Table 10. Potential pre-emergence selectivities

RATE (kg a.i./ha)	CROPS: vigour reduced by 15% or less	WEEDS: number or vigour reduced by 70% or more
3.0	cotton*	Polygonum lapathifolium Agropyron repens Allium vineale Oryza punctata Rottboellia exaltata + species below
1.0	species above + wheat radish chickpea	Avena fatua Alopecurus myosuroides Poa annua Senecio vulgaris Polygonum aviculare Stellaria media Eleusine indica Echinochloa crus-galli Digitaria sanguinalis Amaranthus retroflexus + species below
0.33	species above + barley oat dwarf bean field bean pea rape kale swede carrot lettuce maize rice groundnut soyabean sesamum	Poa trivialis Sinapis arvensis Tripleurospermum maritinum Rumex crispus

^{*} but note some reduction of plant numbers

Table 11. Potential post-emergence selectivities

RATE (kg a.i./ha)	CROPS: vigour reduced by 15% or less	WEEDS: number or vigour reduced by 70% or more
3.0	None	None listed as no crops tolerant
1.0	broad bean	Polygonum aviculare Oryza punctata Eleusine indica Echinochloa crus-galli Amaranthus retroflexus + species below
0.33	species above + wheat barley oat pea rape carrot radish sorghum rice groundnut soyabean cotton	Alopecurus myosuroides Poa annua Poa trivialis Sinapis arvensis Chrysanthemum segetum Tripleurospermum maritimum Senecio vulgaris Rumex crispus Chenopodium album Stellaria media Spergula arvensis Solanum nigrum Portulaca oleracea

Comments on results

Activity experiment (see page 26)

Isoproturon was particularly active following soil application. The foliar spray caused considerable damage to the broad-leaved species but had relatively little activity on the grasses. Soil drenches to established annual plants caused a greater effect than either of the pre-emergence treatments. Surface pre-emergence application was generally more damaging to small seeded and perennial species while the incorporated treatments had a greater effect on the larger seeded species. The perennials, however, showed more resistance to all soil applied treatments compared to the annual species.

These variations in response to surface and incorporated treatments should be borne in mind when considering the results of the pre-emergence

selectivity experiment where application was to the soil surface.

Symptoms

Symptoms were typical of a photosynthetic inhibitor with chlorosis preceding die-back. The foliar spray caused scorch on broad-leaved species. Germination was unaffected following pre-emergence applications.

Soil persistence

White clover was used as the sensitive test species for isoproturon. Rates of 0.33 and 1.0 kg/ha could not be detected 25 and 28 weeks after application respectively. The 3.0 kg/ha dose caused only a 34% reduction in shoot fresh weight after 32 weeks, indicating a considerable loss of activity. However, minor symptoms and shoot fresh weight reductions (38-50%) were observed after 45 and 56 weeks.

Selectivity among temperate species

Pre-emergence

There was good control of annual weeds, particularly the grasses, including Alopecurus myosuroides and Avena fatua. Perennial weeds were generally more resistant than annuals. However neither Polygonum lapathifolium nor Galium aparine were controlled, the latter being particularly resistant even at 3.0 kg/ha. Convolvulus arvensis also showed high resistance. Wheat and radish were tolerant to 1 kg/ha, although the latter suffered a stand reduction of 32%.

Post-emergence

Perennial grasses and Raphanus raphanistrum and Veronica persica were susceptible at 3.0 kg/ha but Galium aparine was resistant. Broad bean showed outstanding tolerance, 3.0 kg/ha causing only a 29% reduction in vigour. Cereals were safe at 0.33 kg/ha, barley being the most tolerant of these at 1.0 kg/ha.

Crop safety was slightly greater following pre-emergence applications but better weed control was generally achieved post-emergence. Thus selectivity was similar pre- and post-emergence with the exception that Avena fatua was controlled selectively pre- but not post-emergence.

Selectivity among tropical species

Pre-emergence

Although all annual weeds were killed at 3.0 kg/ha, Cyperus rotundus and C. esculentus both recovered eventually. Based on one replicate only, cotton appeared to be resistant at 3.0 kg/ha. Number of plants was lower but this was not due to herbicide. Good control of most annual weeds other than Rottboellia should be possible in cotton and in chickpea at 1 kg/ha.

Post-emergence

No crop tolerated 1 kg/ha and at the lower 0.33 kg/ha dose, only small-seeded broad-leaved species were controlled. The main potential would perhaps be as an early post-emergence inter-row directed spray, particularly in cotton and soyabean where a higher dose could be used, for broader spectrum control.

ACTIVITY EXPERIMENT

ISOPROTURON

		0.25 kg/ha		1.00 kg/ha		4.00 kg/ha	
	F	XXXXXXXXXXXXXXXXXX		XXXXXXXXXXXXXXXXXX		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	
DWARF	S	0		0		0	
BEAN	P	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		XXXXX		0	
	I	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		0		XX	
	F	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		XXXXXXXXXXX	
KALE	S	XXXXXXX		0		0	
	P	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		0		0	
	I	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		XXXXX		0	
	F	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		XXX XX	
POLYGONUM	S	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		XXXXXXXXXXXXXXXXXX		XXXXXXXXXXXXXXXXXX	
AMPHIBIUM	P	XXXXXXXXXXXXXXXXXXX		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	+	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	+
	I	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	+	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	+	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	+
	F	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		XXXXXXXXXXXXXXXXXX		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	
PERENNIAL	S	XXXXXXXXXXXX		0		0	
RYEGRASS	P	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		XXXXXX		0	
	I	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		XXXXXX		0	
	F	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	
AVENA	S	XXXXXXXXXXXXXXXXX		8		0	
FATUA	P	XXXXXXXXXXXXXXXX		XX		0	
	I	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		0		0	
	F	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		XXXXXXXXXXXXXXXXXXX		XXXXXXXXXXXXXXXXXXX	
AGROPYRON	S	XXXXXXXXXXXXXXXXXX		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		XXXXXXXX	
REPENS	P	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		XXXXX	
	I	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	+	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		XXXXXX	

Key: F = post-emergence, foliar application

S = post-emergence, soil drench P = pre-emergence, surface film

I = pre-planting, incorporated

Table 12.

ISOPROTURON

		PR	E-EMERGENCI	E	PO	ST-EMERGENC	E
SPECIES	SPECIES	5 0.33	1.00	3.00	0.33	1.00	3.00
	NO.		kg a.i./ha			kg a.i./ha	
WHEAT	1	100/100	93/86	100/57	100/86	100/50	25/14
BARLEY	2	109/100	89/79	55/36	100/100	100/71	25/14
OAT	3	104/93	78/29	7/7	100/100	50/29	0/0
PER RYGR	4	96/79	41/29	0/0	81/57	0/0	0/0
ONION	8	50/71	0/0	0/0	83/64	8/14	0/0
DWF BEAN	9	100/100	100/79	100/14	100/14	25/7	25/7
FLD BEAN	10	79/100	79/79	16/29	50/43	0/0	0/0
PEA	11	80/100	80/71	20/21	100/100	100/36	50/21
W CLOVER	12	0/0	0/0	0/0	0/0	0/0	0/0
BRD BEAN	13	-	-	-	100/100	100/86	100/71
RAPE	14	98/100	73/64	0/0	100/86	83/43	0/0
KALE	15	81/86	14/21	3/14	60/50	30/21	0/0
CABBAGE	16		neety.		75/79	37/43	0/0
SWEDE	17	100/93	4/21	0/0			-
CARROT	18	119/100	28/43	0/0	100/93	67/64	8/14
LETTUCE	20	100/100	48/43	0/0	0/0	0/0	0/0
SUG. BEET	21	40/36	0/0	0/0	0/0	0/0	0/0
AVE FATU	26	104/86	40/29	6/7	100/79	100/57	0/0
ALO MYOS	27	70/79	13/29	38/14	75/29	0/0	0/0
POA ANN	28	80/36	32/14	16/14	12/14	0/0	0/0
POA TRIV	29	29/14	6/7	6/7	0/0	0/0	0/0
SIN ARV	30	29/71	0/0	0/0	0/0	0/0	0/0
RAPH RAP	31	79/100	68/86	37/50	100/86	70/71	30/43
CHRY SEG	32	-	-	-	0/0	0/0	0/0
TRIP MAR	33	0/0	0/0	0/0	0/0	0/0	0/0
SEN VULG	34	124/86	0/0	0/0	0/0	0/0	0/0
POL LAPA	35	88/86	88/64	7/21	100/86	94/43	0/0
POL AVIL	36	62/79	3/21	0/0	100/86	31/29	0/0
RUM CRIS	37	15/7	7/7	0/0	0/0	0/0	0/0
GAL APAR	38	93/93	114/100	96/86	100/10	0 100/93	87/64
CHEN ALB	29	-			10/14	0/0	0/0
STEL MED	40	55/64	2/29	0/0	0/0	0/0	0/0
SPER ARV	41	-		-	0/0	0/0	0/0
VER PERS	42	-		-	100/10	0 100/86	50/29
SOL NIG	43	-		-	0/0	0/0	0/0
AG REPEN	47	106/100	97/64	62/29	100/10	0 100/100	87/21

KEY = No/Vigour (survivors, as % of control)
Untreated = 100/100

Table 12 (cont...)

ISOPROTURON

		PRE	-EMERGENCE		POST	-EMERGENC	E
SPECIES	SPECIES	0.33	1.00	3.00	0.33	1.00	3.00
	NO.		kg a.i./h	a		kg a.i./h	a
AC CTOI	48				100/64	100/36	75/21
AG STOL ALL VIN	49	121/100	74/57	26/14			
CIRS ARV	50	67/93	67/57	67/36			
TUS FARF	51	100/100	87/64	100/36			
	52	107/86	53/57	100/93		-	****
CONV ARV	58	106/100	106/79	106/64	100/64	100/57	75/43
MAIZE	59				100/86	83/50	0/0
SORGHUM	60	117/86	132/79	80/57	100/100	100/57	75/29
RICE	63	129/100	100/86	43/21			(44)
CHICKPEA	64	60/100	60/64	75/71	100/86	100/50	100/36
GRNDNUT		131/93	131/71	112/21	100/93	100/79	100/29
SOYABEAN	65	104/100	92/93	46/100	100/86	100/64	100/29
COTTON	66			0/0	8/14	0/0	0/0
JUTE	67	0/0	0/0		100/14	75/14	50/14
KENAF	68	82/64	7/29	0/0		0/0	0/0
TOBACCO	69			~	100/50		8/21
SESAMUM	70	122/93	37/43	9/7	100/50	0/0	
TOMATO	71	83/64	6/7	0/0	60/14	40/14	60/14
OR PUNCT	73	62/57	100/43	37/21	80/50	20/7	0/0
ELEU IND	74	48/36	0/0	0/0	81/64	0/0	0/0
ECH VRUS	75	91/86	30/43	0/0	100/71	33/21	0/0
ROT EXALT	76	174/93	111/57	0/0	100/100	100/64	80/29
DIG SANG	77	69/64	0/0	0/0	100/85	42/50	0/0
AMAR RET	78	70/57	0/0	0/0	90/71	10/29	0/0
PORT OLE	79	-			0/0	0/0	0/0
CYN DACT	82				114/100	114/93	114/71
CYP ESCU	85	94/93	94/64	84/50	114/86	57/57	
CYP ROTU	86	120/100	120/100	97/93	97/100	109/100	74/93

KEY = No/Vigour (survivors, as % of control)
Untreated = 100/100

1 CKNOWLEDGEMENTS

West, R H Webster, R Porteous and D J Cambray for technical and practical assistance; to Mr J H Fearon for suggestions regarding the preparation of the report; Mrs L Harris and Mrs J Souch for the preparation and typing; to the joint Letcombe/WRO Statistics Section, ARC Letcombe Laboratory for processing the experimental data and to the various commercial firms for providing the chemicals and technical data.

The work of the ODM Tropical Weeds Group was carried out under Research Schemes R 2119 and R 2617 financed by H M Ministry of Overseas Development.

REFERENCES

- BERTIN, D., CARLES, P., LHOSTE, J., RAFFRAY, B., RATLE, G. and ROA, L. (1972). New substituted uracils used as selective herbicides.

 Proceedings 11th British Weed Control Conference, 841-848
- BLAIR, A.M. (1972) Selectivity of NC 8438 between ryegrass and weed grass species. Proceedings 11th British Weed Control Conference, 301-305.
- BLAIR, A.M. (1973) The pre-emergence selectivity between pasture grasses of twelve herbicides: haloxydine, pronamide, NC 8438, ORGA 3045, chlortoluron, metoxuron, dicamba, isopropalin, carbetamide, MC 4379, MBR 8251 and EMD-IT 5914. Technical Report Agricultural Research Council Weed Research Organization, 29, pp 29.
- FISONS TECHNICAL BULLETIN (1973) Nortran.
- PEPRO TECHNICAL BULLETIN (1973) LS 69-1299 Experimental herbicide.
- PFEIFFER, R.K. (1969) The biological activity of 2-ethoxy-2,3-dihydro-3,3-dimethyl-5-benzofuranyl methanesulphonate (NC 8438) a new experimental herbicide. Proceedings 3rd European Weed Research Council Symposium on New Herbicides. Paris 1-8
- PROCIDA TECHNICAL LEAFLET (1973) RU 12709.
- ROGNON, J., THIZY, A., POIGNANT, P., and PILLON, D. (1972) Weed control trials in cereals with N-(4-isopropylphenyl)-N'N'-dimethylurea.

 24^{ste} International Symposium over Fytofarmacie en Fytiatrie, Gent.

 663-669.
- RICHARDSON, W.G. and DEAN, M.L. (1973a). The pre-emergence selectivity of some recently developed herbicides: lenacil, RU 12068, metribuzin, cyprazine, EMD-IT 5914 and benthiocarb. Technical Report / gricultural Research Council Weed Research Organization, 25. pp 57
- RICHARDSON, W.G. and DEAN, M.L. (1973b) The post-emergence selectivity of some recently developed herbicides: bentazon, EMD-IT 6412, cyprazine, metribuzin, chlornitrofen, glyphosate, MC 4379 and chlorfenpropmethyl. Technical Report Agricultural Research Council Weed Research Organization, 26, pp 70

Appendix I. Species, abbreviations, cultivars and stages of growth at assessment for pre-emergence selectivity experiments.

Species	Designa- tion and computer serial number	Expt No.	Cultivar or source	No. per pot	Depth of plant- ing (cm)	Stage of growth at assessment (untreated controls)
TEMPERATES						
Wheat (Triticum aestivum)	WHEAT (1)	1) 2) 3)	Kolibri	8	1.2	4-5 leaves 3½-4 leaves 4 leaves
Barley (Hordeum vulgare)	BARLEY (2)	1 2 3	Proctor) Sultan) Sultan)	8	1.2	4½ leaves, tillering 4½ leaves 4 leaves
Oat (Avena sativa)	OAT (3)	1) 2) 3)	Condor	8	1.2	4 leaves 4½ leaves 3½ leaves
Perennial reygrass (Lolium perenne)	PER RYGR (4)	1) 2) 3)	S23	15	0.6	4-5 leaves, tillering 4-5 leaves, tillering 5 leaves, tillering
Onion (Allium cepa)	ONION (8)	1 2 3	Rijnsburger Robusta Robusta	20 15 15	0.6	2 leaves 2 leaves 2 leaves
Dwarf bean (Phaseolus vulgaris)	DWF BEAN (9)	1) 2) 3)	The Prince	3	1.8	1½ trifoliate leaves 1 trifoliate leaf 1-1½ trifoliate leaves
Field bean (Vicia faba)	FLD BEAN (10)	1) 2) 3)	Maris Bead	4	1.8	$3\frac{1}{2}-4\frac{1}{2}$ leaves $5\frac{1}{2}$ leaves $6\frac{1}{2}$ leaves
Pea (Pisum sativum)	PEA (11)	1) 2) 3)	Dark Skinned Perfection	4 4	1.8	5-6 leaves 7-9 leaves 6\frac{1}{2} leaves
White clover (Trifolium repens)	W CLOVER (12)	1) 2) 3)	S100	20 20 15	0.6	2 trifoliate leaves 2 trifoliate leaves 1 trifoliate leaf
Rape (Brassica napus oleifera)	RAPE (14)	1) 2) 3	Not included Victor	15	0.6	2½ leaves
Kale (Brassica oleracea acephala)	KALE (15)	1) 2) 3)	Marrowstem	10 15 15	0.6	3½-4 leaves 3½ leaves 2½ leaves

Appendix I. (cont.) Species, abbreviations, cultivars and stages of growth at assessment for pre-emergence selectivity experiments.

Species	Designa- tion and computer serial number	Expt No.	Cultivar or source	per	of plant- ing	Stage of growth at assessment (untreated controls)
Swede (Brassica napus)	SWEDE (17)	1) 2) 3)	Lord Derby		0.6	3-4 leaves 3\frac{1}{2} leaves 3-3\frac{1}{2} leaves
(Daucus carota)	CARROT (18)	1) 2) 3)	Chantenay Red Core	10	0.6	3-4 leaves 2-2½ leaves 2 leaves
Lettuce (Lactuca sativa)	LETTUCE (20)	1) 2) 3)	Borough Wonder	15	0.6	5½ leaves 5½ leaves 3½ leaves
Sugar beet (Beta vulgaris)	SUG BEET (21)	1) 2) 3)	Klein E monogerm	15	1.2	3-4 leaves Not recorded 2\frac{1}{2} leaves
/vena fatua	AVE FATU (26)	1 2	Harwell 1963 Chipping Norton 1968 Hensington	8	1.2	4-5 leaves 3½-4 leaves 3 leaves
Alopecurus myosuroides	ALO MYOS (27)	1 2) 3)	1969 WRO 1967) Rothamsted) 1968)	30	0.6	5 leaves, tillering 6 leaves, tillering 5 leaves, tillering
Poa annua	POA ANN (28)	1 2 3	WRO 1968 WRO 1966 WRO 1966	25	0.6	5 leaves 5 leaves 3 leaves
Poa trivialis	POA TRIV (29)	1) 2) 3	Not included Watts Ltd. 1972	30	0.6	3 leaves
Sinapis arvensis	SIN ARV (30)	1 2 3	Not included WRO 1965 WRO 1966		0.6	Erratic germination $3\frac{1}{2}$ leaves
Raphanus raphanistrum	RAPH RAP (31)	1 2	Not included Long Black Spanish		0.6	3 leaves
Chrysanthemum segetum	CHRY SEG (32)	323	French Break- fast Not included WRO 1972 Not included			3-3½ leaves Erratic germination

Appendix I. (cont.) Species, abbreviations, cultivars and stages of growth at assessment for pre-emergence selectivity experiments.

Species	Designa- tion and computer serial number	Expt. No.	Cultivar or source	per	of plant- ing	Stage of growth at assessment (untreated controls)
Tripleurospermum	TRIP MAR	1	Not included			
maritimum	(33)	2	WRO 1971	25	Surface	8 leaves
		3	WRO 1968	30	Surface	$8\frac{1}{2}$ leaves
Senecio vulgaris	SEN VULG	1	WRO 1967	20	0.6	4-6 leaves
	(34)	2	WRO 1970	35	0.3	5 leaves
		3	WRO 1970	30	0.6	3½ leaves
Polygonum	POL LAPA	1	WRO 1968)			3 leaves
lapathifolium	(35)	2	WRO 1971)	15	0.6	2½ leaves
		3	WRO 1970)			2½ leaves
Polygonum aviculare	POL AVIC	1	Not included			
	(36)	2	Rothamsted 1968 and WRO 1972	100	0.6	No germination
		3	WRO 1972	25	0.6	$3\frac{1}{2}$ leaves
Galium aparine	GAL APAR (38)	1	Bletchingdon 1967	15	0.6	3 whorls
		2	WRO 1970	12	0.6	$2\frac{1}{2}-4$ whorls
		3	WRO 1970	. 25	0.6	$4\frac{1}{2}$ whorls
Chenopodium album	CHEN ALB (39)	1	Gosford Road 1967	25	0.6	4-6 leaves
		2	WRO 1967	40	0.6	4-8 leaves
		3	WRO 1972	25	0.6	2½ leaves
Stellaria media	STEL MED	1	WRO 1968	20	0.6	10 leaves
	(40)	2	WRO 1970	20	0.6	8-10 leaves
		3	B & S Supp- lies 1972	30	0.6	11 leaves
Veronica persica	VER PERS	1	Not included			
	(42)	2	WRO 1972 Not included	25	0.6	Diseased
Solanum nigrum	SOL NIG (43)	2		12	0.6	Erratic germination
			Ltd, 1972 B & S Supplie 1973	s 20	0.3	Nil germination
Rumex obtusifolius	RUM OBTU (44)	1)	Not included			
		The second second	Shipton 1968	15	0.3	2 leaves

Appendix I. (cont.) Species, abbreviations, cultivars and stages of growth at assessment for pre-emergence selectivity experiments

Species	Designa- tion and computer serial number	Expt No.	Cultivar or source	No. per pot	of	Stage of growth at assessment (untreated controls)
Agropyron repens	AG REPEN (47)	1) 2) 3)	WRO Clone 31	6	1.2	4-5 leaves $4\frac{1}{2}$ -5 leaves, tillering $3\frac{1}{2}$ leaves
Allium vineale	ALL VIN (49)	1 2 3	WRO 1968 WRO 1971 WRO 1972	6* 6* 10*	1.2	3-4 leaves 2½-3 leaves 3 leaves
Cirsium arvense	CIRS ARV (50)	1) 2) 3)	WRO Clone 1	4+	1.2	$6\frac{1}{2}$ leaves Premature die back $4\frac{1}{2}$ leaves
Tussilago farfara	TUS FARF (51)	1) 2) 3)	WRO Clone 1	444	1.8	$4\frac{1}{2}$ leaves $3\frac{1}{2}$ leaves $4\frac{1}{2}$ leaves
Convolvulus arvensis	CONV ARV (52)	1) 2) 3)	WRO Clone 1	4++	1.2	6-12 leaves Premature die back Nil germination
Rumex acetosella	RUM ACET (53)	1 2) 3)	WRO Clone 1 Not included	4++	1.2	5-10 leaves
TROPICALS						
Maize (Zea mays)	MAIZE (58)	1) 2) 3	Inra 200 Caldera	6 6	1.2	$5\frac{1}{2}$ leaves $4\frac{1}{2}-5$ leaves $3\frac{1}{2}-4$ leaves
Sorghum (Sorghum bicolor)	SORGHUM (59)	1 2 3	SB 68 Eli Lilly USA 1972 Fetereita	6 8	1.2	5 leaves 5 leaves $3\frac{1}{2}-4\frac{1}{2} leaves$
Rice (Oryza sativa)	RICE (60)	1 2) 3)	Kogbandi IR 5	10 10 10	1.2	3 leaves 3-3½ leaves 1-4 leaves
Cowpea (Vigna unguiculata)	COWPEA (62)	1) 2) 3	Not included Nigeria 1972		1.2	Nil germination
Chickpea (Cicer arietinum)	CHICKPEA (63)	2)	Not included Ethiopia 1970		1.2	$7\frac{1}{2}$ -10 leaves

Appendix I. (cont.) Species, abbreviations, cultivars and stages of growth at assessment for pre-emergence selectivity experiments

Species		Expt. No.	Cultivar or source	per	of plant- ing	Stage of growth at assessment (untreated controls)
Groundnut (Arachis hypogea)	GRNDNUT (64)	1 2 3	Natal Common) Argentine) Natal Common)	4	1.8	4-5 trifoliate leaves 4\frac{1}{2}-5 trifoliate leaves 4 trifoliate leaves
Soyabean (Glycine max)	SOYABEAN (65)	1 2) 3)	Altona Wayne		1.8	2 trifoliate leaves 2-2½ trifoliate leaves 1½-2 trifoliate leaves
Cotton (Gossypium hirsutum)	COTTON (66)	1) 2) 3)	26J			2 leaves 1½-2 leaves 1½-2 leaves
Jute (Corchorus olitorius)	JUTE (67)	1 2) 3)	Trinidad 1968 Egypt 1971	12 20 15		Nil germination $3-3\frac{1}{2}$ leaves $2\frac{1}{2}-3$ leaves
Kenaf (Hibiscus cannabinus)	KENAF (68)	1) 2) 3)	Thai Native 1968	8 10 10		$1\frac{1}{2}$ leaves $2-2\frac{1}{2}$ leaves $\frac{1}{2}-1\frac{1}{2}$ leaves
Sesamum (Sesamum indicum)	SESAMUM (70)	1 2	Not included Addis Ababa) 1970) Addis Ababa) 1971)		0.6	2-4 leaves 0-3 leaves
Tomato (Lycopersicum esculentum)	TOMATO (71)	1 2) 3)	Not included Ailsa Craig	10	0.6	3½-4 leaves 3-3½ leaves
Oryza punctata	OR PUNCT (73)	1) 2) 3)	Not included Swaziland 1967	30	0.6	1-2 leaves
Eleusine indica	ELEU IND (74)	1 2 3	WRO 1967) WRO 1964) WRO 1968)	15	0.6	3½ leaves 4-5 leaves 3-4 leaves
Echinochlos crus-galli	ECH CRUS (75)	1 2 3	Wytham 1961) WRO 1968 WRO 1969	15	0.6	5 leaves 5 leaves 3-5 leaves
Rottboellia exaltata	ROT EXAL (76)	2	Rhodesia 1969 Rhodesia 1971 Rhodesia 1971	30	1.2	5 leaves 3½-4 leaves 3½-5 leaves

Appendix I. (cont.) Species, abbreviations, cultivars and stages of growth at assessment for pre-emergence selectivity experiments.

Species		Expt.	Cultivar or source	No. per pot	of plant- ing	Stage of growth at assessment (untreated contols)
Digitaria	DIG SANG	1	WRO 1965	15	0.6	6 leaves
sanguinalis	(77)	2	WRO 1968 WRO 1965	20	0.2	$4\frac{1}{2}$ -5 leaves 3-4 leaves
Amaranthus	AMAR RET	1	WRO 1968	20	0.6	5-7 leaves
retroflexus	(78)	2	WRO 1966 WRO 1969	15 20	0.3	4-7 leaves 1½-5 leaves
Cyperus esculentus	CYP ESCU	1)	WRO Clone 2	5**	1.2	Not recorded
	(85)	2)	(ex South /frica)	5**	1.8	5-7 leaves/shoot
		3)		6**	1.8	$4\frac{1}{2}$ -7 leaves/shoot
Cyperus rotundus	CYP ROTU (86)	1)	WRO Clone 1 (ex Rhodesia)	5**	1.2	Not recorded 7½-8½ leaves/shoot
		3)		5**	1.8	3-10½ leaves/shoot
Oxalis latifolia	OXAL LAT (87)	2)	Not included WRO Clone 2 (ex Cornwall)	15+25	1.2	1-3 leaves Nil germination

Appendix II. Species, abbreviations, cultivars and stages of growth at spraying and assessment for post-emergence selectivity experiment.

Species	Designa- tion and computer serial number	Cultivar or source	No. plants at spray- ing	Stage of growth at spraying	Stage of growth at assessment (untreated controls)
TEMPERATES					
Wheat (Triticum aestivum)	WHEAT (1)	Kolibri	4	2½ leaves	5½ leaves, tillering
Barley (Hordeum vulgare)	BARLEY (2)	Sultan	4	2½ leaves	5½ leaves, tillering
Oat (Avena sativa)	OAT (3)	Condor	4	2-2½ leaves	5 leaves
Perennial ryegrass (Lolium perenne)	PER RYGR (4)	S23	8	2 leaves	4 leaves, tillering
Onion (Allium cepa)	ONION (8)	Robusta	6	2½ leaves	3 leaves
Dwarf bean (Phaseolus vulgaris)	DWF BEAN (9)	The Prince	2	2 unifoliate leaves	1½-2 trifoliate leaves
Field bean (Vicia faba)	FLD BEAN (10)	Maris Bead	2	2-2½ leaves	6½ leaves
Pea (Pisum sativum)	PEA (11)	Dark Skinned Perfection	2	2½ leaves	8½ leaves
White Clover (Trifolium repens)	W CLOVER (12)	S100	8	1-2 trifoliate leaves	11 trifoliate leaves
Broad bean (Vicia faba)	BRD BEAN (13)	Midget	2	1-1½ leaves	6½ leaves
Rape (Brassica napus oleifera)	RAPE (14)	Victor	6	2½ leaves	4½ leaves
Kale (Brassica oleracea acephala)	KALE (15)	Marrowstem	5	1½-2 leaves	4 leaves
Cabbage (Brassica oleracea capitata)	CABBAGE (16)	Primo	4	$1\frac{1}{2}$ -2 leaves	5 leaves

Appendix II (cont.) Speices, abbreviations, cultivars and stages of growth at spraying and assessment for post-emergence selectivity experiment

Species	Designa- tion and computer serial number	Cultivar or source	No. Plants at spray- ing	Stage of growth at spraying	Stage of growth at assessment (untreated controls)
Carrot (Daucus carota)	CARROT (18)	Chantenay Red Core	6	2 leaves	$4\frac{1}{2}$ leaves
Lettuce (Lactuca sativa)	LETTUCE (20)	Borough Wonder	2-4	3½ leaves	9½ leaves
Sugar beet (Beta vulgaris)	SUG BEET (21)	Klein E monogerm	6	2 leaves	4½ leaves
Avena fatua	AVE FATU (26)	Hensington 1969	5	3-4½ leaves	7 leaves, tillering
Alopecurus myosuroides	ALO MYOS (27)	Rothamsted (1968)	4	$2\frac{1}{2}-3\frac{1}{2}$ leaves	10 leaves, tillering
Poa annua	POA ANN (28)	B. & S. Supplies 19	72	$3\frac{1}{2}-4\frac{1}{2}$ leaves	12 leaves, tillering
Poa trivialis	POA TRIV	Watts Ltd	6	$4\frac{1}{2}$ -5 leaves, tillering	12 leaves, tillering
Sinapis arvensis	SIN ARV (30)	WRO 1964	2	2 leaves	4½ leaves
Raphanus raphanistrum	RAPH RAP (31)	Long Black Spanish	5	1½-2 leaves	4½ leaves
Chrysanthemum segetum	CHRY SEG (32)	WRO 1971	2	2 leaves	10½ leaves
Tripleurospermum maritimum	TRIP MAR (33)	WRO 1971	6	2-4 leaves	10½ leaves
Senecio vulgaris	SEN VULG (34)	WRO 1970	3	3½ leaves	7 leaves
Polygonum lapathifolium	POL LAPA (35)	WRO 1971	8	$2\frac{1}{2}-3\frac{1}{2}$ leaves	7½ leaves
Polygonum aviculare	POL AVIC (36)	WRO 1972	8	$3\frac{1}{2}-4\frac{1}{2}$ leaves	25 leaves
Rumex crispus	RUM CRIS (37)	Bletchingdo 1968	n 4	2½ leaves	6½ leaves

Appendix II (cont.) Species, abbreviations, cultivars and stages of growth at spraying and assessment for post-emergence selectivity experiment.

Species	Designa- tion and computer serial number	Cultivar	No. plants at spray- ing	Stage of growth at spraying	Stage of growth at assessment (untreated controls)
Galium aparine	GAL APAR (38)	WRO 1970	4	1 whorl	7 whorls
Chenopodium album	CHEN ALB (39)	B. & S. Supplies 197	2	2-4 leaves	9 leaves
Stellaria media	STEL MED (40)	B. & S. Supplies 197	8	Not recorded	14 leaves
Spergula arvensis	SPER ARV (41)	WRO 1965	6	2 whor1s	4 whorls
Veronica persica	VER PERS (42)	WRO 1973	4	6-8 leaves	12 leaves
Solanum nigrum	SOL NIG (43)	Asmer Seeds Ltd, 1972	6	1½ leaves	5½ leaves
Agropyron repens	AG REPEN (47)	WRO Clone 31	4	1½-3 leaves	12 leaves, tillering
Agrostis stolonifera	AG STOLO (48)	WRO Clone 1	2**	2½ leaves	12 leaves, tillering
TROPICALS					
Maize (Zea mays)	MAIZE (58)	Caldera	2	3-3½ leaves	5½-6 leaves
Sorghum (Sorghum bicolor)	SORGHUM (59)	YE 90-L	3	3-3½ leaves	5 leaves
Rice (Oryza sativa)	RICE (60)	IR5	4	$3-3\frac{1}{2}$ leaves	6 leaves
Groundnut (Arachis hypogea)	GRNDNUT (64)	Samaru 1972	2	3-4 leaves	6-6½ leaves
Soyabean (Glycine max)	SOYABEAN (65)	Wayne	2	1/2-1 trifoliate leaf	3 trifoliate leaves
Cotton (Gossypium hirsutum)	COTTON (66)	26J	5	$\frac{1}{2}$ -2 leaves	$2\frac{1}{2}$ -3 leaves

Appendix II (cont.) Species, abbreviations, cultivars and stages of growth at spraying and assessment for post-emergence selectivity experiment.

Species	Designa- tion and computer serial number	Cultivar or source	No. plants at spray- ing	Stage of growth at spraying	Stage of growth at assessment (untreated controls)	
Jute (Corchorus olitorius)	JUTE (67)	Egypt 1971	6	2-3 leaves	6½-7 leaves	
Kenaf (Hibiscus cannabinus)	KENAF (68)	Thai Native	4	½-1 leaf	3½ leaves	
Tobacco (Nicotiana tabacum)	TOBACCO (69)	Yellow Mammoth	5	2½-4 leaves	3½ leaves	
Sesamum (Sesamum inidcum)	SESAMUM (70)	Heavy Black	4-8	0-2 leaves	5-6 leaves	
Tomato (Lycopersicum esculentum)	TOMATO (71)	Ailsa Craig	5	$2\frac{1}{2}-3\frac{1}{2}$ leaves	$4\frac{1}{2}-5\frac{1}{2}$ leaves	
Oryza punctata	OR PUNCT (73)	Swaziland 1967	5	2-3 leaves	4-5½ leaves, tillering	
Eleusine indica	ELEU IND (74)	WRO 1964	8	$3\frac{1}{2}$ -4 leaves	6-6½ leaves, tillering	
Echinochloa crus-galli	ECH CRUS (75)	WRO 1969	6	$3-3\frac{1}{2}$ leaves	4-5 leaves	
Rottboellia exaltata	ROT EXAL (76)	Rhodesia 1971	10	2½-3 leaves	$4\frac{1}{2}$ -5 leaves	
Digitaria sanguinalis	DIG SANG (77)	WRO 1971	6	$3\frac{1}{2}$ -4 leaves	5 leaves, tillering	
Amaranthus retroflexus	AMAR RET (78)	WRO 1968	10	$3\frac{1}{2}-4\frac{1}{2}$ leaves	$6\frac{1}{2}-9\frac{1}{2}$ leaves	
Portulaca oleracea	PORT OLE (79)	WRO 1967	6	2-3 leaves	8-12 leaves	
Cynodon dactylon	CYN DACT (82)	WRO Clone 2 (ex Sudan)	4++	$5\frac{1}{2}-9\frac{1}{2}$ leaves/ shoot	11-16 leaves/ shoot	
Cyperus esculentus	CYP ESCU (85)	WRO Clone 2 (ex South Africa)	5**	1-5½ leaves/ shoot	7-10 leaves/ shoot	
Cyperus rotundus	CYP ROTU (86)	WRO Clone 1 (ex Rhodesi		1-6½ leaves/ shoot	7-8½ leaves/ shoot	

^{//} one node rhizome pieces
// 4 cm root sections

^{*} aerial bulbils

^{**} tubers

⁺ bulbs

⁺⁺ shoot pieces

ABBREVIATIONS

angström	R	freezing point	f.p.
Abstract	Abs.	from summary	F.s.
acid equivalent*	a.e.	gallon	gal
acre	ac	gallons per hour	gal/h
active ingredient*	a.i.	gallons per acre	gal/ac
approximately equal to*		gas liquid chromatography	GLC
aqueous concentrate	a.c.	gramme	g
bibliography	bibl.	hectare	ha
boiling point	b.p.	hectokilogram	hkg
bushel	bu	high volume	HV
centigrade	C	horse power	hp
centimetre*	cm	hour	h
concentrated	concd	hundredweight*	cwt
concentration	concn	hydrogen ion concentration*	pH
concentration x time product	ct	inch	in.
concentration		infra red	i.r.
required to kill 50% test animals	LC50	kilogramme	kg
cubic centimetre*	cm^3	$kilo(x10^3).$	k
cubic foot*	ft ³	less than	<
cubic inch*	in ³	litre	1.
cubic metre*	m^3	low volume	LV
cubic yard*	yd^3	maximum	max.
cultivar(s)	cv.	median lethal dose	LD50
curie*	Ci	medium volume	MV
degree Celsius*	oc	melting point	m.p.
degree centigrade*	oc	metre	m
degree Fahrenheit*	of	micro $(x10^{-6})$	μ
diameter	diam.	microgramme*	μg
diameter at breast height	d.b.h.	micromicro (pico: x10-12)*	μμ
divided by*	÷ or /	micrometre (micron)*	μm (or μ)
dry matter	d.m.	micron (micrometre)*†	µm (or µ)
emulsifiable		miles per hour*	mile/h
concentrate	e.c.	milli (x10 ⁻³)	m
equal to*	=	milliequivalent*	m.equiv.
fluid	fl.	milligramme*	mg
foot	ft	millilitre	ml

 $[\]dagger$ The name micrometre is preferred to micron and μm is preferred to $\mu extstyle extstyle$

millimetre*	mm	pre-emergence	pre-em.
millimicro* (nano: x10-9)		quart	quart
	n or mµ	relative humidity	r.h.
minimum	min.	revolution per minute*	rev/min
minus		second	S
minute	min	soluble concentrate	s.c.
molar concentration*	M (small cap)	soluble powder	s.p.
molecule, molecular	mol.	solution	soln
more than		species (singular)	sp.
multiplied by*	X	species (plural)	spp.
normal concentration*	N (small cap)	specific gravity	sp. gr.
not dated	n.d.	square foot*	ft ²
oil miscible	0.M.C.	square inch*	in ²
concentrate	(tables only)	square metre*	m ²
organic matter	O.M.	square root of*	
ounce	OZ,	sub-species*	ssp.
ounces per gallon	oz/gal	summary	
page	p.	temperature	5. +
pages	pp.		temp.
parts per million*	ppm	ton	ton
parts per million by volume*	20.20.202.50	tonne	t
	ppmv	ultra-low volume	ULV
parts per million by weight*	ppmw	ultra violet	u.v.
percent(age)*	%	vapour density	v.d.
pico		vapour pressure	v.p.
(micromicro: x10 ⁻¹²)	p or µµ	varietas	var.
pint	pint	volt	V
pints per acre	pints/ac	volume	vol.
plus or minus*	+	volume per volume	v/v
post-emergence	post-em.	water soluble powder	W.S.p. (+ahlaa anla)
pound	lb	watt	(tables only) W
pound per acre*	lb/ac	weight	
pounds per minute	lb/min		wt
pound per square inch*	lb/in ²	weight per volume*	W/V
powder for dry	p.	weight per weight*	W/W
application	(tables only)	wettable powder	W.p.
power take off	p.t.o.	yard	yd
precipitate (noun)	ppt.	yards per minute	yd/min

^{*} Those marked * should normally be used in the text as well as in tables etc.

AGRICULTURAL RESEARCH COUNCIL

WEED RESEARCH ORGANIZATION

TECHNICAL REPORTS (Price includes surface mail; airmail £0.50 extra)

- 6. The botany, ecology, agronomy and control of Poa trivialis L. rough-stalked meadow-grass. November 1966. G P Allen. Price £0.25
- 7. Flame cultivation experiments 1965. October, 1966. G W Ivens. Price £0.25
- 8. The development of selective herbicides for kale in the United Kingdom.
 2. The methylthiotriazines. Price £0.25
- 10. The liverwort, Marchantia polymorpha L. as a weed problem in horticulture; its extent and control. July 1968. I E Henson.

 Price £0.25
- 11. Raising plants for herbicide evaluation; a comparison of compost types. July 1968. I E Henson. Price £0.25
- 12. Studies on the regeneration of perennial weeds in the glasshouse; I. Temperate species. May 1969. I E Henson. Price £0.25
- 13. Changes in the germination capacity of three <u>Polygonum</u> species following low temperature moist storage. June 1969. I E Henson. Price. £0.25
- 14. Studies on the regeneration of perennial weeds in the glasshouse.
 II. Tropical species. May 1970. I E Henson. Price £0.25
- Report on a joint survey of the presence of wild oat seeds in cereal seed drills in the United Kingdom during Spring 1970. November 1970.

 J G Elliott and P J Attwood. Price £0.25
- 17. The pre-emergence selectivity of some newly developed herbicides, Orga 3045 (in comparison with dalapon), haloxydine (PP 493), HZ 52.112, pronamide (RH 315) and R 12001. January 1971. W G Richardson, C Parker and K Holly. Price £0.25
- 18. A survey from the roadside of the state of post-harvest operations in Oxfordshire in 1971. November 1971. A Phillipson. Price £0.12
- 19. The pre-emergence selectivity of some recently developed herbicides in jute, kenaf and sesamum, and their activity against Oxalis latifolia. December 1971. M L Dean and C Parker. Price £0.25

- 20. A survey of cereal husbandry and weed control in three regions of England. July 1972. A Phillipson, T W Cox and J G Elliott.

 Price £0.35
- 21. An automatic punching counter. November 1972. R C Simmons. Price £0.30
- 22. The pre-emergence selectivity of some newly developed herbicides: bentazon, BAS 3730H, metflurazone, SAN 9789, HER 52.123, U 27,267. December 1972. W G Richardson and M L Dean. Price £0.25
- 23. A survey of the presence of wild oats and blackgrass in parts of the United Kingdom during summer 1972. A Phillipson. Price £0.25
- 24. The conduct of field experiments at the Weed Research Organization. February 1973. J G Elliott, J Holroyd and T O Robson. Price £1.25
- 25. The pre-emergence selectivity of some recently developed herbicides: lenacil, RU 12068, metribuzin, cyprazine, EMD-IT 5914 and benthiocarb. August 1973. W G Richardson and M L Dean. Price - £1.75.
- 26. The post-emergence selectivity of some recently developed herbicides:
 bentazon, EMD-IT 6412, cyprazine, metribuzin, chlornitrofen, glyphosate,
 MC 4379, chlorfenprop-methyl. October 1973. W G Richardson and
 M L Dean. Price £3.31
- 27. Selectivity of benzene sulphonyl carbamate herbicides between various pasture grasses and clover. October 1973. A M Blair. Price £1.05
- 28. The post-emergence selectivity of eight herbicides between pasture grasses: RP 17623, HOE 701, BAS 3790, metoxuron, RU 12068, cyprazine, MC 4379, metribuzin. October 1973. A M Blair. Price £1.00
- 29. The pre-emergence selectivity between pasture grasses of twelve herbicides: haloxydine, pronamide, NC 8438, Orga 3045, chlortoluron, metoxuron, dicamba, isopropalin, carbetamide, MC 4379, MBR 8251 and EMD-IT 5914. November 1973. A M Blair. Price £1.30
- 30. Herbicides for the control of the broad-leaved dock (Rumex obtusifolius L.). November 1973. A M Blair and J Holroyd. Price £1.06
- 31. Factors affecting the selectivity of six soil acting herbicides against Cyperus rotundus. February 1974. M L Dean and C Parker. Price £1.10
- 32. The activity and post-emergence selectivity of some recently developed herbicides: oxadiazon, U-29,722, U-27,658, metflurazone, norflurazone, AC 50-191, AC 84,777 and iprymidam. June 1974. W G Richardson and M L Dean. Price £3.62
- 33. A permanent automatic weather station using digital integrators. September 1974. R C Simmons. Price £0.63.
- 34. The activity and pre-emergence selectivity of some recently developed herbicides: trifluralin, isopropalin, oryzalin, dinitramine, bifenox and perfluidone. November 1974. W G Richardson and M L Dean.

 Price £2.50

- 35. A survey of aquatic weed control methods used by Internal Drainage Boards, 1973. January 1975. T O Robson. Price £1.39
- 36. The activity and pre-emergence selectivity of some recently developed herbicides: Bayer 94871, tebuthiuron, AC 92553. March 1975.

 W G Richardson and M L Dean. Price £1.54
- 37. Studies on Imperata cylindrica (L.) Beauv. and Eupatorium odoratum L. October 1975. G W Ivens. Price £1.75
- 38. The activity and pre-emergence selectivity of some recently developed herbicides: metamitron, HOE 22870, HOE 23408, RH 2915, RP 20630.

 March 1976. W G Richardson, M L Dean and C Parker. Price £3.25
- 39. The activity and post-emergence selectivity of some recently developed herbicides: HOE 22870, HOE 23408, flamprop-methyl, metamitron and cyperquat. May 1976. W G Richardson and C Parker. Price £3.20
- 40. The activity and pre-emergence selectivity of some recently developed herbicides: RP 20810, oxadiazon, chlornitrofen, nitrofen, flamprop-isopropyl. August 1976. W G Richardson, M L Dean and C Parker. Price £2.75.
- 41. The activity and pre-emergence selectivity of some recently developed herbicides: K 1441, mefluidide, WL 29226, epronaz, Dowco 290 and triclopyr. November 1976. W G Richardson and C Parker. Price £3.40.
- 42. The activity and post-emergence selectivity of some recently developed herbicides: KUE 2079A, HOE 29152, RH 2915, Triclopyr and Dowco 290.

 March 1977. W G Richardson and C Parker. Price £3.50
- 43. The activity and pre-emergence selectivity of some recently developed herbicides: dimefuron, hexazinone, trifop-methyl, fluothiuron, buthidazole and butam. November 1977. W G Richardson and C Parker. Price £3.75.
- 44. The activity and selectivity of the herbicides: ethofumesate, RU 12709 and isoproturon. December 1977. W G Richardson and C Parker. Price £4.00

AGRICULTURAL RESEARCH COUNCIL WEED RESEARCH ORGANIZATION

BEGBROKE HILL, YARNTON, OXFORD