Click here for previous

SPECIES	
COWPEA	87
(62)	86
CHICKPEA	58
(63)	86
SOYABEAN	116
(65)	93
COTTON	87
(66)	79
JUTE	43
(67)	36
KENAF	129
(68)	64
SESAMUM	150
(70)	79
TOMATO	30
(71)	36
OR PUNCT (73)	0
ELEU IND (74)	0
ECH CRUS (75)	000
ROTT EXA	66
(76)	64
DIG SANG (77)	000

DIMETHACHLOR

0.25 kg/ha

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	87
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	64
XXXXXXXXXXX	58
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	71
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	106
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	71
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	48
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	57
XXXXXXXXX	0
XXXXXXX	0
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	86
XXXXXXXXXXXXX	29
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	68
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	43
XXXXXX	0
XXXXXXX	0
	. 0
	0
	0
	0
	0
	0
www.www.www.www	35
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	36
	0
	0

1.00 kg/ha	
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	000
XXXXXXXXXXXXX	19
XXXXXXXXXXXXX	29
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	39 50
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	29 43
	000
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	000
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	000000000000000000000000000000000000000
	000
	000
	000000000000000000000000000000000000000
	000000000000000000000000000000000000000
XXXXXXX XXXXXXX	13 21
	0

4.00 kg/ha

XXXX XXXXXX

XXXXXXXX XXXXXXXXXX

XXXXXX XXXXXXXXX

PRE-EMERGENCE SELECTIVITY EXPERIMEN 33 H

XXX XXXX

SPECIES

AMAR RET (78)	0
(10)	
SOL NIG	76
(81)	50
PHAL MIN	3
(84)	14
CYP ROTU	80
(86)	71

DIMETHACHLOR

0.25 kg/ha

	0
	0
XXXXXXXXXXXXXXX	4
XXXXXXXXXX	14
x	0
XXX	0
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	30
XXXXXXXXXXXXXX	14

.

2

......

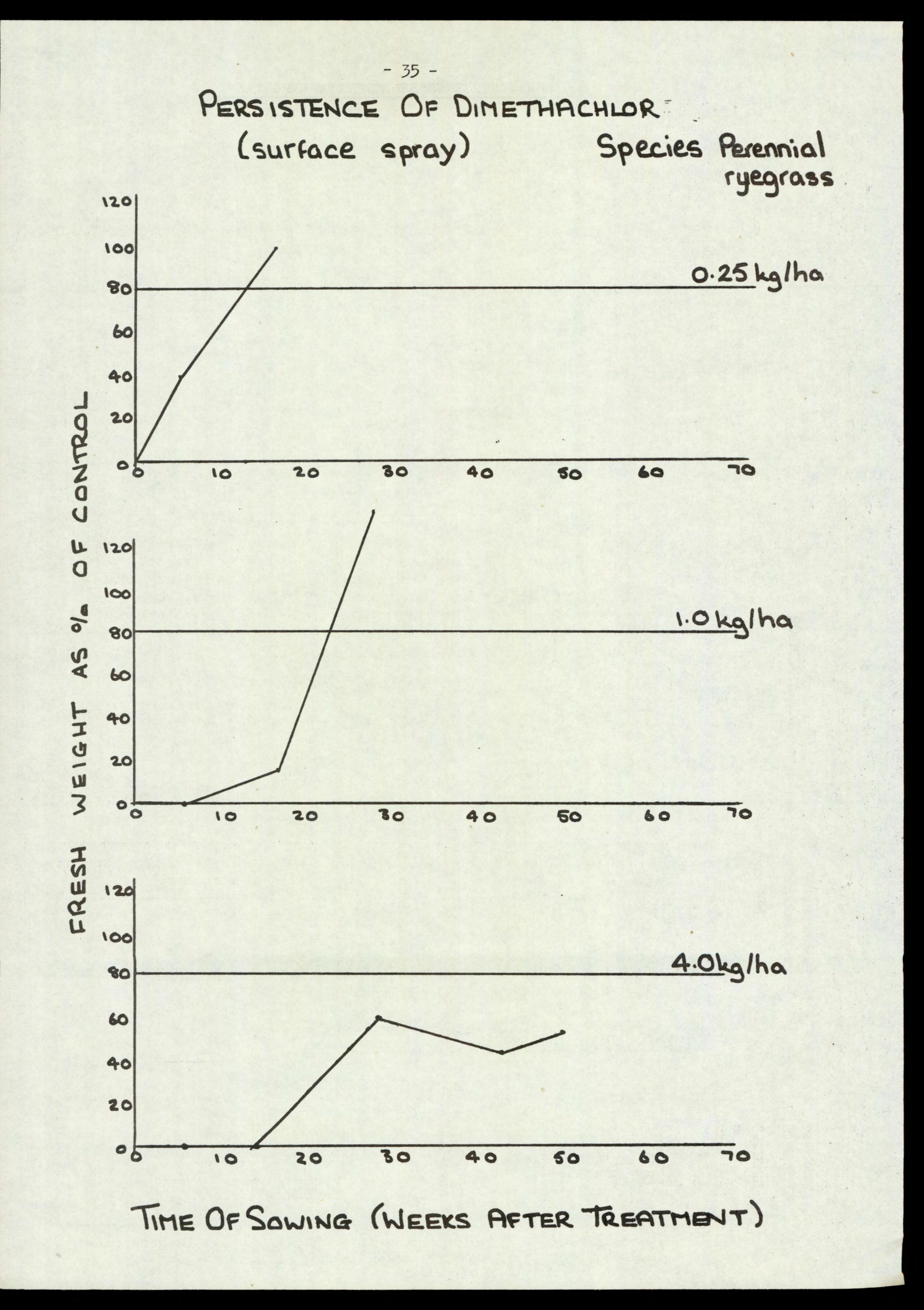
1.00 kg/ha

.

x XXX

1

XXXXXX XXX


.

1.2

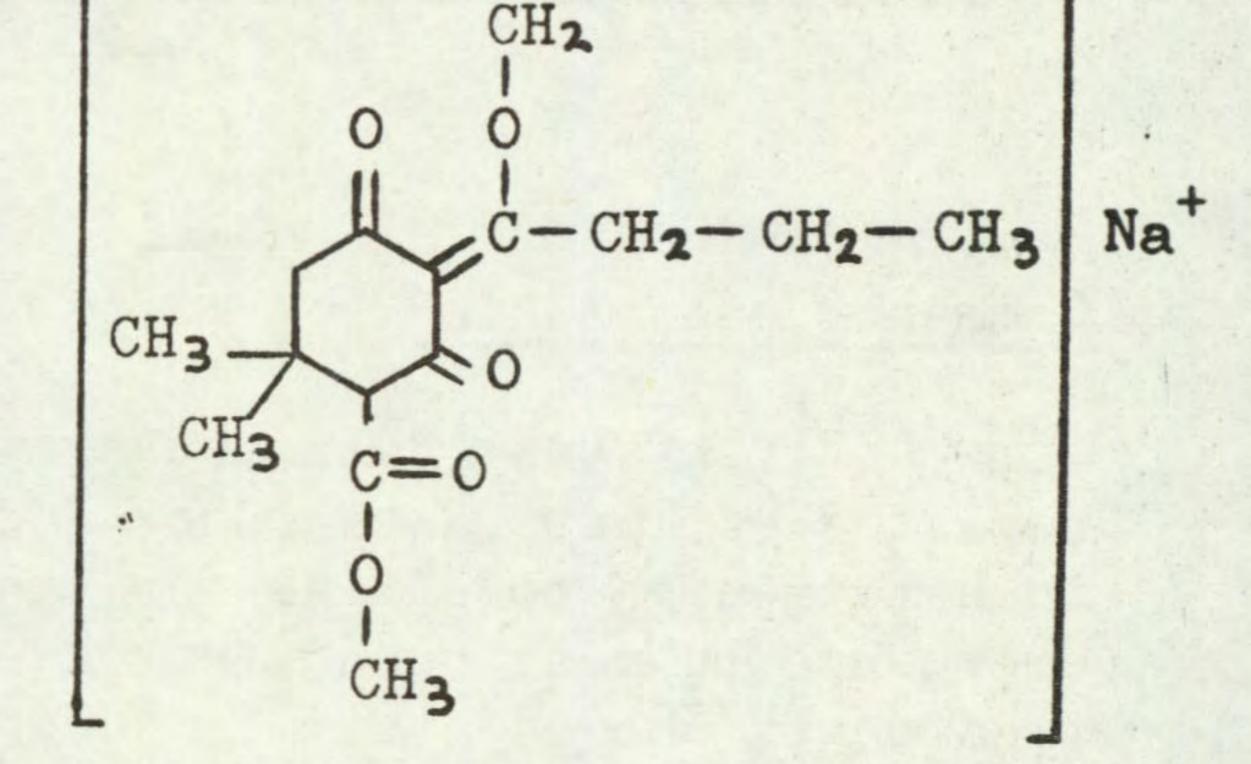
4.00 kg/ha

- -

ERGEN PERIMENT

ALLOXYDIM-SODIUM

- 36 -


Code number NP48 (also BA5 9021) Trade name Fervin

Former suggested common name alloxydimedon-sodium, carbodimedon

Chemical name 2-(1-allyloxyaminobutylidene)-5,5-dimethyl-4-methoxycarbonyl cyclohexane-1, 3-dione (sodium salt) CHNH₂

Structure

Nippon Soda Co. Ltd., Source Agrochemicals Department, 221, Ohtemachi, Chiyoda-ku, Tokyo, Japan.

1

CH

Information available and suggested uses

Suggested post-emergence for control of grass weeds. Broad-leaved weeds are resistant. Dosage for annual weeds, 1.0-2.0 kg a.i./ha; for perennials 1.5 to 2.5 kg a.i./ha, two application times being advisable. Recommended for use in sugar beet, soyabean, cotton and rape. Other tolerant crops are peas, groundnuts, potato, beans, sunflower, tobacco, vines and various vegetables. Also active pre-emergence but not recommended, due to its short persistence in the soil.

Formulation used 75% w/w a.i. water soluble powder.

Spray volume 366 1/ha.

RESULTS

Full results are given in the histograms on pages 39-44 . and potential selectivities are summarized in the following table.

RATE (kg a.i./ha)	CROPS; vigour reduced by 15% or less	WEEDS; number or vigour reduced by 70% or more
4.0	field bean white clover rape kale carrot lettuce radish cowpea soyabean sesamum	Avena fatua** <u>Poa annua</u> <u>Eleusine indica</u> <u>Rottboellia exaltata</u> + species below
1.0	onion* pea sugar beet chickpea cotton* kenaf	Holcus lanatus Agropyron repens Oryza punctata Echinchloa crus-galli Digitaria sanguinalis + species below

** eventually killed at 0.25 kg/ha

Table cont.		
RATE (kg a.i./ha)	CROPS: vigour reduced by 15% or less	WEEDS: number or vigour reduced by 70% or more
0.25	species above + dwarf bean pigeon pea jute tomato	<u>Alopecurus myosuroides</u> <u>Poa trivialis</u> <u>Phalaris minor</u>

Comments on results

Activity test data and symptoms caused on susceptible species were reported earlier (Richardson and Parker, 1978), when alloxydim-sodium was found to have a high potential for control of most grass weeds, post- or preemergence to most broad-leaved crops. Surface or incorporated pre-emergence treatments showed a similar degree of toxicity to perennial ryegrass and <u>Avena</u> fatua but the effect on <u>Agropyron repens</u> was improved slightly by incorporating the herbicide. This should be borne in mind when considering the results of the pre-emergence selectivity test, when alloxydim-sodium was fully incorporated into the soil.

Symptoms

These were described previously for the six species used in the activity

experiment and the range of species in the post-emergence selectivity test (Richardson and Parker, 1978). Pre-emergence treatments to grasses caused a severe inhibition of growth of the leaves. It was common to see plants in a state of suspended growth at the 2 to 3 leaf stage, the leaf blades being generally narrow and pointed giving an almost "dart-like" appearance. This is a feature common to herbicides causing inhibition of roots and later observation showed that this was the case, roots only having reached a few mm in length and being swollen and necrotic. Plants remained in this state of suspended growth for several days or even weeks before eventual recovery or necrosis and death. This made assessment difficult in some instances. Thus Avena fatua and Alopecurus myosuroides eventually succumbed to the lowest dose of 0.25 kg/ha, whereas Agropyron repens, Holcus lanatus, wheat and barley recovered from this dose. Before necrosis and death of the plants, a mild to severe chlorosis or even albinism often developed. At the highest dose, some grass species failed to emerge, either from the soil or from the coleoptile, or died soon after emerging.

Generally little or no effect was seen on the majority of broad-leaved

species, even though many of these were kept for late assessment, to detect any differences from untreated controls. However, some effects were observed with certain of the legumes, onion and sugar beet. With the latter at the main assessment, a 43% depression in vigour was observed at 4.0 kg/ha but later more inhibition was seen, the new leaves being very small, such that shoot fresh weights were only 58% of control at harvest while root systems were very weak. Meanwhile at the lower doses, plants had become slightly stunted and new leaves darker green and shinier in appearance. The high dose on onions had resulted in some plants dying back soon after they emerged. However, a following experiment showed that this crop was unaffected by doses up to 4.0 kg/ha, with either surface or incorporated treatments. Some dwarf bean plants were retarded by the high dose and roots failed to nodulate. This was not the case at the same dose in the earlier experiment, however, where

nodules were produced, as were flowers and pods eventually, even though occasional necrosis of roots and some stunting of shoots occurred. Pea at the high dose showed a slight retardation of shoots while roots were more sparse and the number of nodules less than in the controls. This effect was found in the earlier post-emergence test (Richardson and Parker, 1978) and led to some further work at W.R.O. (Greaves, Lockhart and Richardson, 1978). It seems that some interrelationship may exist between alloxydim-sodium and pea root nodulation but that the factors governing this (e.g. nitrogen level) are complex and need further investigation, preferably under carefully controlled environment conditions.

- .38 -

Soil persistence

Results are presented in the graph on page 44. The sensitive test species, perennial ryegrass, indicated a relatively short period of persistence in the soil for alloxydim-sodium. Doses of 0.25 and 1.0 kg/ha were undetectable when soil was assayed 17 weeks after spraying. The highest dose of 4.0 kg/ha was only just detectable at this date, and by the next assay no symptoms were found.

Pre-emergence selectivity among temperate species

Activity was confined to the grass weeds, all being controlled at one or other of the doses. Although 4.0 kg/ha was needed to control <u>Poa annua</u>, it was reduced in vigour by more than 50% at 1.0 kg/ha. All broad-leaved weeds and <u>Allium vineale</u> were highly resistant.

All broad-leaved crops and onion showed some degree of tolerance. Some effects were seen however on sugar beet and onion at 4.0 kg/ha and on dwarf bean even at 1.0 kg/ha. In the earlier activity experiment, (Richardson and Parker, 1978), however, dwarf bean was hardly affected by 4.0 kg/ha.

As well as the earlier reported post-emergence control of most grass weeds in most broad-leaved crops and onion (Richardson and Parker, 1978), the present test confirms that pre-emergence control in virtually the same crops is probable. Control of volunteer cereals and ryegrass in these crops is also indicated. The short persistence of the herbicide could be a disadvantage for control of later germinating grass weeds, but a distinct advantage with regard to following crops in the rotation, including cereals. The difference in response of the Poa species is intriguing, parallelling post-emergence results with this compound and with trifop-methyl. If the somewhat higher dose necessary to control Poa annua proves to be uneconomical, consideration will have to be given to a mixture with another herbicide. This will be necessary in any case to achieve control of broad-leaved weeds.

Pre-emergence selectivity among tropical species

Although not recommended by the manufacturers for pre-emergence use, alloxydim-sodium is shown to have excellent selectivity against most annual grasses in most broad-leaved crops at doses between 1 and 4 kg/ha. These doses are somewhat higher than those required for early post-emergence treatments but could still be of interest for certain situations. Only a few <u>Rottboellia</u> plants recovered eventually from a dose of 1 kg/ha, and none from 4 kg/ha. Cyperus species and Oxalis were undamaged by 4 kg/ha.

			ALLOXYDI	M-SODIUM		
SPECIES		0.25 kg/ha		1.00 kg/ha		
WHEAT	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	50	XXXXXXXXXX	14	XXX
(1)	71	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	29	XXXXXX	7	x
BARLEY	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	94	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	62	XXXX
(.2)	57	XXXXXXXXXXX	43	XXXXXXXXX	21	XXXX
OAT	89	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	102	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	0	
(3)	57	XXXXXXXXXXX	43	XXXXXXXXX	0	
PER RYGR	8	XX	0		0	
(4)	14	XXX	0		0	
ONION	114	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	71	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	29	XXXX
(8)	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	57	XXXX
DWF BEAN	112	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	94	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	94	XXXX
(9)	93	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	71	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	57	XXXXX
FLD BEAN	95	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	95	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	109	XXXX
(10)	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	93	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	93	XXXX
PEA	71	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	86	XXXX
(11)	93	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	71	XXXX
W CLOVER	46	XXXXXXXXX	76	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	. 86	XXXX
(12)	86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	93	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	93	XXXX
RAPE	93	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	93	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	96	XXXX
(14)	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	. 86	XXXX
KALE	107	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	99	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	107	XXXX
(15)	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	93	XXXX
CARROT	132	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	124	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	124	XXXX
(18)	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	93	XXXX

and the server

4.00 kg/ha

XXXXXXXXXX X

XXXX XXXXXXXXX

XXXXXXXXXXXXXXXXXXX XXXXXXXXX

XXXXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXX XXXXXXXXXXXX

XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXX

PRE-EMERGENCE SELECTIVITY EXPERIMENT

SPECIES 90 LETTUCE XXXXX 100 (20) XXXXX 109 SUG BEET XXXXX 100 (21) XXXXX 87 AVE FATU XXXXX 57 26) XXXXX 34 ALO MYOS XXXXX 29 (27) XXXXX 96 POA ANN XXXXX 86 (28) XXXXX 5 POA TRIV X (29) 14 XXX 96 XXXXX SIN ARV (30) 100 XXXXX 109 RAPH RAP XXXXX 100 (31) XXXXX 56 CHRY SEG XXXXX (32) 100 XXXXX 1. 10 104 TRIP MAR XXXXX (33) 100 XXXX 148 SEN VULG XXXXX 100 (34)XXXXX 41 POL LAPA XXXX 93 (35) XXXX

I dot a second respect to a second state desire that a second state desired and a second state of the seco

....

112 POL AVIC XXXX 100 (36) XXXXX

ALLOXYDIM-SODIUM

0.25 kg/ha

.

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	103	xxxxxxxxxxxxxxxxxxxxxxxxxx	99	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
xxxxxxxxxxxxxx+	86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	73	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
			57	XXXXXXXXXXX
XXXXXXXXXXXXXXXXXX	86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	51	AAAAAAAAAA
XXXXXXXXXXXXX	37	XXXXXXX	12	xx
CXXXXXXX	43	XXXXXXXXX	7	x
xxx	24	XXXXX	0	
xxx	29	XXXXX	0	
	~ 1		54	XXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	94	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		
XXXXXXXXXXXXX	43	XXXXXXXXX	29	XXXXXX
	3	x	0	
	14	XXX	0	
	54	XXXXXXXXXXX	32	XXXXXX
XXXXXXXXXXXXXXXX			86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXX	86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	00	AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
xxxxxxxxxxxxxxx+	93	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	83	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXX	77	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	. 98	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	ллллллллллллллллл	TOO	
xxxxxxxxxxxxxxxx+	133	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	119	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	93	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
xxxxxxxxxxxxxxxxxx	107	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	95	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	93	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	93	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA				
XXXXX	109	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	95	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	93	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
xxxxxxxxxxxxxxxxxx	112	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	75	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
	100			

1.00 kg/ha

4.00 kg/ha

PRE-EMERGENCE SELECTIVITY EXPERIMENT

SPECIES

HOLC LAN						
STEL MED 11 (40) 10 VER PERS 11 (42) 11 RUM OBTU 12 (44) 10 HOLC LAN 3	2 xxxxxxxxx	xxxxxxxxxxx+	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	89	XXXXX
 (40) VER PERS (42) RUM OBTU (44) HOLC LAN 	0 xxxxxxxx	XXXXXXXXXXXX	79	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	79	XXXXX
VER PERS 11 (42) 10 RUM OBTU 15 (44) 10 HOLC LAN 3	19 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	xxxxxxxxxxx+	70	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	73	XXXX
(42) 10 RUM OBTU 15 (44) 10 HOLC LAN	0 xxxxxxxx	XXXXXXXXXXX	93	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	86	XXXX
RUM OBTU 15 (44) 10 HOLC LAN	12 XXXXXXXX	xxxxxxxxxxx+	85	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	77	xxxx
(44) 10 HOLC LAN 3	00 xxxxxxx	XXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	93	XXXX
HOLC LAN	57 XXXXXXXX	xxxxxxxxxx+	86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	114	XXXX
)0 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXX
(45)	39 xxxxxxxx		9	xx	0	
	13 xxxxxxxx	x	29	XXXXXX	0	
AG REPEN 10	00 xxxxxxxx	xxxxxxxxxxx	42	XXXXXXXX	0	
(47)	57 XXXXXXXX	XXX	29	XXXXXX	0	
ALL VIN 12	22 xxxxxxxx	xxxxxxxxxx+	91	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	170	XXXX
(49) 10	00 xxxxxxxx	XXXXXXXXXXXX	93	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXX
TUS FARF	79 XXXXXXXX	XXXXXXXX	126	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	126	xxxx
(51) 10	00 XXXXXXXX	xxxxxxxxxxx	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	93	XXXX
CONV ARV	72 xxxxxxxx	XXXXXX	120	xxxxxxxxxxxxxxxxxxxxxxxxxx	. 108	xxxx
(52)	13 xxxxxxxx	XXXXXX	71	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	86	XXXX
MILLET	75 xxxxxxxx	xxxxxxx	45	XXXXXXXXX	22	XXXX
(57)	50 xxxxxxxx	XX	29	XXXXXX	· 29	XXXX
MAIZE 10	00 XXXXXXXX	xxxxxxxxxxx	33	XXXXXXX	0	
(58)	64 xxxxxxxx	XXXXX	43	XXXXXXXXX	0	
SORGHUM 10	08 XXXXXXX	xxxxxxxxxxx+	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	115	XXXX
(59)	57 xxxxxxxx	XXX	50	XXXXXXXXXX	43	XXXX
RICE 10	02 XXXXXXXXX	XXXXXXXXXXXX	75	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	11	xx
(60)	64 xxxxxxxx	XXXXX	36	XXXXXXX	14	XXX

ALLOXYDIM-SODIUM

0.25 kg/ha

1.00 kg/ha

4.00 kg/ha

XXXXXXXXXXXXXXXXX XXXXXXXXXXXXX

XXXXXXXXXXXX XXXXXXXXXXXXXXXX

XXXXXXXXXXXX XXXXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXX

.

XXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXX

. . .

XXX

XXXXXXXXXXXXXXXXXXXXXXX XXXXXXX

PR [7] EMERGENC E S E EC H ERIMENT

4

-

SPECIES	
---------	--

and an in the second

.

PIGEON P	83	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	83	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	72	XXXX
(61)	93	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	79	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	79	XXXX
COWPEA	87	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	106	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	116	XXXX
(62)	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	93	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXX
CHICKPEA	106	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	106	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	97	XXXX
(63)	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	79	XXXX
SOYABEAN	135	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	116	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	126	XXXX
(65)	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	93	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	93	XXXX
COTTON	116	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	77	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	48	XXXX
(66)	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	71	XXXX
JUTE	171	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	86	XXXXXXXXXXXXXXXXX	129	XXXX
(67)	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	71	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	57	XXXX
KENAF	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	186	XXXX
(68)	86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	64	XXXX
SESAMUM	68	XXXXXXXXXXXXXX	150	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	123	XXXX
(70)	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	93	XXXX
TOMATO	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	90	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	. 70	XXXX
(71)	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	79	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	71	XXXX
OR PUNCT	106	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	0		5	x
(73)	57	XXXXXXXXXXX	0		21	XXXX
ELEU IND	79	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	34	XXXXXXX	0	
(74)	36	XXXXXXX	36	XXXXXXX	0	
ECH CRUS	60	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	11	XX	0	
(75)	50	XXXXXXXXXXX	29	XXXXXX	0	
ROTT EXA	93	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	93	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	62	XXXX
(76)	64	XXXXXXXXXXXXX	43	XXXXXXXX	29	XXXX

ALLOXYDIM-SODIUM

0.25 kg/ha

1.00 kg/ha

4.00 kg/ha

XXXXXXXXXXXXX

XXXXXXXXXX

PRE-EMERGENCE SELECTIVITY EXPERIMENT

SPECIES

a seat a bit a

CARLE BAN

(23)

1. 1. 1.

DIG SANG	109	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	25	XXXXX	4	x
(77)	36	XXXXXXX	29	XXXXXX	7	x
AMAR RET	120	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	120	ZXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	200	XXXX
(78)	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXX
SOL NIG	76	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	67	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	94	XXXX
(81)	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXX
PHAL MIN	90	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	13	XXX	. 3	x
(84)	29	XXXXXX	21	XXXX	14	XXX
CYP ROTU	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXX
(86)	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	79	XXXX

0.25 kg/ha

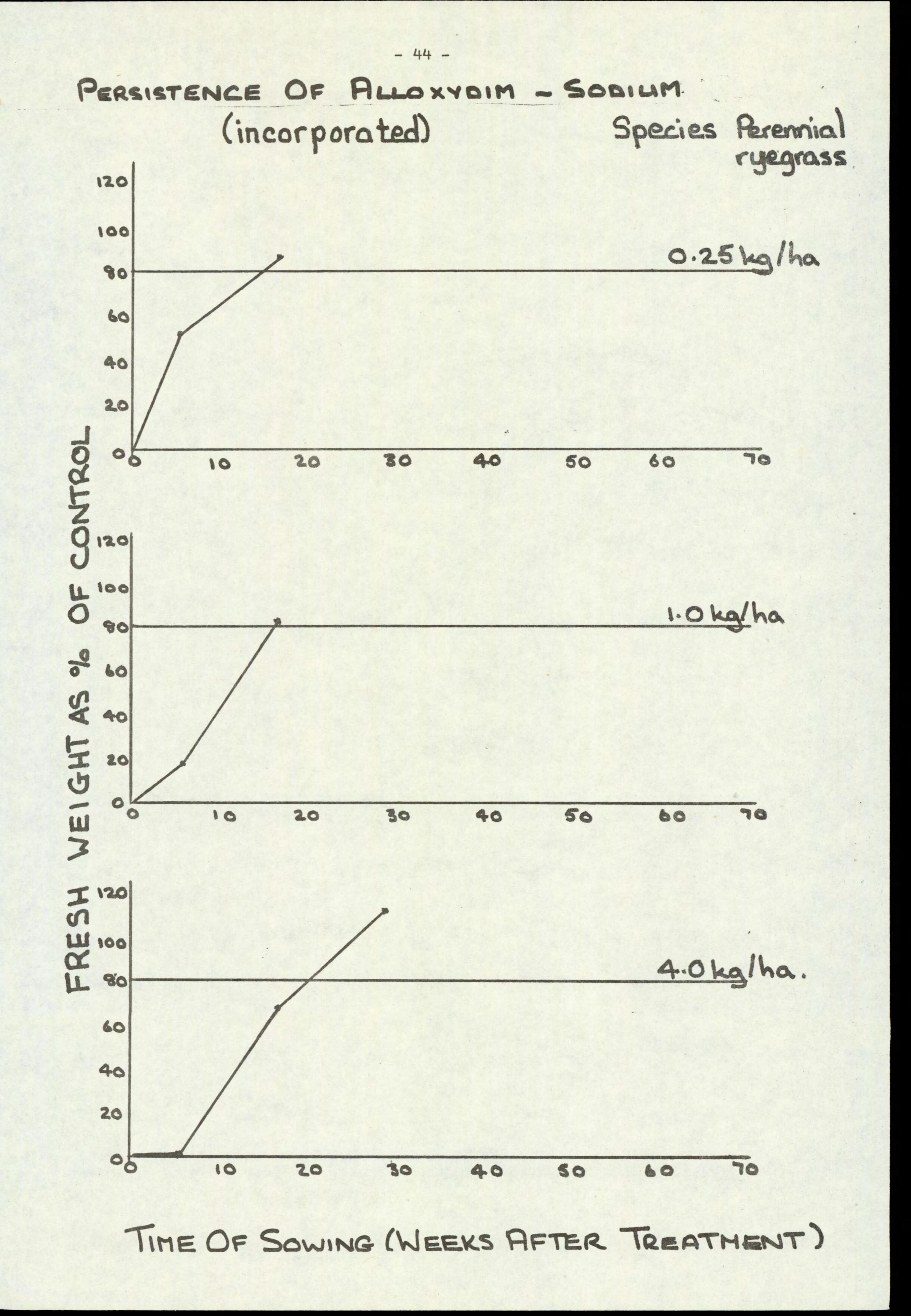
-104

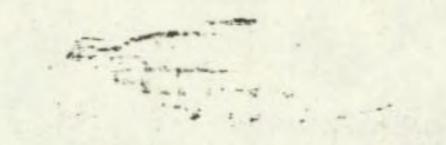
ALLOXYDIM-SODIUM

.

1 - 2 F

1.00 kg/ha

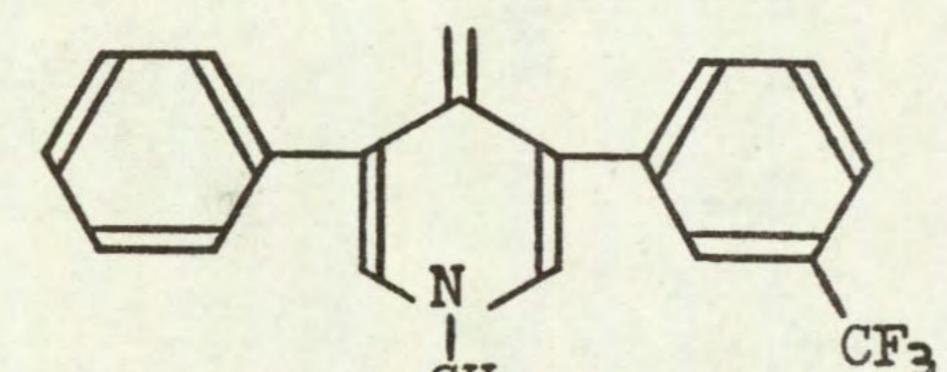

4.00 kg/ha


-

1.1

Martin and

PRE-EMERGENCE SELECTIVITY EXPERIMENT


Code number EL 171

FLURIDONE

- 45 -

1-methyl-3-phenyl-5-[3-(trifluoromethyl) phenyl -4 (IH)-Chemical name pyridinone

Structure

CH3

Source Lilly Research Centre Ltd., Erl Wood Manor, Windlesham, Surrey.

Information available and suggested uses

A broad-spectrum pre-emergence (surface applied or incorporated) herbicide with true physiological tolerance shown by cotton. Established trees, vines and sugar cane have exhibited tolerance, while moderate tolerance to surface applications have been shown by groundnut, safflower, sunflower, wheat, barley and transplanted rice due to depth protection. Application rates vary depending on soil type from 0.2 to 0.8 kg a.i./ha for annual weeds, and 0.4 to 1.6 kg a.i./ha incorporated is suggested for trials with perennial weeds (Technical Report on EL 171, 1978).

50% w/w a.i. wettable powder. Formulation used

Spray volume 366 1/ha

RESULTS

Full results are given in the histograms on pages 48 - 54 and potential selectivities are summarized in the following table.

	RATE (kg a.i./ha)	CROPS: vigour reduced by 15% or less	WEEDS: number or vigour reduced by 70% or more
-	2.50	None	None listed as no crops tolerant
	0.50	cotton	Avena fatua Alopecurus myosuroides Poa annua Poa trivialis

Raphanus raphanistrum Senecio vulgaris Polygonum aviculare Galium aparine Rumex obtusifolius Holcus lanatus Allium vineale Convolvulus arvensis Oryza punctata Eleusine indica Rottboellia exaltata Phalaris minor + species below

RATE	CROPS: vigour reduced by	WEEDS: number or vigour
(kg a.i./ha)	15% or less	reduced by 70% or more
0.10	species above + field bean pea carrot. cowpea chickpea*	Sinapis arvensis Polygonum lapathifolium Stellaria media Veronica persica Echinochloa crus-galli Digitaria sanguinalis

- 46 -

kenaf sesamum

Amaranthus retroflexus Solanum nigrum

* some stand reduction, not due to herbicide.

Comments on results

Activity experiment (see page 48)

Fluridone was particularly active via the soil treatments. Annual species were more susceptible than perennials. The foliar spray caused symptoms on all species but, although these were more severe on broadleaved than on grass species, no lethal effects were observed. In the soil treatments, pre-emergence applications were generally as effective as postemergence soil drenches. Surface or incorporated pre-emergence treatments exhibited a similar degree of activity, although perennial ryegrass and Polygonum amphibium were marginally more sensitive to the surface spray, while dwarf bean, kale, Avena fatua and Agropyron repens were more sensitive when the herbicide was incorporated. This should be borne in mind when considering the results of the pre-emergence selectivity test, where treatments were incorporated.

Symptoms

The most striking feature with fluridone was a pronounced albinism of affected species. This was seen either post- or pre-emergence, and although rather slow to develop, it eventually affected even petioles and stems of broad-leaved species. Pigmentation effects were seen in certain species (a pinkish coloration of Agropyron leaves and purplish with Cirsium, Convolvulus and kale). The albinism persisted for a considerable period of time before either recovery by new growth or necrosis and death of the plant. Germination was unaffected in the pre-emergence treatments while the foliar spray caused only a minor scorch. Thus the symptoms are very similar to those caused by amino-triazole, metflurazone or norflurazon. Waldrep and Taylor, 1976, have stated that treated plants appear to be unable to direct the synthesis of chlorophyll.

Soil persistence (see graph on page 54)

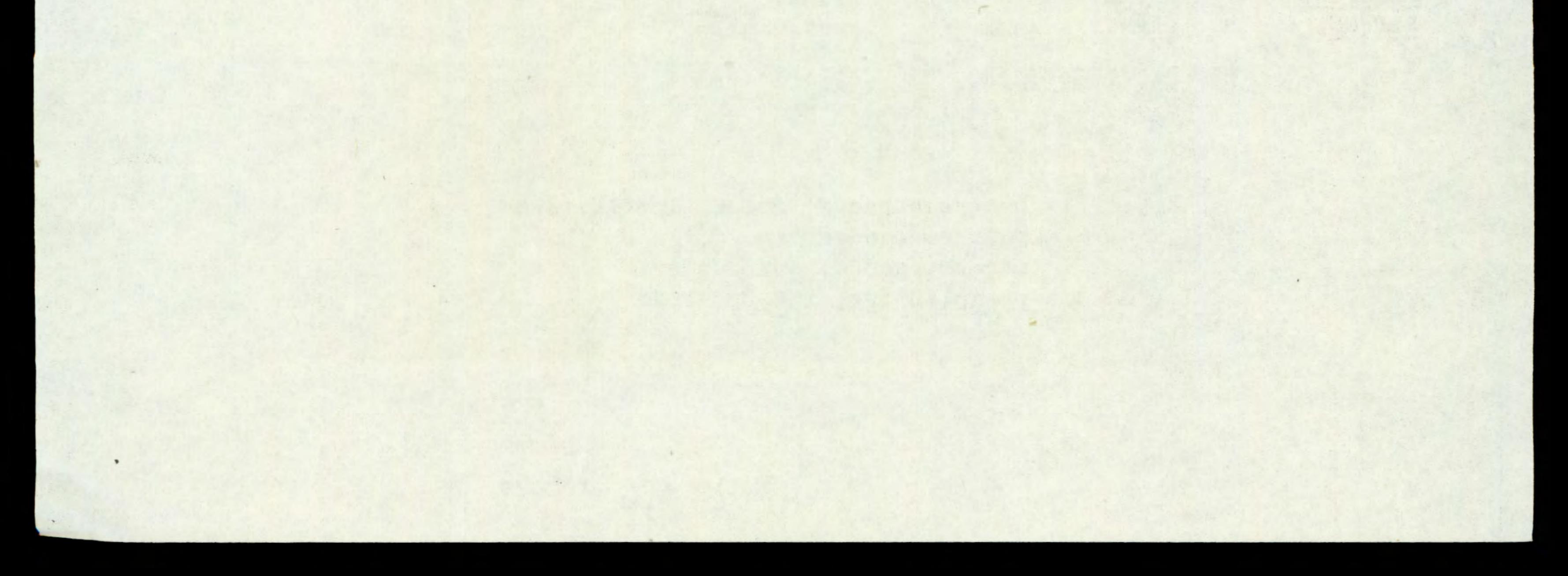
Using the very sensitive sugar beet as the test species, a long period of persistence in the soil is indicated. The dose of 0.1 kg/ha was barely detectable 49 weeks after spraying but the higher doses were still lethal to plants at this time.

Pre-emergence selectivity among temperate species

An impressive spectrum of weed control exists with fluridone. Thus all weeds, except two perennials (Agropyron repens and Tussilago farfara) and

two composites (Chrysanthemum segetum and Tripleurospermum maritimum) were controlled by 0.5 kg/ha. At the lowest dose of 0.1 kg/ha five annual broad-leaved weeds were controlled while many more were severely affected, as were most of the annual grasses.

- 47 -


No crop tolerated a dose greater than 0.1 kg/ha. Carrot, field bean and pea were the only species which showed any resistance to the latter dose, pea being reduced in number and vigour by only 29% at 0.5 kg/ha. In fact the recovery shown by peas to this dose instigated further pot testing on peas with surface and incorporated treatments and at varying sowing depths. Although recovery from the early symptoms is remarkable, the intense albinism is certainly too striking to be acceptable.

The high level of activity, limited selectivity and prolonged persistence of fluridone suggest that it could be useful as a total herbicide in temperate situations. Even here, the resistance of certain composite weeds could prove a serious limitation.

Pre-emergence selectivity among tropical species

This compound proved to have very high activity on most small-seeded grass and broad-leaved species, while the remarkable tolerance of cotton was confirmed with only mild symptoms at the high dose of 2.5 kg/ha. Cyperus rotundus was eventually killed completely at 0.5 kg/ha and the selectivity against this serious weed of cotton appears greater with this compound than with any previously tested at WRO. The prolonged persistence of the compound may, unfortunately, limit its usefulness but further work will be worthwhile to determine the importance of the depths of sprouting of the <u>Cyperus</u> tubers in relation to the placement of the herbicide on or in the soil. <u>Cyperus esculentus</u> and <u>Oxalis latifolia</u> were also killed by 0.5 kg/ha.

Other crops with some potentially useful tolerance included kanaf, cowpea and sesamum, but margins of selectivity are likely to be small.

ACTIVITY EXPERIMENT

- 48 -

FLURI DONE

0.1 kg/ha	0.6 kg/ha
-----------	-----------

DWARF

.....

3.6 kg/ha

			aa	XX
BEAN	P	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	8
	I	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XX XX	0
	F	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
KALE	S	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
AALD	P	XXXX XXX	0	8
	I	X	8	0
	F	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
POL YGONUM	S	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
AMPHIBIUM	P	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
	I	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXX + XXXXXXX
	F	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
PERENNIAL	S	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
RYEGRASS	P	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	8	8
	I	XXXXXXXXXXXXXXXXX +	8	8
	F	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
AVENA	S	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
FATUA	P	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXX
	I	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XX	00
	F	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
AGROP YR ON	S	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
REPENS	P	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXX +	XXXXXXXXXXXX

XXXXXXXXXX

XXXXXX

XXX

Key: F = post-emergence, foliar application
S = post-emergence, soil drench
P = pre-emergence, surface film
I = pre-planting, incorporated

SPECIES	
WHEAT	93
(1)	64
BARLEY	87
(2)	57
OAT	102
(3)	71
PER RYGR	119
(4)	57
ONION	43
(8)	14
DWF BEAN	94
(9)	57
FLD BEAN	82
(10)	93
PEA	71
(11)	93
W CLOVER	36
(12)	50
RAPE	96
(14)	36
KALE	87
(15)	29
CARROT	117
(18)	· 93

. .

5.00

2 .

FLURIDONE

0.1 kg/ha

.

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	57 29
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 21
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	96 14
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	66 14
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	000
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	112 36
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	82 29
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	. 71 71
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	0 0
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	37
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	91 14
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	59 21

0.5 kg/ha

5 .

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 14	
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 14	1
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	89 14	
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	53 14	
	000	
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	112 21	
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	109 14	
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	43	
	000	
x	000000000000000000000000000000000000000	
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	99 14	
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	000	

2.5 kg/ha

XXX

XXX

XXX

XXXXXXXXXXX XXX

XXXX

XXX

XXXXXXXXX XXXX

MERGE -4 E F ECTI H K F X IMENT

49

PRE

XXX

1

•;.

			RIDONE			
SPECIES		0.1 kg/ha		0.5 kg/ha		2
LETTUCE	90	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	0		0	
(20)	57	XXXXXXXXXX	0		0	
SUG BEE	r o		0		0	
(21)	0		0		0	
AVE FAT	U 75	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	56	XXXXXXXXXXX	81	XXXXXXX
(26)	57	XXXXXXXXXXX	14	XXX	_14	XXX
ALO MYO	s 97	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	87	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	116	XXXXXXX
(27)	43	XXXXXXXXX *	14	XXX	14	XXX
POA ANN	92	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	66	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	75	XXXXXXX
(28)	36	XXXXXXX	14	XXX	14	XXX
POA TRI	V 82	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	0		0	
(29)	43	XXXXXXXXX	0		0	
SIN ARV	16	XXX	5	x	0	
(30)	14	XXX	7	X	0	
RAPH RA	P 93	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	16	XXX	0	
(31)	71	XXXXXXXXXXXXXX	14	XXX	0	
CHRY SE	G 98	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	160.	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	. 14	XXX
(32)	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	71	XXXXXXXXXXXXXX	14	XXX
TRIP MA		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	81	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	33	XXXXXXX
(33)	93	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	64	XXXXXXXXXXXXX	, 21	XXXX
SEN VUL	G 41	XXXXXXXX	0		0	
(34)	50	XXXXXXXXXX	0		0	
POL LAP	PA 27	XXXXX	4122	XXXXXXXXX	27	XXXXX
(35)	43	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	14	XXX	14	XXX
POL AVI	C 56	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	0		0	
(36)	36	XXXXXXXX	0		0	

1

. Ac

··· ¥1

2.5 kg/ha

XXXXXXXXXXXXX

XXXXXXXXXXXXXXXXXXX

.

XXXXXXXXXXXX

XXXX X

1

PRE EMERGENCE SELE CTIV YLT E PERIMENT

SPECIES

89	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	67	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	117	XXXX
86	XXXXXXXXXXXXXXXXX	14	XXX	14	xxx
0		0		0	
0		0		0	
0		0		0	
0		0		0	
71	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	0		0	
36	xxxxxxx	0		0	
109	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	104	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	109	XXXX
57	XXXXXXXXXXX	29	XXXXXX	14	xxx
100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	92	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	83	XXXX
79	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	43	XXXXXXXXX	29	XXXX
130	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	26	XXXXX	0	
57	XXXXXXXXXXX	14	XXX	0	
111	xxxxxxxxxxxxxxxxxxxxxxxx	95	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	95	XXXX
71	XXXXXXXXXXXXXX	36	XXXXXXX	14	XXX
108	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	24	XXXXX	. 72	XXXX
100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	21	XXXX	14	XXX
56	XXXXXXXXXXX	0		0	
36	XXXXXXX	0		0	
100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	58	XXXXXXXXXXXX	25	XXXX
50	XXXXXXXXXX	21	XXXX	14	XXX
108	xxxxxxxxxxxxxxxxxxxxxxx	15	XXX	0	
57	XXXXXXXXXXX	14	xxx	0	
102	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	102	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	112	XXXX
64	XXXXXXXXXXXXX	29	XXXXXX	14	xxx
	 86 0 0 0 71 36 109 57 100 79 130 57 111 71 108 100 56 36 100 50 108 57 102 	86 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	86 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	86 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	86 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

FLURIDONE

0.1 kg/ha

.

0.5 kg/ha

.

2.5 kg/ha

XXXXXXXXXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXXXXXXXX

XXXXXXXXXXXX

XXX

PRE-EMERGENCE SELECTIVITY EXPERIMENT

SPECIES		0.1 kg/ha		0.5 kg/ha		
PIGEON P	10	XX	72	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	41	XXXX
(61)	36	XXXXXXX	71	XXXXXXXXXXXXXXX	21	XXXX
COWPEA	106	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	116	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	29	XXXX
(62)	93	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	57	XXXXXXXXXXX	7	x
CHICKPEA	48	XXXXXXXXXX	87	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	106	XXXX
(63)	86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	50	XXXXXXXXXX	21	XXXX
SOYABEAN	135	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	48	XXXXXXXXXX	97	XXXX
(65)	64	XXXXXXXXXXXXXX -	29	XXXXXX	21	XXXX
COTTON	87	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	97	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	106	XXXX
(66)	.100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	79	XXXX
JUTE	107	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	0		0	
(67)	21	XXXX	0		0	
KENAF	257	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	29	XXXXXX	0	
(68)	86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	71	XXXXXXXXXXXXXXX	0	
SESAMUM	136	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	0		0	
(70)	86	XXXXXXXXXXXXXXXXX	0		0	
TOMATO	. 0				. 0	
(71)	0		0		0	
OR PUNCT	97	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	65	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	83	XXXX
(73)	36	XXXXXXX	29	XXXXXX	• 14	XXX
ELEU IND	153	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	91	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	0	
(74)	64	XXXXXXXXXXXXX	29	XXXXXX	0	
ECH CRUS	95	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	32	XXXXXX	0	
(75)	29	XXXXXX	21	XXXX	0	

2 H T

FLURIDONE

0.1 ka/ha

· · ·

a server a final and the server

4

· · ·

OF In A

*

2.5 kg/ha

XXXXXX X

XXXX

XXXXXXXXXXXXXXXXXXXXXX CX

XXXXXXXXXXXXXXXXXX XX

XXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXX

.

XXXXXXXXXXXXXXX

D R H N SE LE ER MEN FI

52

A. A.

- K.

.

SPECIES

ROTT EXA	110	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	35	XXXXXXX	0
(76)	57		29	XXXXXXX	0
DIG SANG	141	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	21	XXXX	0
(77)	29		14	XXX	0
AMAR RET	20	XXXX	0		0
(78)	21	XXXX	0		0
SOL NIG (81)	9 29	XX XXXXXX	0 0		000
PHAL MIN	83	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	7	X	0
(84)	71		29	XXXXXXX	0
CYP ROTU (86)	90 64	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 36	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	90 29

.

1.1

FLURIDONE

0.1 kg/ha

. .

0.5 kg/ha

.

.

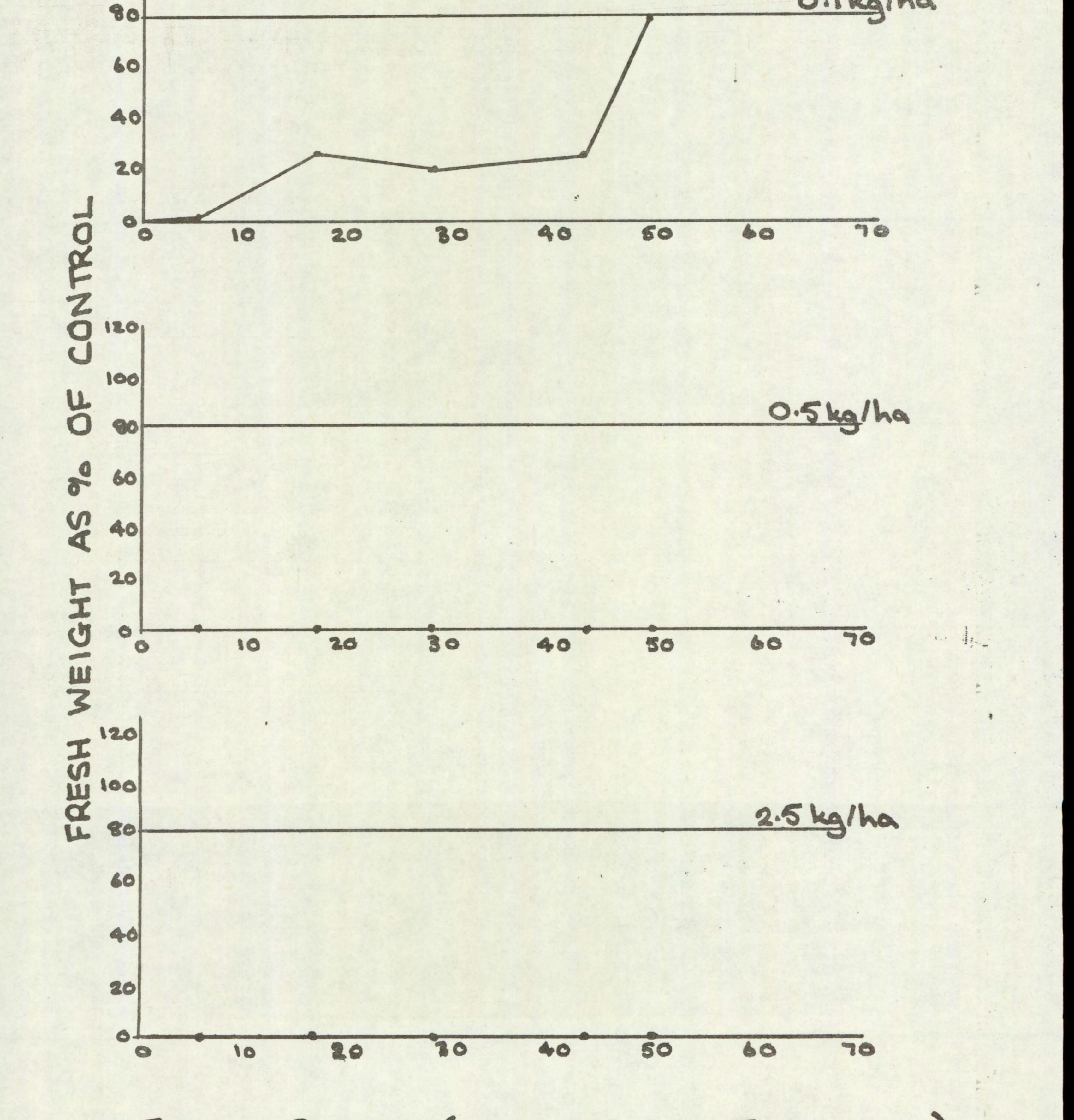
.

XXXXXX

.....

2.5 kg/ha

.


the second second

PRE ERGEN SE F. H H MENT

1.1

PERSISTENCE OF FLURIDONE (incorporated) Species Sugar Beet 120 100 80 0.1kg/ha

- 54 -

TIME OF SOWING (WEEKS AFTER TREATMENT)

ACKNOWLEDGEMENTS

We are most grateful to the joint Letcombe/WRO Statistics Section for processing the experiment data; to Mr T.M. West, Miss F. Hutchison, Miss W. Harbottle and Messrs R.H. Webster, R.M. Porteous and A. Grace for technical and practical assistance; to Miss S. Bomford and Miss S. Freeman for the preparation and typing of this report and to the commercial firms who provided the herbicides and relevant technical data.

- 55 -

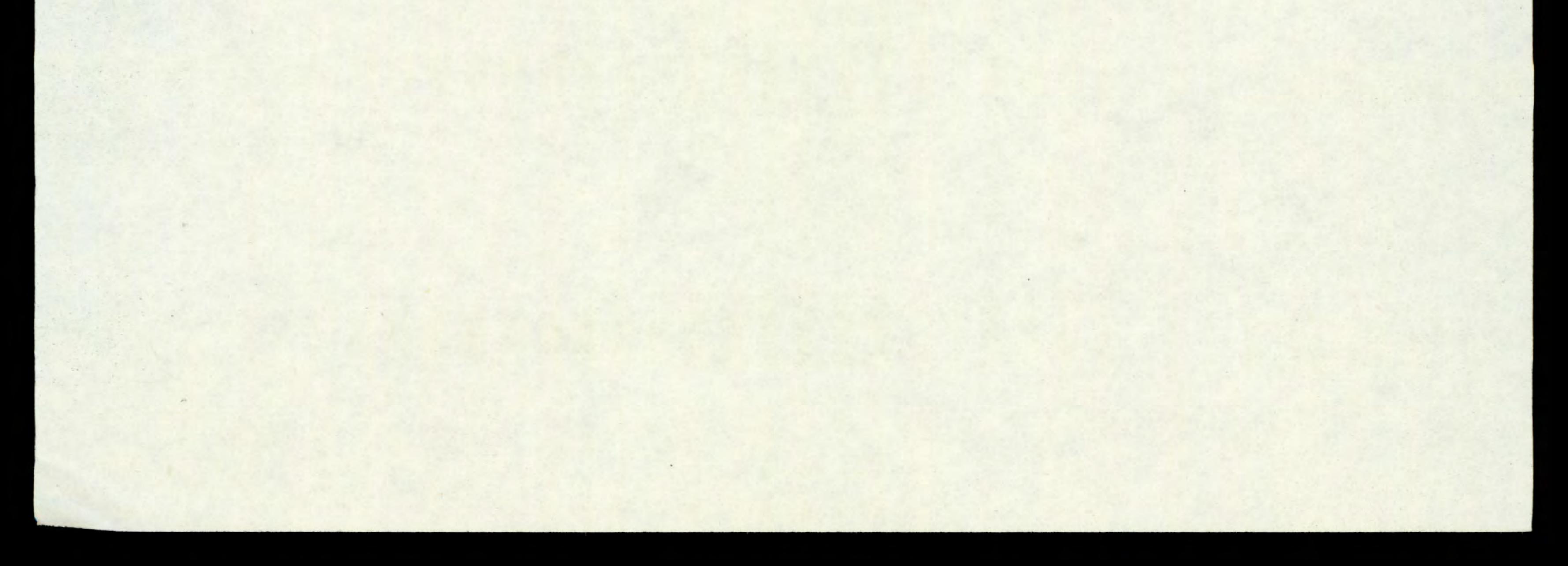
The work of the ODM Tropical Weeds Group was carried out under Research Scheme R3029 financed by HM Ministry of Overseas Development.

REFERENCES

DEAN, M.L. and PARKER, C. (1971) The pre-emergence selectivity of some recently developed herbicides on jute, kenaf and sesamum, and their activity against <u>Oxalis latifolia</u>. Technical Report Agricultural Research Council Weed Research Organization, (19), pp 24.

GREAVES, M.P., LOCKHART, L.A. and RICHARDSON, W.G. (1978) Measurement of herbicide effects on nitrogen fixation by legumes. <u>Proceedings 1978</u> British Crop Protection Conference - Weeds, (2), 581-585.

LILLY RESEARCH LABORATORIES (1978) Technical Report on EL 171, pp 4. Eli Lilly and Company, Indianapolis, Indiana 46206, U.S.A.


RICHARDSON, W.G. and DEAN, M.L. (1973) The pre-emergence selectivity of some recently developed herbicides: lenacil, RU12068, metribuzin, cyprazine, EMD-IT 5914 and benthiocarb. Technical Report Agricultural

Research Council Weed Research Organization, (25), pp 57.

RICHARDSON, W.G. and PARKER, C. (1978) The activity and post-emergence selectivity of some recently developed herbicides: NP48, RH 5205 and pyridate. Technical Report Agricultural Research Council Weed Research Organization, (49), pp 38.

Technical Report on EL 171, 1978.

WALDREP, T.W. and TAYLOR, H.M. (1976) 1-methyl-3-phenyl-5- 3-(trifluoromethyl) phenyl -4(1H)-pyridinone, a new herbicide. Agricultural and Food Chemistry 24, (6), 1250-1251.

Species, abbreviations, cultivars and stage of growth at Appendix 1. assessment

- 56 -

Designation and computer serial number

Cultivar or source

Depth of No. planper ting pot (cm)

Stage of growth at assessment (untreated controls, leaf numbers exclusive of cotyledons)

-

Temperate species

Wheat (Triticum aestivum	WHEAT (1)	Maris Huntsman	. 8	1.2	5 leaves, some tillering
Barley (Hordeum vulgare)	BARLEY (2)	Maris Mink	8	1.2	5-6 leaves, some tillering
Oat (Avena sativa)	OAT (3)	Peniarth	8	1.2	3 ¹ / ₂ -4 ¹ / ₂ leaves, some tillering
Perennial ryegrass (Lolium perenne)	PER RYGR (4)	S 23	15	0.6	4-6 leaves, tillering
Onion (Allium cona)	ONION	Robusta	15	0.6	$1\frac{1}{2}-2\frac{1}{2}$ leaves

(Allium cepa)

.

Dwarf bean* (Phaseolus vulgaris)	DWF BEAN (9)	The Prince	3	1.8	1 ¹ / ₂ -2 trifoliate leaves
Field bean (Vicia faba)	FLD BEAN (10)	Maris Bead	4	1.8	4 ¹ / ₂ -5 leaves
Pea (Pisum sativum)	PEA (11)	Dark Skinned Perfection	4	1.8	6-7 leaves
White clover (Trifolium repens)	W CLOVER (12)	S 100	20	0.6	2 ¹ / ₂ trifoliate leaves
Rape (Brassica napus oleifera)	RAPE (14)	Rapora	20	0.6	2 ¹ / ₂ -3 leaves
Kale (Brassica oleracea acephala)	KALE (15)	Green Marrowstem	15	0.6	2 ¹ / ₂ leaves
Carrot (Daucus carota)	CARROT (18)	Chantenay Red Core	10	0.6	2-2 ¹ / ₂ leaves
Lettuce (Lactuca sativa)	LETTUCE (20)	Borough Wonder (Unrivalled)	15	0.6	5 ¹ / ₂ -6 leaves
Sugar beet (Beta vulgaris)	SUG BEET (21)	Monotri	15	1.2	21-31 leaves
 raised with the tree 	opical spect	ies under the high	gher ter	nperati	re regime.

Appendix 1. (cont'd)

Designation and computer serial

Cultivar or source

- 57 -

Depth of No. planper ting pot

Stage of growth at assessment (untreated controls, leaf numbers

n	1 17	nh	nr	
11	u	ILD	er	

(cm)

exclusive of cotyledons)

-

*

.

-

Avena fatua	AVE FATU (26)	Farthinghoe	15	1.2	3-5 leaves, some tillering
Alopecurus myosuroides	ALO MYOS (27)	B and S Supplies	30	0.6	3-6 leaves, some tillering
Poa annua	POA ANN (28)	WRO 1974	25	0.6	4-5 leaves
Poa trivialis	POA TRIV (29)	Omega	30	0.6	4-7 leaves, tillering
Sinapis arvensis	SIN ARV (30)	WRO 1971	25	0.6	$3\frac{1}{2}-4\frac{1}{2}$ leaves

Raphanus raphanistrum	RAPH RAP (31)	Long Black Spanish	12 0.6	2 ¹ / ₂ leaves
Chrysanthemum segetum	CHRY SEG (32)	WRO 1976	surface	4-6 leaves
Tripleurospermum maritium	TRIP MAR (33)	WRO 1975	25 surface	4-8 leaves
Senecio vulgaris	SEN VULG (34)	WRO 1974	35 0.2	3 ¹ / ₂ -4 leaves
Polygonum lapathifolium	POL LAPA (35)	WRO 1974	15 0.6	$1\frac{1}{2}-2\frac{1}{2}$ leaves.
Polygonum aviculare	POL AVIC (36)	B and S Supplie 1976	es 0.6	2-27 leaves
Galium aparine	GAL APAR (38)	B and S Supplies	12 0.6	8 whorls
Chenopodium album	CHEN ALB (39)	WRO 1972	40 0.6	nil germination
Stellaria media	STEL MED (40)	B and S Supp- lies, 1975	50 0.6	15 leaves
Veronica persica	VER PERS (42)	WRO 1975	25 0.6	4-6 leaves

Appendix 1 (cont'd)

Designation and computer serial

Cultivar or Source No. Depth of per planpot ting (cm) Stage of growth at assessment (untreated controls, leaf numbers

-

	number			(cm)	exclusive of cotyledons)
Soyabean (Glycine max)	SOYABEAN (65)	TK 5	8	1.2	1-2 trifoliate leaves
Cotton (Gossypium hirsutum)	COTTON (66)	S 71	6	1.8	2-3 leaves
Jute (Corchorus olitorius)	JUTE (67)	Trinidad 1975	15	0.6	2-3 leaves
Kenaf (Hibiscus cannabinus)	KENAF (68)	Thai Native	12	0.6	2-3 leaves
Sesamum (Sesamum indicum)	SESAMUM (70)	E8	10	0.6	2-4 leaves

- 58 -

Tomato (Lycopersicum esculentum)	TOMATO (71)	Ailsa Craig	6	0.6	4 leaves
Oryza punctata	OR PUNCT (73)	Swaziland 1974	25	0.6	2-3 leaves
Eleusine indica	ELEU IND (74)	WRO 1964	15	0.6	2-4 ¹ / ₂ leaves
Echinochloa crus-galli	ECH CRUS (75)	WRO 1970	15	0.6	4 ¹ / ₂ -5 leaves
Rottboellia exaltata	ROTT EXA (76)	Ex Ciba-Geigy 1974	20	0.6	$4\frac{1}{2}$ -5 leaves
Digitaria sanguinalis	DIG SANG (77)	WRO 1971	20	0.2	3-4 leaves
Amaranthus retroflexus	AMAR RET (78)	WRO 1970	25	0.3	2-5 leaves
Solanum nigrum	SOL NIG (81)	WRO 1976	15	0.2	6-8 leaves
Snowdenia polystachya	SNO POL (83)	Ethiopia 1974	25 :	surface	3-6 leaves

Appendix 1. (cont'd)

Designation and computer serial

Cultivar or Source

- 59 -

No. Depth of per planting pot (cm) Stage of growth at assessment (untreated controls, leaf numbers

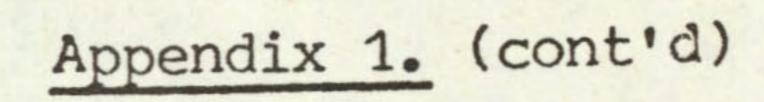
1

.

12.27

.

.


٠

	number			exclusive of cotyledons)
Rumex obtusifolius	RUM OBTU (44)	B and S Supplies	25 0.2	2-3 leaves
Holcus lanatus	HOLC LAN (45)	WRO 1973	20 0.6	4-6 leaves, tillering
Agropyron repens	AG REPEN (47)	WRO Clone 31	6 1.2	3-4 leaves
Allium vineale	ALL VIN (49)	WRO 1976	207 1.2	2 ¹ / ₂ -3 leaves
Cirsium arvense	CIRS ARV (50)	WRO Clone 1	4# 1.2	3-6 leaves

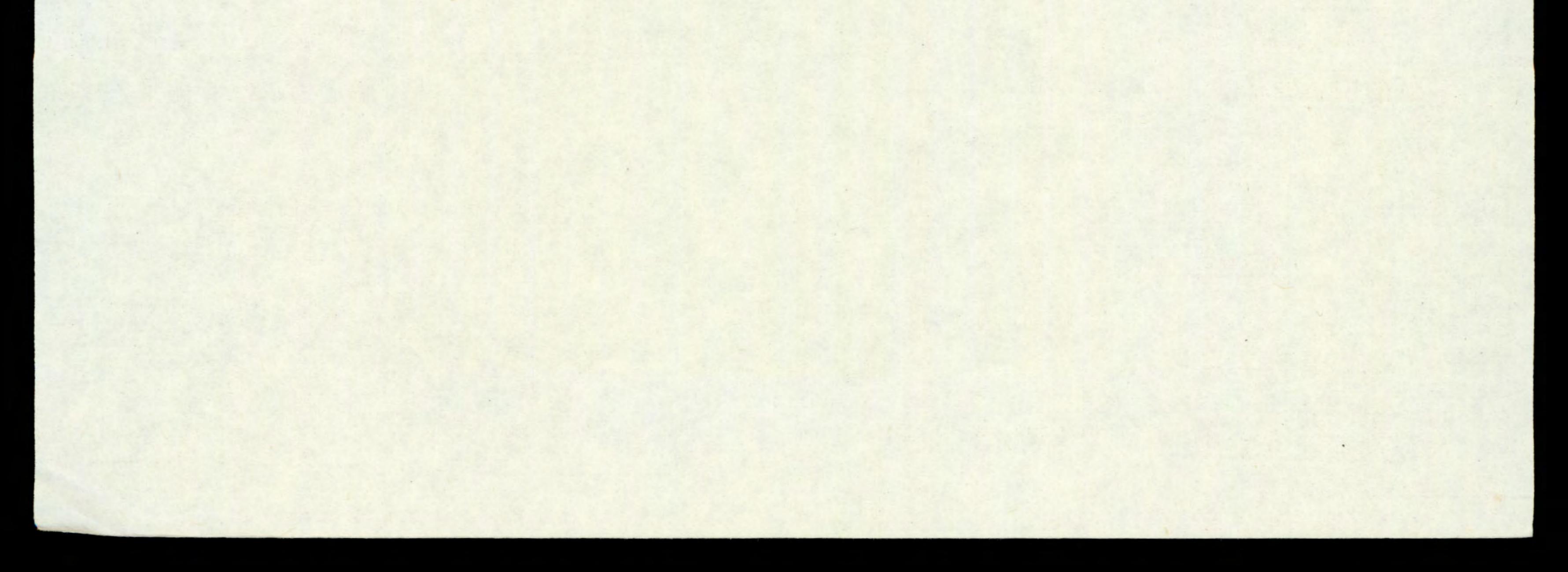
Tussilago farfara	TUS FARF (51)	WRO Clone 1	4	1.8	2-3 leaves
<u>Convolvulus</u> arvensis	CONV ARV (52)	WRO Clone 1	6##	1.2	5-10 leaves
Tropical species (grow	wn under highe	er temperature r	egime	2	
Millet (Pennisetum americanum	n)MILLET	ICRISAT 1977	15	0.6	4-51 leaves
Maize (Zea mays)	(57) MAIZE (58)	Julia	6	1.8	4월-5월 leaves
Sorghum (Sorghum vulgare)	SORGHUM (59)	SK5912	8	1.2	4-5 leaves
Rice (Oryza sativa)	RICE (60)	IR 28	10	0.6	3-4 leaves
Pigeon pea (Cajanus cajan)	PIGEON P (61)	ICRISAT 1977	: 6	1.2	3-4 trifoliate leaves
Cowpea (Vigna unguiculata)	COWPEA (62)	ICRISAT S7 1977	6	1.2	1-2 trifoliate leaves
Chickpea (Cicer arietinum)	CHICKPEA (63)	G 62404	6	1.2	10-12 pinnate leaves
Groundnut (Arachis hypogaea)	GRNDNUT (64)	S 38	5	1.8	5-6 trifoliate leaves

the second second

NAME OF TAXABLE AND ADDRESS OF TAXABLE OF TAXABLE ADDRESS OF TAXABLE A

Designation and computer serial

Cultivar or Source


- 60 -

No. Depth of per planpot ting Stage of growth at assessment (untreated controls, leaf numbers

	number			(cm)	exclusive of (cotyledons)
Phalaris minor*	PHAL MIN (84)	Jordan 1977	25	0.2	3-3 ¹ / ₂ leaves, some tillering
<u>Cyperus</u> esculentus	CYP ESCU (85)	WRO Clone 2 (ex South Africa)	7**	1.8	3-6 leaves/ shoot
<u>Cyperus</u> rotundus	CYP ROTU (86)	WRO Clone 1 (Rhodesia)	5**	1.8	9-12 leaves/ shoot
Oxalis latifolia	OXAL LAT (87)	WRO Clone 2 (Cornwall)	15 bulbs	1.8.	1-2 trifoliate leaves

- * raised as a temperate species under the lower temperature regime
- 4 one node rhizome fragments
- 44 cm root fragments

- † aerial bulbils
- ** tubers

ABBREVIATIONS

5

\$

.....

1

angström	R	freezing point	f.p.
Abstract	Abs.	from summary	F.S.
acid equivalent*	a.e.	gallon	gal
acre	ac	gallons per hour	ga1/h
active ingredient*	a.i.	gallons per acre	gal/ac
approximately equal to*		gas liquid chromatography	GLC
aqueous concentrate	a.c.	gramme	g
bibliography	bibl.	hectare	ha
boiling point	b.p.	hectokilogram	hkg
bushe1	bu	high volume	HV
centigrade	C	horse power	hp
centimetre*	cm	hour	h
concentrated	concd	hundredweight*	cwt
concentration x	concn	hydrogen ion concentration*	pH
time product	ct	inch	in.
concentration		infra red	i.r.
required to kill 50% test animals	LC50	kilogramme	kg
cubic centimetre*	cm ³	kilo (x10 ³)	k
cubic foot*	ft ³	less than	<
cubic inch*	in ³	litre	1.
cubic metre*	m	low volume	LV
cubic yard*	yd ³	maximum	max.
cultivar(s)	cv.	median lethal dose	LD50
curie*	Ci	medium volume	MV
degree Celsius*	°c	melting point	m.p.
degree centigrade	°c	metre	m
degree Fahrenheit*	°F	micro (x10 ⁻⁶)	μ
diameter	diam.	microgramme*	μg
diameter at breast height	d.b.h.	micromicro (pico: x10 ⁻¹²)*	titte
divided by*	tor /	micrometre (micron)*	μm (or μ)
dry matter	d.m.	micron (micrometre)*†	μm (or μ)
emulsifiable		miles per hour*	mile/h
concentrate	e.c.	milli (x10 ⁻³)	m
equal to*	=	milliequivalent*	m.equiv.
fluid	f1.	milligramme	mg
foot	ft	millilitre	ml
t The name micrometre is	preferred to mic	eron and µm is preferred	to μ.

.1

millimetre* mm millimicro* (nano: x10⁻⁹) minimum minus minute molar concentration* molecule, molecular more than multiplied by* normal concentration* n.d. not dated oil miscible concentrate organic matter ounce ounces per gallon page pages parts per million parts per million

.

n or mu min. min M (small cap) mol.

>

O.M.C.

O.M.

oz/gal

OZ

p.

pp.

ppm

X

pre-emergence pre-em. quart quart relative humidity r.h. rev/min revolution per minute* second 5 soluble concentrate S.C. soluble powder s.p. soln solution

species (singular) species (plural) N (small cap) specific gravity square foot* square inch (tables only) square metre* square root of* sub-species* summary temperature ton tonne

sp. spp. sp. gr. ft² in² m² 5 ssp. 8. temp. ton t

by volume	ppmv	ultra-low volume
<pre>parts per million by weight percent(age)</pre>	ppmw %	ultra violet vapour density vapour pressure
<pre>pico (micromicro: x10⁻¹²) pint pints per acre plus or minus* post-emergence</pre>	p or µµ pint pints/ac + post-em	varietas volt volume volume per volume water soluble powd
pound pound per acre*	lb lb/ac	watt weight
and a man minute	lh/min	

ULV u.v. v.d. v.p. var. V vol. v/v able powder W.S.p. (tables only) W wt w/v

pounds per minute	lb/min 2	weight per volume*
pound per square inch*	lb/in ²	weight per weight*
powder for dry application	p. (tables only)	wettable powder
power take off	p.t.0.	yard
precipitate (noun)	ppt.	yards per minute

w/w w.p. yd yd/min

* Those marked * should normally be used in the text as well as in tables etc.

AGRICULTURAL RESEARCH COUNCIL

RESEARCH ORGANIZATION WEED

TECHNICAL REPORTS (Price includes surface mail; airmail £0.50 extra)

- The botany, ecology, agronomy and control of Poa trivialis L. rough-6. stalked meadow-grass. November 1966. G P Allen. Price - £0.25
- Flame cultivation experiments 1965. October, 1966. G W Ivens. 7. Price - $\pounds 0.25$
- The development of selective herbicides for kale in the United Kingdom. 8. 2. The methylthiotriazines. Price - £0.25
- The liverwort, Marchantia polymorpha L. as a weed problem in 10. horticulture; its extent and control. July 1968. I E Henson. Price - $\pounds 0.25$
- Raising plants for herbicide evaluation; a comparison of compost 11. types. July 1968. I E Henson. Price - £0.25
- 12. Studies on the regeneration of perennial weeds in the glasshouse; I. Temperate species. May 1969. I E Henson. Price - £0.25
- Changes in the germination capacity of three Polygonum species 13. following low temperature moist storage. June 1969. I E Henson. Price. - £0.25
- Studies on the regeneration of perennial weeds in the glasshouse. 14. II. Tropical species. May 1970. I E Henson. Price - £0.25
- Methods of analysis for herbicide residues in use at the Weed Research 15. Organization. December 1970. R J Hance and C E McKone. Price - £0.25
- Report on a joint survey of the presence of wild oat seeds in cereal 16. seed drills in the United Kingdom during Spring 1970. November 1970. J G Elliott and P J Attwood. Price - £0.25
- The pre-emergence selectivity of some newly developed herbicides, 17. Orga 3045 (in comparison with dalapon), haloxydine (PP 493), HZ 52.112, pronamide (RH 315) and R 12001. January 1971. W.G Richardson, C Parker and K Holly. Price - £0.25
- A survey from the roadside of the state of post-harvest operations in 18. Oxfordshire in 1971. November 1971. A Phillipson. Price - £0.12
- The pre-emergence selectivity of some recently developed herbicides 19. in jute, kenaf and sesamum, and their activity against Oxalis latifolia. December 1971. M L Dean and C Parker. Price - £0.25.

A survey of cereal husbandry and weed control in three regions of 20. England. July 1972. A Phillipson, T W Cox and J G Elliott. Price - $\pounds 0.35$

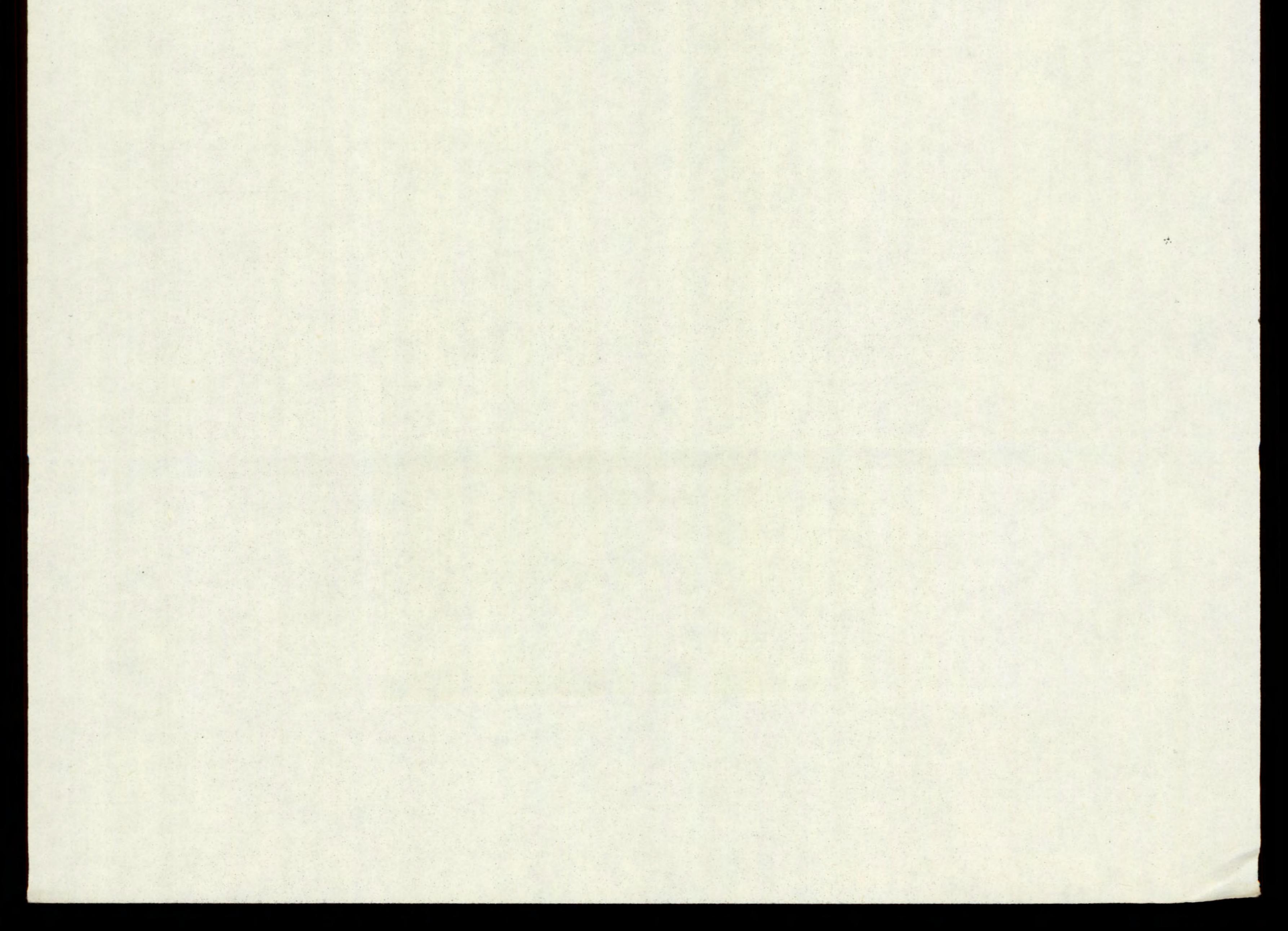
- 2 -

- An automatic punching counter. November 1972. R C Simmons. 21. Price - £0.30
- The pre-emergence selectivity of some newly developed herbicides: 22. bentazon, BAS 3730H, metflurazone, SAN 9789, HER 52.123, U 27,267. December 1972. W G Richardson and M L Dean. Price - £0.25

- A survey of the presence of wild oats and blackgrass in parts of the 23. United Kingdom during summer 1972. A Phillipson. Price - £0.25
- The conduct of field experiments at the Weed Research Organization. 24. February 1973. J G Elliott, J Holroyd and T O Robson. Price -£1.25
- The pre-emergence selectivity of some recently developed herbicides: 25. lenacil, RU 12068, metribuzin, cyprazine, EMD-IT 5914 and benthiocarb. August 1973. W G Richardson and M L Dean. Price - £1.75.
- The post-emergence selectivity of some recently developed herbicides: 26. bentazon, EMD-IT 6412, cyprazine, metribuzin, chlornitrofen, glyphosate, MC 4379, chlorfenprop-methyl. October 1973. W G Richardson and M L Dean. Price - £3.31
- 27. Selectivity of benzene sulphonyl carbamate herbicides between various pasture grasses and clover. October 1973. A M Blair. Price - £1.05
- The post-emergence selectivity of eight herbicides between pasture 28. grasses: RP 17623, HOE 701, BAS 3790, metoxuron, RU 12068, cyprazine, MC 4379, metribuzin. October 1973. A M Blair. Price - £1.00
- The pre-emergence selectivity between pasture grasses of twelve 29. herbicides: haloxydine, pronamide, NC 8438, Orga 3045, chlortoluron, metoxuron, dicamba, isopropalin, carbetamide, MC 4379, MBR 8251 and EMD-IT 5914. November 1973. A M Blair. Price - £1.30
- Herbicides for the control of the broad-leaved dock (Rumex obtusifolius 30. L.). November 1973. A M Blair and J Holroyd. Price - £1.06
- 31. Factors affecting the selectivity of six soil acting herbicides against Cyperus rotundus. February 1974. M L Dean and C Parker. Price - £1.10
- The activity and post-emergence selectivity of some recently developed 32. herbicides: oxadiazon, U-29,722, U-27,658, metflurazone, norflurazone, AC 50-191, AC 84,777 and iprymidam. June 1974. W G Richardson and M L Dean. Price - £3.62
- A permanent automatic weather station using digital integrators. 33. September 1974. R C Simmons. Price £0.63.
- The activity and pre-emergence selectivity of some recently developed 34. herbicides: trifluralin, isopropalin, oryzalin, dinitramine, bifenox and perfluidone. November 1974. W G Richardson and M L Dean. Price - £2.50

A survey of aquatic weed control methods used by Internal Drainage 35. Boards, 1973. January 1975. T O Robson. Price - £1.39

- 3 -


- The activity and pre-emergence selectivity of some recently developed 36. herbicides: Bayer 94871, tebuthiuron, AC 92553. March 1975. W G Richardson and M L Dean. Price - £1.54
- Studies on Imperata cylindrica (L.) Beauv. and Eupatorium odoratum L. 37. October 1975. GW Ivens. Price - £1.75
- The activity and pre-emergence selectivity of some recently developed 38. herbicides: metamitron, HOE 22870, HOE 23408, RH 2915, RP 20630. March 1976. W G Richardson, M L Dean and C Parker. Price - £3.25
- The activity and post-emergence selectivity of some recently developed 39. herbicides: HOE 22870, HOE 23408, flamprop-methyl, metamitron and cyperquat. May 1976. W G Richardson and C Parker. Price - £3.20
- The activity and pre-emergence selectivity of some recently developed 40. herbicides: RP 20810, oxadiazon, chlornitrofen, nitrofen, flamprop--isopropyl. August 1976. W G Richardson, M L Dean and C Parker. Price - £2.75.
- The activity and pre-emergence selectivity of some recently developed 41. herbicides: K 1441, mefluidide, WL 29226, epronaz, Dowco 290 and triclopyr. November 1976. W G Richardson and C Parker. Price - £3.40.

- The activity and post-emergence selectivity of some recently developed 42. herbicides: KUE 2079A, HOE 29152, RH 2915, Triclopyr and Dowco 290. March 1977. W G Richardson and C Parker. Price - £3.50
- The activity and pre-emergence selectivity of some recently developed 43. herbicides: dimefuron, hexazinone, trifop-methyl, fluothiuron, buthidazole and butam. November 1977. W G Richardson and C Parker. Price - £3.75.
- 44. The activity and selectivity of the herbicides: ethofumesate, RU 12709 and isoproturon. December 1977. W G Richardson, C Parker, & M L Dean. Price - £4.00
- 45. Methods of analysis for determining the effects of herbicides on soil soil micro-organisms and their activities. January 1978. M P Greaves, S L Cooper, H A Davies, J A P Marsh & G I Wingfield. Price - £4.00
- 46. Pot experiments at the Weed Research Organization with forest crop and weed species. February 1978. D J Turner and W G Richardson. Price - £2.70
- 47. Field experiments to investigate the long-term effects of repeated applications of MCPA, tri-allate, simazine and linuron - effects on the quality of barley, wheat, maize and carrots. July 1978. J D Fryer, P D Smith and J W Ludwig. Price - £1.20.
- 48. Factors affecting the toxicity of paraquat and dalapon to grass swards. March 1978. A K Oswald. Price - £2.90
- 49. The activity and post-emergence selectivity of some recently developed herbicides: NP 48, RH 5205 and Pyridate. May 1978. W G Richardson and C Parker. Price - £2.50

- 50. Sedge weeds of East Africa II. Distribution. July 1978. P J Terry. Price - £1.50
- 51. The activity and selectivity of the herbicides methabenzthiazuron, metoxuron, chlortoluron and cyanazine. September 1978. W G Richardson and C Parker. Price - £2.20.

- 4 -

- 52. Antidotes for the protection of field bean (Vicia faba L.) from damage by EPTC and other herbicides. February 1979. A M Blair. Price - £1.35
- 53. Antidotes for the protection of wheat from damage by tri-allate. February 1979. A M Blair. Price - £2.00
- 54. The activity and pre-emergence selectivity of some recently developed herbicices: alachlor, metolachlor, dimethachlor, alloxydim-sodium and fluridone. April 1979. W G Richardson and C Parker. Price - £3.00

