXXXXXXXXXXXX
(27)	43	XXXXXXXXX	29	XXXXXX	29	XXXXXX
POA ANN	34	XXXXXXX	14	XXX	7	x
(28)	36	XXXXXX	1	X	7	x
POA TRIV	62	XXXXXXXXXXXX	42	XXXXXXX	21	XXXX
(29)	14	XXX	14	XXX	14	XXX
SIN ARV	105	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	37	XXXXXX	67	XXXXXXXXXXXXX
(30)	14	XXX	7	X	14	XXX
RAPH RAP	88	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	74	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	69	XXXXXXXXXXXXXX
(31)	21	XXXX	14	XXX	14	XXX
CHRY SEG	26	XXXXX	19	XXXX	13	XXX
(32)	1	X	7	X	7	X
TRIP MAR	37	XXXXXXX	44	XXXXXXXX	26	XXXXX
(33)	14	XXX	14	XXX	14	XXX
SEN VUIG	0		0		0	
(34)	0		0		0	

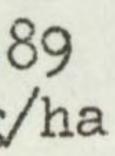
189 g/ha

XXXXXX

XXXXXXXX

* XXXXXXXXX + X

XXX


XX

PRE-EMERGENCE SEL ECTI H H TEST

48

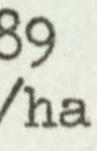
NB: ARD SSH-43 is

		DPX 4189		DPX 4189		DPX 4189
SPECIES		0.01 kg/ha		0.04 kg/ha		0.16 kg/ha
POL LAPA (35)	97	XX X	67	X	00	
POL AVIC (36)	106 43	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	71 36	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	110 29	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
GAL APAR (38)	110 50	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	93 43	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	71 29	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
CHEN ALB (39)	000000000000000000000000000000000000000		00		00	
STEL MED (40)	29 14	XXXXXX XXX	19 14	XXXX XXX	12 7	xx x
VER PERS (42)	00		000		00	
RUM OBTU (44)	91 14	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	0		65 7	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
HOLC LAN (45)	58 21	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	58 14	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	46 14	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
AG REPEN (47)	103 43	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	103 36	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	43 14	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
ALL VIN (49)	32 14	XXXXXX XXX	8 7	XX X	000	
CIRS ARV (50)	000		000		000	
TUS FARF (51)	000		00		000	
MILLET (55)	85 43	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	53 29	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	4 7	X X

* XXXXXXXXX +

PRE-EMERGENCE SELECTIVITY TEST

1


49

1

.

SPECIES		'DPX 4189 0.01 kg/ha		DPX 0.04
MAIZE + A (56)	97 93	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	106 86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
MAIZE (57)	94 64	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	77 43	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
SORG + A (58)	93 86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	114 64	XXXXXXXXX
SORGHUM (59)		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	91 43	XXXXXXXXX
RICE (60)	79 50	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	28 36	XXXXXXXX
PIGEON P (61)	94 64	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	19 21	XXXXX XXXX
COWPEA (62)	110 79	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	80 36	XXXXXXXXX
CHICKPEA (63)	84 36	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	9 14	XXX
GRNDNUT (64)	55 R 57	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	000	
SOYABEAN (65)	91 50	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	98 29	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
COTTON (66)	115 43	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	127 29	XXXXXXXX
JUTE (67)	00		000	
KENAF (68)	83 36	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	77 29	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

DPX 4189 X 4189 0.16 kg/ha)4 kg/ha 97 XXXXXXXXXXXXXXXXXXXXXX CXXXXXXXXXXXXXXX + 64 XXXXXXXXXXXXXX XXXXXXXXX 26 XXXXX XXXXXXXX 21 XXXX X 107 + XXXXXXXXXXXX + 43 XXXXXXXXX XXXXX 91 XXXXXXXXXXXXXXXXXXXX XXXXXXXXXX 29 XXXXXX 3 0 14 XXX 50 XXXXXXXXXX XXXXXXXX 14 XXX 91 XXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXX 29 XXXXXX 58 XXXXXXXXXXXX XXXXXXXXXXXX + 29 XXXXXXX 0 0 51 XXXXXXXXXX XXXXXXXX 29 XXXXXX

PRE EMERGENCE 5 ELECTI < TTY H EST

SPECIES		DPX 4189 0.01 kg/ha		DPX 4189 0.04 kg/ha		DPX 4189 0.16 kg/h
SESAMUM (70)	000		00		-	
TOMATO (71)	107 43	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	36 29	XXXXXXX XXXXXX	29 29	XXXXXXX XXXXXXX
ECH CRUS (75)	86 36	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	50 29	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	4 7	x
ROTT EXA (76)	76 43	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	95 43	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	76 29	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
DIG SANG (77)	85 43	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	29 29	XXXXXX XXXXXX	8 29	XXXXXXX
SOL NIG (81)	87 36	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	73 29	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	87 29	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
BROM PEC (82)	96 71	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	78 57	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	63 43	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
SNOW POL (83)	40 29	XXXXXXXX XXXXXXX	37 29	XXXXXXX XXXXXX	22 29	XXXXX XXXXXX
PHAL MIN (84)	75 36	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	61 29	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	47 29	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
CYP ESCU (85)	54 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	85 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	62 64	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
CYP ROTU (86)	88 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	78 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	103 79	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
OXAL LAT (87)	164 29	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	55 29	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	14 14	XXX XXX

39 ha

XXX

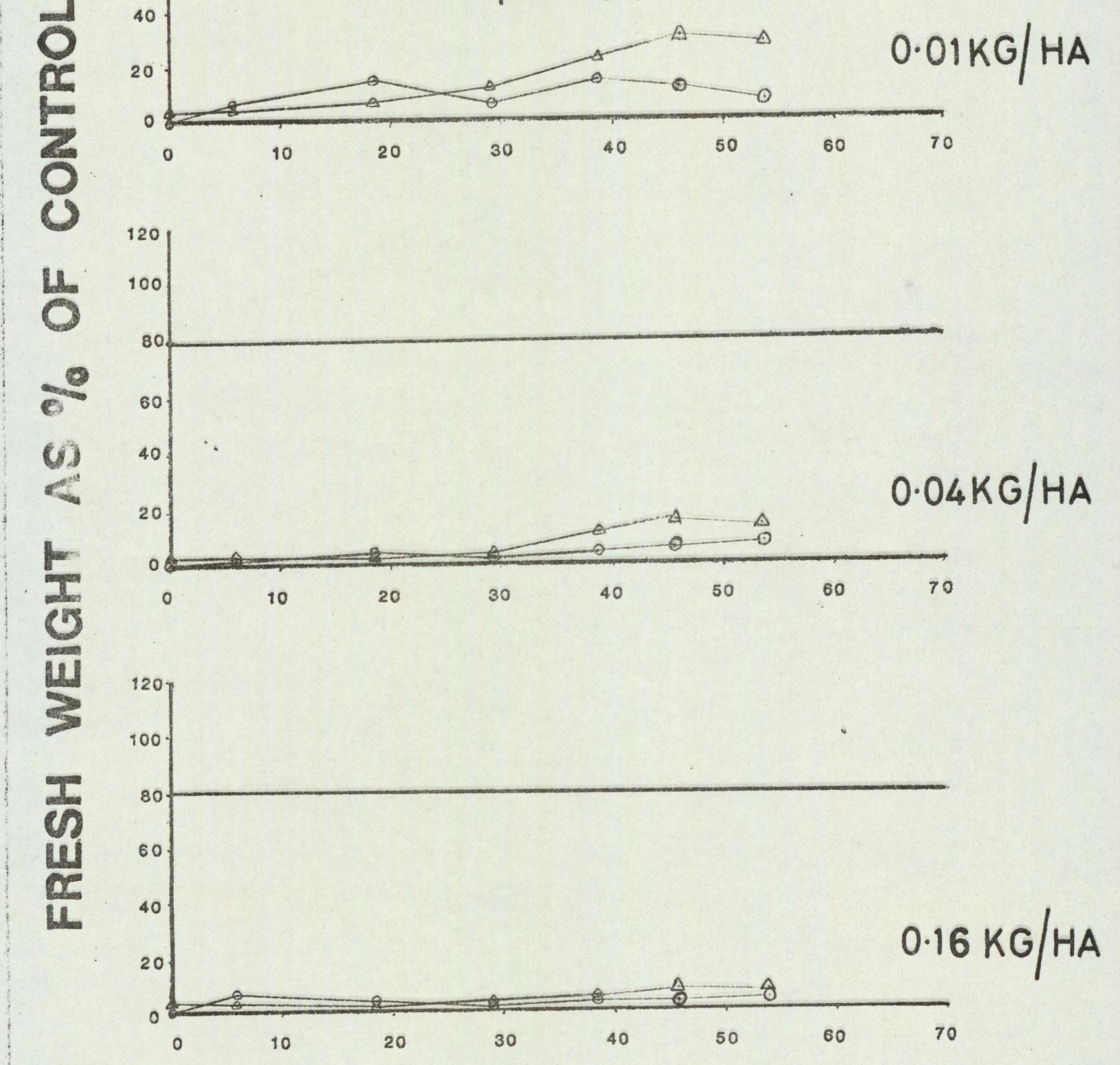
XXXXX

xxxxxxxx + XXXXX

PRE EMERGENCE SELECTIV Aut TEST

Type text here PERSISTENCE OF DPX 4189 Type text here species: sugar beet

NB: ARD 34/02 (NP55) is sethoxydim, DPX 4189 is chlorsulfuron, PP 009 is fluazifop-butyl, SSH-43 is isouron, UBI S-734 is 2-[1-(2,5-dimethylphenyl)ethylsulfonyl]-1-oxidopyridin-1-ium (Uniroyal)


o- surface spray -o a- incorporated -a

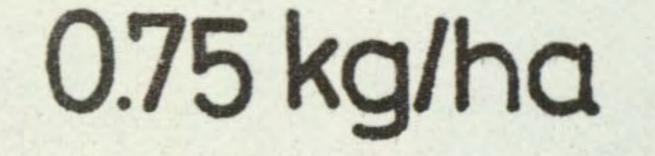
60

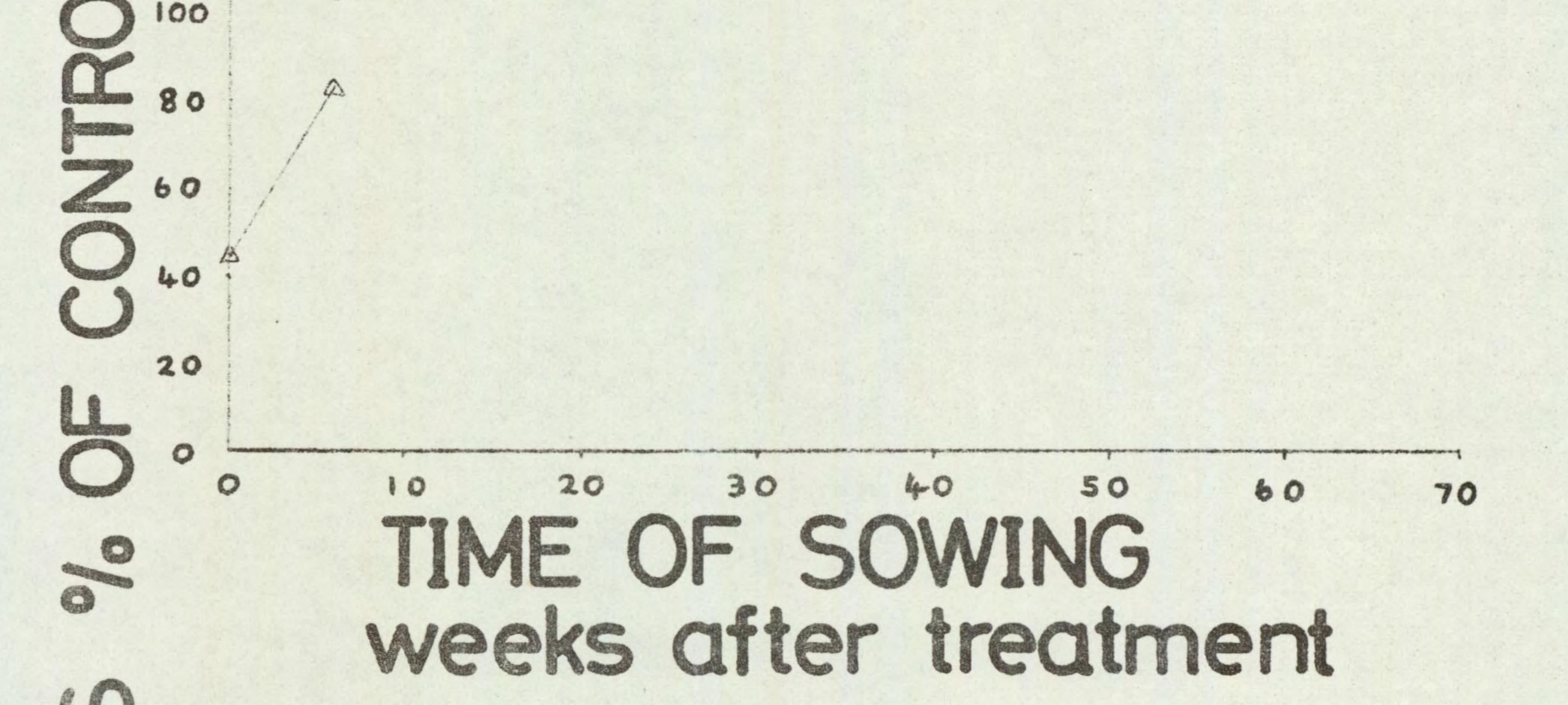
A PARTY OF A DESCRIPTION OF A DESCRIPTIO

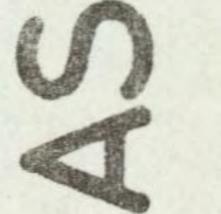
80

1201

TIME OF SOWING weeks after treatment

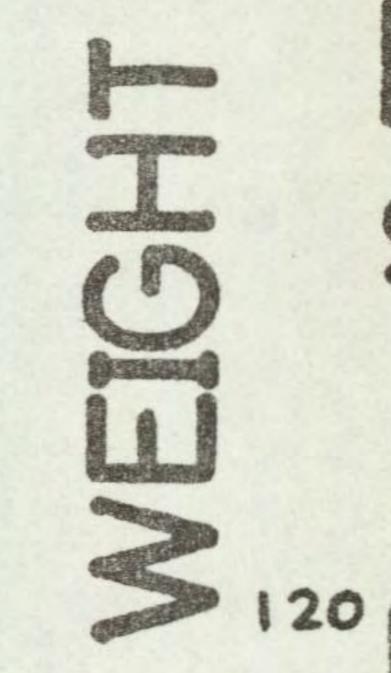

and a first the second s


A REAL PROPERTY AND A REAL


PERSISTENCE OF CYANAZINE species: Perennial Ryegrass

- 53 -

Surface spray -0
 incorporated -



120

0


PERSISTENCE OF SIMAZINE species: Perennial Ryegrass

100 1

80

0.75 kg/ha

ACKNOWLEDGEMENTS

We are grateful to the joint Letcombe/WRO Statistics Section for processing the experimental data; to Mr G P White, Miss D Stringer and Messrs R H Webster and R M Porteous for technical and practical assistance; to Mrs J Souch for the preparation and typing of this report; to Mrs S Cox and her staff for its duplication and to the commercial firms who provided the herbicides and relevant data.

- 54 -

The work of the ODA Tropical Weeds Group was carried out under Project D.11 (27) financed by HM Overseas Development Administration.

REFERENCES

PARKER, C., RICHARDSON, W.G. and WEST, T.M. (1980) Potential for extending the selectivity of DPX 4189 by use of herbicide safeners. <u>Proceedings</u> <u>British Crop Protection Conference - Weeds</u>, 15-22.

RICHARDSON, W.G. and DEAN, M.L. (1973) The pre-emergence selectivity of some recently developed herbicides: lenacil, RU 12068, metribuzin, cyprazine, EMD-IT 5914 and benthiocarb. <u>Technical Report Agricultural Research</u> <u>Council Weed Research Organization</u>, <u>25</u>, pp 57.

RICHARDSON, W.G., DEAN, M.L. and PARKER, C. (1976) The activity and preemergence selectivity of some recently developed herbicides: metamitron, HOE 22870, HOE 23408, RH 2915 and RP 20630. <u>Technical Report Agricultural</u> Research Council Weed Research Organization, 38, pp 55.

RICHARDSON, W.G. and PARKER, C. (1978) The activity and post-emergence selectivity of some recently developed herbicides: NP 48, RH 5205 and pyridate. <u>Technical Report Agricultural Research Council Weed Research</u> <u>Organization</u>, 49, pp 38.

RICHARDSON, W.G. and PARKER, C. (1979) The activity and pre-emergence selectivity of some recently developed herbicides: alachlor, metolachlor, dimethachlor, alloxydim-sodium and fluridone. <u>Technical Report Agricultural Research</u> <u>Council Weed Research Organization, 54</u>, pp 61.

RICHARDSON, W.G., WEST, T.M. and PARKER C. (1980) The activity and postemergence selectivity of some recently developed herbicides: R 40244, DPX 4189, acifluorfen, ARD 34/02 (= NP 55) and PP 009. Technical Report Agricultural Research Council Weed Research Organization, 61, pp 55.

ZIEGENBEIN G. (1976) Control of Lolium species in red fescue by a phenoxyphenoxy - acid compound. Proceedings British Crop Protection Conference - Weeds, 2, 665-667.

Appendix 1. Species, abbreviations, cultivars and stage of growth at assessment

Designation and Cultivar computer or serial source number No. of per planpot ting (cm) Stage of growth at assessment (untreated controls, leaf numbers exclusive of cotyledons)

- 55 -

Temperate species

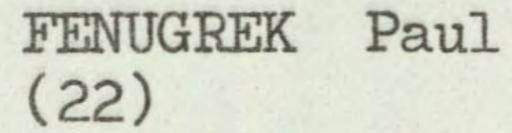
-

Wheat (Triticum aestivum)	WHEAT (1)	Maris Huntsman	8	1.0	8-9 leaves, tillering
Barley (Hordeum vulgare)	BARLEY (2)	Maris Mink	8	1.0	5-6 leaves, tillering
Oat (Avena sativa)	OAT (3)	Peniarth	8	1.0	9 leaves, tillering
Perennial ryegrass (Lolium perenne)	PER RYGR (4)	S 23	15	0.5	10-12 leaves, tillering
Onion (Allium cepa)	ONION	Rijnsburger, w. Robusta	15	0.5	2-3 leaves
Dwarf bean* (Phaseolus vulgaris)	DWF BEAN (9)	The Prince	3	2.0	1글-2글 trifoliate leaves
Field Bean (Vicia faba)	FLD BEAN (10)	Maris Blaze	4	2.0	5 ¹ / ₂ -6 leaves
Pea (Pisum sativum)	PEA (11)	Dark Skinned Perfection	4	1.0	8-9 leaves
White Clover (Trifolium repens)	W Clover (12)	S 100	15	0.5	21 trifoliate leaves
Rape (<u>Brassica napus</u> <u>oleifera</u>)	RAPE (14)	Rapora	15	0.5	22-32 leaves
Kale (Brassica oleracea acephala)	KALE (15)	Marrowstem	10	0.5	21-41 leaves

Carrot (Daucus carota)	CARROT (18)	Chantenay Red Core	10	0.5	2 2 -3 2 leaves
Lettuce (Lactuca sativa)	LETTUCE (20)	Reskia	12	0.5	6-7 leaves
Sugar beet (Beta vulgaris)	SUG BEET (21)	Nomo	12	1.0	32 leaves

* raised with tropical species until emergence, then transferred to lower temperature regime.

Appendix 1. cont'd


- 56 -

Designation and Cultivar computer or serial source number No. of per planpot ting (cm)

4

Stage of growth at assessment (untreated controls, leaf numbers exclusive of cotyledons)

Fenugreek (Trigonella

0.5 32 trifoliate leaves

foenumgraecum)

BROM STE 10 leaves, 10 0.5 Bourton on Bromus tillering (24)the water 1979 sterilis Boreal CDN 7 leaves 20 FEST RUB 0.5 Festuca rubra (25) 86-0192 $4\frac{1}{2}-6$ leaves, 12 AVE FATU B and S 1.0 Avena fatua (26) some tillering Supplies 1977 25 ALO MYOS 0.25 15 leaves, B and S Alopecurus tillering myosuroides (27) Supplies 1976 POA ANN 15 4-5 leaves, Poa annua B and S 0.5 (28)some tillering Supplies 1977 20 WRO 1978 Poa trivialis POA TRIV 0.5 9 leaves,

		(29)				tillering
	<u>Sinapis arvensis</u>	SIN ARV (30)	WRO 1965	20	0.5	5 leaves
	Raphanus raphanistrum	RAPH RAP (31)	Long Black Spanish	12	0.5	41 leaves
	Chrysanthemum segetum	CHRY SEG (32)	WRO 1979	25	sur- face	8 leaves
	Tripleurospermum maritium	TRIP MAR (33)	WRO 1976	20	sur- face	12 leaves
	Senecio vulgaris	SEN VUIG (34)	B and S Supplies 1979	40	0.25	10-12 leaves
	Polygonum lapathifolium	POL LAPA (35)	WRO 1978	15	0.5	2 ¹ / ₂ leaves
	Polygonum aviculare	POL AVIC (36)	B and S Supplies 1976	50	0.5	7-8 leaves
•	Galium aparine	GAL APAR (38)	WRO 1978	12	1.0	9-15 whorls
	Chenopodium album	CHEN ALB (39)	B and S Supplies 1977	30	0.5	0-5 leaves
	Stellaria media	STEL MED (40)	B and S Supplies 1977	25	0.5	20 leaves

Appendix 1. cont'd

- 57 -

Designation and Cultivar No. of (un computer or per planserial source pot ting lea number exce

Stage of growth at assessment (untreated controls, leaf numbers exclusive of cotyledons)

1.4

Veronica persica VER PERS WRO 1977 20 0.5 12 leaves (42)

Rumex obtusifolius	RUM OBTU (44)	B and S Supplies 1977	15	0.25	2 leaves
Holcus lanatus	HOLC LAN (45)	WRO 1977	15	0.5	8-9 leaves, tillering
Agropyron repens	AG REPEN (47)	WRO Clone 31	67	1.0	5½ leaves, some tillering
Allium vineale	ALL VIN (49)	WRO 1979	12+	1.0	2-3 leaves
<u>Cirsium arvense</u>	CIRS ARV (50)	WRO Clone 1	444	1.0	6 leaves
Tussilago farfara	TUS FARF (51)	WRO Clone 1	4/	1.0	4 leaves

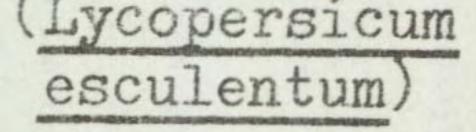
Tropical species (grou	m under hi	gher temperatur	re regin	ne)	
Millet (<u>Pennisetum</u> americanum)	MILLET (55)	ICRISAT 1977	10	0.5	32-42 leaves
Maize + antidote . (Zea mays)	MAIZE + A (56)	Julia	6	2.0	4-42 leaves
Maize (Zea mays)	MAIZE (57)	Julia	6	2.0	4-42 leaves
Sorghum + antidote (Sorghum vulgare)	SORG + A (58)	Funk (ex Ciba Geigy)	8	1.0	5 leaves
Sorghum (Sorghum vulgare)	SORGHUM (59)	Funk	8	1.0	5 leaves

Rice (Oryza sativa)	RICE (60)	IR 298	10	1.0	4 leaves
Pigeon pea (Cajanus cajan)	PIGEON P (61)	ICRISAT 1 G 1977	6	1.0	5-6 trifoliate leaves
Cowpea (Vigna unguiculata)	COWPEA (62)	ICRISAT S7 1977	6	1.0	2 trifoliate leaves
Chickpea (Cicer arietinum)	CHICKPEA (63)	G 62404	6	1.0	10-15 pinnate leaves

Appendix 1. cont'd

- 58 -

Designation and Cultivar computer or serial source number No. of per planpot ting (cm) Stage of growth at assessment (untreated controls, leaf numbers exclusive of cotyledons)


Groundnut

(Anachia homomona)

GRNDNUT Nige

Nigeria 1977 4 2.0 6-8 pinnate

(Arachis hypogaea)	(64)				leaves	
Soyabean (Glycine max)	SOYABEAN (65)	Fiskby V.	8	1.0	2-3 trifoliate leaves	
Cotton (Gossypium hirsutum)	COTTON (66)	S 71	6	1.0	2-3 leaves	The second s
Jute (Corchorus olitorius)	JUTE (67)	UAR 1971	20	0.5	5-6 leaves	
Kenaf (Hibiscus cannabinus)	KENAF (68)	Ghana A 63-440, 1978	10	0.5	4-5 leaves	
Sesamum (Sesamum indicum)	SESAMUM (70)	ICRISAT 1977 E 8	30	0.5	4-6 leaves	
Tomato	TOMATO	Ailsa Criag	6	0.5	6-10 leaves	

Eleusine indica

Echinochloa crus-galli

Rottboellia exaltata

Digitaria sanguinalis

Amaranthus retroflexus

Solanum niorum

(71)

ELEU IND WRO 1977 15 0.5 3-10 leaves (74)

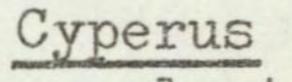
ECH CRUS WRO 1976 15 0.5 4 leaves (75)

ROTT EXA Zambia, 1978 15 0.5 4-6 leaves (76)

DIG SANG WRO 1973 20 0.25 4-6 leaves (77)

AMAR RET WRO 1972 50 0.25 Not assessed (78)

SOT NTC LIDO AODO FO - - -


DOTAIIAM UTBLAW	(81)	WRO 1977	50	0.25	7-8 leaves
Bromus pectinatus	BROM PEC (82)	Tanzania	15	0.5	2 ¹ / ₂ leaves
<u>Snowdenia</u> polystachya	SNO POL (83)	Ethiopia 1978	35	0.25	31-5 leaves
Phalaris minor*	PHAL MIN (84)	Jordan 1977	20	0.25	2-22 leaves

* raised with temperate species until emergence, then transferred to higher temperature regime.

Appendix 1. cont'd

- 59 -

Designa- tion and Cultivar No. Depth computer or per plan- serial source pot ting number (cm) growth at assessment (untreated controls, leaf numbers exclusive of cotyledons)	tion and Cul computer or serial sou	per	of plan- ting	(untreated controls, leaf numbers exclusive of	
---	---	-----	---------------------	---	--

CYP ESCU WRO Clone 2 7** 2.0 5-8 leaves/

esculentus	(85)	(ex South Africa)	shoot
<u>Cyperus</u>	CYP ROTU	WRO Clone 1	5** 2.0 10-12 leaves
rotundus	(86)	(Zimbabwe)	
Oxalis latifolia	OXAL LAT	WRO Clone 2	15: ARD 34/02 (NP55) 5-315 oxydim, for 14-59 is chlorsulfuron, PP 00
	(87)	(Cornwall)	SSH 33 is isouron, UBI Se734 is 2-[1-(2,5-dimethylphenyl)ethylsulfonyl]-

** = tubers
/ = one node rhizome fragments
// = 4 cm root fragments
+ = aerial bulbils

ABBREVIATIONS

angström	R	freezing point	f.p.
Abstract	Abs.	from summary	F.s.
acid equivalent*	a.e.	gallon	ga1
acre	ac	gallons per hour	ga1/h
active ingredient*	a.i.	gallons per acre	gal/ac
approximately equal to*		gas liquid chromatography	GLC

aqueous concentrate	a.c.	gramme	g
bibliography	bibl.	hectare	ha
boiling point	b.p.	hectokilogram	hkg
bushe1	bu	high volume	HV
centigrade	C	horse power	hp
centimetre*	cm	hour	h
concentrated	concd	hundredweight*	cwt
concentration concentration x	concn	hydrogen ion concentration*	pH
time product	ct	inch	in.
concentration required to kill		infra red	i.r.
50% test animals	LC50	kilogramme	kg
cubic centimetre*	cm ³	kilo $(x10^3)$	k
cubic foot*	ft ³	less than	<
cubic inch*	in ³	litre	1.
cubic metre*	m	low volume	LV
cubic yard*	yd ³	maximum	nax.
cultivar(s)	cv.	median lethal dose	LD50
curie*	Ci	medium volume	MV
degree Celsius*	°c	melting point	n.p.
degree centigrade	°c	metre	11
degree Fahrenheit*	°F	micro (x10 ⁻⁶)	μ
diameter	diam.	microgramme*	μg
diameter at breast height	d.b.h.	micromicro (pico: x10 ⁻¹²)*	htt
divided by*	e or /	micrometre (micron)*	μm (or μ)
dry matter	d.m.	micron (micrometre)*†	μm (or μ)
emulsifiable concentrate	e.c.	miles per hour* milli (x10 ⁻³)	mile/h
equal to*	-	milliequivalent*	m.equiv. /
fluid	f1.		
foot	ft	milligramme millilitre	mg ml
		minifice	FIL &

.

4.

.

t The name micrometre is preferred to micron and μm is preferred to $\mu .$

millimetre*
millimicro*
(nano: x10⁻⁹)
minimum
minus
minute
molar concentration*
molecule, molecular
more than

n or mµ min. min M (small cap) mol.

Anto

pre-em. pre-emergence quart quart relative humidity r.h. rev/min revolution per minute* second S soluble concentrate S.C. soluble powder s.p. soln solution species (singular) sp.

multiplied by*	X	species (plural)	spp.
normal concentration*	N (small cap)	specific gravity	sp. gr.
not dated	n.d.	square foot*	ft ²
oil miscible concentrate	o.m.c. (tables only)	square inch	in ²
organic matter	O.M.	square metre*	m ²
ounce	OZ	square root of*	
ounces per gallon	oz/gal	sub-species*	ssp.
page	p.	summary	8.
pages	pp.	temperature	temp.
parts per million	ppm	ton	ton
parts per million	L.L.	tonne	t
by volume	ppmv	ultra-low volume	ULV

parts per million by weight percent(age) pico (micromicro: x10⁻¹²) pint pints per acre plus or minus* post-emergence pound pound per acre* pounds per minute

ppmw % p or µµ pint pints/ac ± post-em lb lb/ac lb/min lb/min

ultra violet u.v. v.d. vapour density vapour pressure v.p. varietas var. V volt vol. volume volume per volume V/V water soluble powder W.S.P. (tables only) W watt wt weight weight per volume* W/V

pound per square incn-	10/1n	weight per weight*	W/W
powder for dry application	p. (tables only)	wettable powder	w.p.
power take off	p.t.0.	yard	yd
precipitate (noun)	ppt.	yards per minute	yd/min

* Those marked * should normally be used in the text as well as in tables etc.

AGRICULTURAL RESEARCH COUNCIL

WEED RESEARCH ORGANIZATION

(Price includes surface mail; airmail £0.50 extra)

6. The botany, ecology, agronomy and control of Poa trivialis L. rough-

- stalked meadow-grass. November 1966. G P Allen. Price £0.25
- 7. Flame cultivation experiments 1965. October, 1966. G W Ivens. Price - £0.25
- 8. The development of selective herbicides for kale in the United Kingdom.
 2. The methylthiotriazines. Price £0.25
- 10. The liverwort, <u>Marchantia polymorpha</u> L. as a weed problem in horticulture; its extent and control. July 1968. I E Henson. Price - £0.25
- 11. Raising plants for herbicide evaluation; a comparison of compost types. July 1968. I E Henson. Price - £0.25
- Studies on the regeneration of perennial weeds in the glasshouse;
 I. Temperate species. May 1969. I E Henson. Price £0.25
- Changes in the germination capacity of three <u>Polygonum</u> species following low temperature moist storage. June 1969. I E Henson. Price. - £0.25
- 14. Studies on the regeneration of perennial weeds in the glasshouse. II. Tropical species. May 1970. I E Henson. Price - £0.25
- 15. Methods of Analysis for herbicide residues. February 1977. (second edition) - price £5.75
- 16. Report on a joint survey of the presence of wild oat seeds in cereal seed drills in the United Kingdom during Spring 1970. November 1970. J G Elliott and P J Attwood. Price - £0.25
- 17. The pre-emergence selectivity of some newly developed herbicides, Orga 3045 (in comparison with dalapon), haloxydine (PP 493), HZ 52.112, pronamide (RH 315) and R 12001. January 1971. W G Richardson, C Parker and K Holly. Price - £0.25

18. A survey from the roadside of the state of post-harvest operations in Oxfordshire in 1971. November 1971. A Phillipson. Price - £0.12

19. The pre-emergence selectivity of some recently developed herbicides in jute, kenaf and sesamum, and their activity against <u>Oxalis</u> latifolia. December 1971. M L Dean and C Parker. Price - £0.25.

And a survey of the survey

A survey of cereal husbandry and weed control in three regions of 20. England. July 1972. A Phillipson, T W Cox and J G Elliott. Price - £0.35

- 2 -

- An automatic punching counter. November 1972. R C Simmons. 21. Price - £0.30
- The pre-emergence selectivity of some newly developed herbicides: 22. bentazon, BAS 3730H, metflurazone, SAN 9789, HER 52.123, U 27.267. December 1972. W G Richardson and M L Dean. Price - £0.25
- A survey of the presence of wild oats and blackgrass in parts of the 23. United Kingdom during summer 1972. A Phillipson. Price - £0.25
- The conduct of field experiments at the Weed Research Organization. 24. February 1973. J G Elliott, J Holroyd and T O Robson. Price -£1.25
- The pre-emergence selectivity of some recently developed herbicides: 25. lenacil, RU 12068, metribuzin, cyprazine, EMD-IT 5914 and benthiocarb. August 1973. W G Richardson and M L Dean. Price - £1.75.
- 26. The post-emergence selectivity of some recently developed herbicides: bentazon, EMD-IT 6412, cyprazine, metribuzin, chlornitrofen, glyphosate, MC 4379, chlorfenprop-methyl. October 1973. W G Richardson and M L Dean. Price - £3.31
- Selectivity of benzene sulphonyl carbamate herbicides between various pasture grasses and clover. October 1973. A M Blair. Price - £1.05

- The post-emergence selectivity of eight herbicides between pasture 28. grasses: RP 17623, HOE 701, BAS 3790, metoxuron, RU 12068, cyprazine, MC 4379, metribuzin. October 1973. A M Blair. Price - £1.00
- The pre-emergence selectivity between pasture grasses of twelve 29. herbicides: haloxydine, pronamide, NC 8438, Orga 3045, chlortoluron, metoxuron, dicamba, isopropalin, carbetamide, MC 4379, MBR 8251 and EMD-IT 5914. November 1973. A M Blair. Price - £1.30
- Herbicides for the control of the broad-leaved dock (Rumex obtusifolius 30. L.). November 1973. A M Blair and J Holroyd. Price - £1.06
- 31. Factors affecting the selectivity of six soil acting herbicides against Cyperus rotundus. February 1974. M L Dean and C Parker. Price - £1.10
- The activity and post-emergence selectivity of some recently developed 32. herbicides: oxadiazon, U-29,722, U-27,658, metflurazone, norflurazone,

AC 50-191, AC 84,777 and iprymidam. June 1974. W G Richardson and M L Dean. Price - £3.62

Careful and a second state with a second state of the second second

- A permanent automatic weather station using digital integrators. 33. September 1974. R C Simmons. Price £0.63.
- The activity and pre-emergence selectivity of some recently developed 34. herbicides: trifluralin, isopropalin, oryzalin, dinitramine, bifenox and perfluidone. November 1974. W G Richardson and M L Dean. Price - $f_{2.50}$

35. A survey of aquatic weed control methods used by Internal Drainage Boards, 1973. January 1975. T O Robson. Price - £1.39

- 3 -

- 36. The activity and pre-emergence selectivity of some recently developed herbicides: Bayer 94871, tebuthiuron, AC 92553. March 1975. W G Richardson and M L Dean. Price - £1.54
- 37. Studies on Imperata cylindrica (L.) Beauv. and Eupatorium odoratum L. October 1975. G W Ivens. Price - £1.75
- 38. The activity and pre-emergence selectivity of some recently developed herbicides: metamitron, HOE 22870, HOE 23408, RH 2915, RP 20630. March 1976. W G Richardson, M L Dean and C Parker. Price - £3.25
- 39. The activity and post-emergence selectivity of some recently developed herbicides: HOE 22870, HOE 23408, flamprop-methyl, metamitron and cyperquat. May 1976. W G Richardson and C Parker. Price - £3.20
- 40. The activity and pre-emergence selectivity of some recently developed herbicides: RP 20810, oxadiazon, chlornitrofen, nitrofen, flamprop--isopropyl. August 1976. W G Richardson, M L Dean and C Parker. Price - £2.75.
- 41. The activity and pre-emergence selectivity of some recently developed herbicides: K 1441, mefluidide, WL 29226, epronaz, Dowco 290 and triclopyr. November 1976. W G Richardson and C Parker. Price - £3.40.
- 42. The activity and post-emergence selectivity of some recently developed

herbicides: KUE 2079A, HOE 29152, RH 2915, Triclopyr and Dowco 290. March 1977. W G Richardson and C Parker. Price - £3.50

- 43. The activity and pre-emergence selectivity of some recently developed herbicides: dimefuron, hexazinone, trifop-methyl, fluothiuron, buthidazole and butam. November 1977. W G Richardson and C Parker. Price - £3.75.
- 44. The activity and selectivity of the herbicides: ethofumesate, RU 12709 and isoproturon. December 1977. W G Richardson, C Parker, & M L Dean. Price - £4.00
- 45. Methods of analysis for determining the effects of herbicides on soil soil micro-organisms and their activities. January 1978. M P Greaves, S L Cooper, H A Davies, J A P Marsh & G I Wingfield. Price - £4.00
- 46. Pot experiments at the Weed Research Organization with forest crop and weed species. February 1978. D J Turner and W G Richardson. Price - £2.70
- 47. Field experiments to investigate the long-term effects of repeated applications of MCPA, tri-allate, simazine and linuron - effects on the quality of barley, wheat, maize and carrots. July 1978. J D Fryer, P D Smith and J W Ludwig. Price - £1.20.
- 48. Factors affecting the toxicity of paraquat and dalapon to grass swards. March 1978. A K Oswald. Price - £2.90
- 49. The activity and post-emergence selectivity of some recently developed herbicides: NP 48, RH 5205 and Pyridate. May 1978. W G Richardson and C Parker. Price - £2.50

- 4 -

- 50. Sedge weeds of East Africa II. Distribution. July 1978. P J Terry. Price - £1.50
- 51. The activity and selectivity of the herbicides methabenzthiazuron, metoxuron, chlortoluron and cyanazine. September 1978. W G Richardson and C Parker. Price - £2.20.
- 52. Antidotes for the protection of field bean (Vicia faba L.) from damage by EPTC and other herbicides. February 1979. A M Blair. Price - £1.35
- 53. Antidotes for the protection of wheat from damage by tri-allate. February 1979. A M Blair. Price - £2.00
- 54. The activity and pre-emergence selectivity of some recently developed herbicices: alachlor, metolachlor, dimethachlor, alloxydim-sodium and fluridone. April 1979. W G Richardson and C Parker. Price - £3.00
- 55. The activity and selectivity of the herbicides carbetamide, methazole, R 11913 and OCS 21693. May 1979. W G Richardson and C Parker. Price - £1.80
- 56. Growing weeds from seeds and other propagules for experimental purposes. July 1979. R H Webster. Price - £1.10
- 57. The activity and pre-emergence selectivity of some recently developed herbicides: R 40244, AC 206784, pendimethalin, butralin, acifluorfen and FMC 39821. December 1979. W G Richardson, T M West and C Parker -Price - £3.55
- 58. The tolerance of fenugreek (Trigonella foenumgraecum L.) to various herbicides. December 1979. W G Richardson. Price £1.55
- 59. Recommended tests for assessing the side-effects of pesticides on the soil microflora. April 1980. M P Greaves, N J Poole, K H Domsch, G Jagnow and W Verstraete. Price - £2.00
- 60. Properties of natural rainfalls and their simulation in the laboratory for pesticide research. September 1980. R C Simmons. Price - £1.25
- 61. The activity and post-emergence selectivity of some recently developed herbicides: R 40244, DPX 4189, acifluorfen, ARD 34/02 (NP 55) and PP 009. November 1980. W G Richardson, T M West and C Parker. Price - £3.75
- 62. The activity and pre-emergence selectivity of some recently developed herbicides: UBI S-734, SSH-43, ARD 34/02 (= NP 55), PP 009 and DPX 4189. February 1981. W G Richardson, T M West and C Parker. Price - £3.50