

		RH 2915		RH 2915		RH 2915
SPECIES $0.05 \mathrm{~kg} / \mathrm{ha} \quad 0.2 \mathrm{~kg} / \mathrm{ha}$						
PORT OLE	100		92	xxxxxxxxxxxxxxxxxxx	100	
(79)	64	xxxxxxxxxxxxx	36	xxxxxxx	14	xxx
SOL NIG	0		0		0	
(81)	0		0		0	
SNOW POL	100		90		70	
(83)	79		57		50	x $x^{\prime} \times x \times x \times x \times x$
CYP ESCU	100		100		100	
(85)	86		79		64	
CYP ROTU	100		100	mxxxxxxxxxxxxxxxxxxxx	100	mxxxxxxxxxxxxxxxxxxxix
(86)	86		86		71	
OXAL LAT	92	xxxxxxxxxxxxxxxxxxxx	83	mxxxxxxxxxxxxxxxxx	17	xxx
(87)	71	x $x^{\prime} \times x \times x \times x \times x \times x \times$	57	xxxxxxxxxxx	14	xxx

Code number
Dowco 233

Chemical name

3,5,6-trichloro-2-pyridyloxyacetic acid

Structure

Source
Dow Chemical Co Ltd
Heathrow House
Bath Road
Hounslow
Middlesex TW5 9QY

Information available and suggested uses
A highly active herbicide on woody plants and brush species including ash (Fraxinus spp) which is relatively tolerant to picloram. It has utility for control of unwanted brush and perennial weeds in industrial areas, pastures, rangelands and forestry.

Formulation used $36 \% \mathrm{w} / \mathrm{v}$ a.e. aqueous concentrate (triethylamine salt)
Spray volume
for selectivity experiment 345 I/ha

RESULTS

Full results are given in the histograms on pages $34-39$ and potential selectivities are summarised in the following table.

RATE $(\mathrm{kg}$ a.i./ha)	CROPS: vigour reduced by 15\% or less	WFFDS: number or vigcur reduced by 70\% or more
0.8	barley perennial ryegrass	$\frac{\text { Raphanus raphanistrum }}{\text { Solanum nigrum }}$ 0.2
species below		
species above + oat maize rice	Sinapis arvensis	
0.05	None listed as no weeds controlled	None

Comments on results
Activity experiment data, symptoms and pre-emergence selectivities were the subject of a previous report (Richardson and Parker, 1976 b). A high level of activity was found pre- and post-emergence on certain broadleaved species, symptoms being reminiscent of the related picloram. The tolerance of grasses also suggested that selectivity, post-emergence, was worth investigating.

Post-emergence selectivity among temperate species

Weed control and crop tolerance were limited to only a few species. Only three annual broad-leaved species (Solanum nigrum and the two cruciferae, Sinapis arvensis and Raphanus raphanistrum) were controlled while tolerant crops were barley and perennial ryegrass at $0.8 \mathrm{~kg} / \mathrm{ha}$ and wheat and oat at $0.2 \mathrm{~kg} / \mathrm{ha}$, the two latter species showing only minor effects at the highest dose. All grass, annual composite and Polygonum weed species were resistant. Cirsium arvense, Rumex obtusifolius and the two Caryophyllaceae, Stellaria media and Spergula arvensis were severely reduced, but not controlled by $0.8 \mathrm{~kg} / \mathrm{ha}$. Certain crops such as lettuce and large seeded legumes were very sensitive. This corresponds to the pre-emergence selectivity experiment, when cereals were the only tolerant crops with selective control of only a few, mainly broad-leaved weed species (Richardson and Parker, 1976 b). The high activity on solanaceous species, tomato and Solanum nigrum, is significant in view of that found earlier on potato (S. tuberosum) when well established plants were prevented from producing healthy tubers (Richardson and Taylor, unpublished). The tolerance of cereals suggests the possibility of combating volunteer potatoes with triclopyr.

Post-emergence selectivity among tropical species

Triclopyr showed a restricted range of activity in this experiment and only Solanum nigrum (very small when sprayed) was well controlled at $0.8 \mathrm{~kg} / \mathrm{ha}$. Other broad-leaved, grass and sedge weeds were all damaged to some extent at the higher doses but none effectively controlled.

Maize and rice were relatively tolerant but potential uses in these crops are not obvious and there were no broad-leaved crops with any useful tolerance.

SPECIES	TRICLOPYR		IRICLOPYR			TRICLOPYR
	$0.05 \mathrm{~kg} / \mathrm{ha}$		$0.2 \mathrm{~kg} / \mathrm{ha}$			$0.8 \mathrm{~kg} / \mathrm{ha}$
WHEAT	100		100		100	
1)	100		100		71	xxxxxyxxyxxyxx
$\binom{$ BARLEY }{2}	1,00100	xxxxxxxxxxxxxxxxxxxx$\operatorname{xxxxxxxxxxxxxxxxx}$	100		100	
			100	xxxxxxxxxxxxxxyxxxx	93	xxyxxxxyxxxyxxyxxxx
$\begin{aligned} & \text { OAT } \\ & (3) \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \end{aligned}$	xxxxyxxxxxxyxxxxxxxx	100		100	
			93	xxxxxxxxyxxyxxyxxxx	79	
$\begin{aligned} & \text { PER RYGR } \\ & \left(\begin{array}{c} 4) \end{array}\right. \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \end{aligned}$	xxxxxxxxxxxxxxxxxxxxx	100		100	
			100	xxxxxxxxxxxxxxxxxxxx	93	xxyxxxxxxxxxxxyxxxx
$\begin{aligned} & \text { ONION } \\ & (8) \end{aligned}$	$\begin{array}{r} 100 \\ 86 \end{array}$	xxxxxxxxxxxxxxxxx	100		100	
			71	xxxxxxxxxxxxxx	57	xxxxxxxxxxx
$\begin{aligned} & \text { DWF BEAN } \\ & \left(\begin{array}{l} \mathrm{g} \end{array}\right) \end{aligned}$	$\begin{array}{r} 100 \\ 50 \end{array}$	 xxxxxxxxxxx	100		50	xxxxxxxxxx
			43	xxxxxxxxx	14	xxx
$\begin{aligned} & \text { FLD BEAN } \\ & (10) \end{aligned}$	$\begin{array}{r} 100 \\ 71 \end{array}$	zxxxxxxyxxyxxxxxxxxxx xxxxxxxxxxxxxxx	67	xxxxxxxxxxxxx	0	
			29	xxxxxx	0	
$\begin{aligned} & \text { PEA } \\ & (11) \end{aligned}$	$\begin{array}{r} 100 \\ 64 \end{array}$	xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxx	100		0	
			50	xxxxxxxxxx	0	
$\begin{aligned} & \text { W CLOVER } \\ & (12) \end{aligned}$	$\begin{array}{r} 100 \\ 93 \end{array}$	xxxxxxxxxxyxxxxxxxx	100		100	
			71	xxxxxxxxxxxxxx	36	xxxxxxx
$\begin{gathered} \text { RAPE } \\ (14) \end{gathered}$	$\begin{gathered} 100 \\ 93 \end{gathered}$	xxxxxxyxyxxxxxxxxyxxx xxxxxxxxxxxxxxxxyxx	100		70	zxxxxyxxyxxyxx
			64	xxxxxxxxxxxxx	21	xxxx
KALE	100		90		80	
(15)	100	xxxxxxyxxxxyxxxyxyxx	79	xxxxxxxxxxxxxxxx	36	xxxxx

SFECIES		TRICLOPYR	TRICLOPYR		TRICLOPYR	
	$0.05 \mathrm{~kg} / \mathrm{ha}$			$0.2 \mathrm{~kg} / \mathrm{ha}$		$0.8 \mathrm{~kg} / \mathrm{ha}$
CABbAGE	100		100		100	
(16)	93	Xxxxxxxxxxxxxxxxxxxx	71		29	xxxxxx
CARROT	100	mxxxxxxxxxxxxxxxxxxxx	100		100	
(18)	86		64		14	xxx
PARSNIP	100	xxxxxxxxxxxxxxxxxxxxx	100	xxxxxxxxxxxxxxxxxxxxx	42	
(19)	64		57		14	xxx
LETTUCE	100		100		0	
(20)	50	x $x^{\prime} \times x \times x \times x \times x$	29	x $\mathrm{xx} \times \mathrm{xx}$	0	
SUG BEET	100		100		100	
(21)	86		43		29	X XXXXX
AVE FATU	100		100		100	mxxxxxxxxxxxxxxxxxxi
(26)	93		100		64	
ALO MYOS	100		100		100	xxxxxxxxxxxxxxxxxxixi
(27)	100		100		86	
POA ANN	100	mxxxxxxxxxxxxxxxxxxix	100	xxxxxxxxxxxxxxxxxxxxx	100	
(28)	100		100		71	
POA TRIV	100		100		100	
(29)	100		100		86	
SIN ARV	100	mxxzxxxxxxxxxxxxxxxx	50	xxxxxxxxxx	40	xxxxxxxx
(30)	79		21	xxxx	14	xxx
RAPH RAP	100	mxxxxxxxxxxxxxxxxxxxi	100		0	
(31)	93		57	xxxxxxxxxxx	0	

SFECIES

TRIP MAR	100		100
(33)	100	x $x \times x \times x$	100
SEN VUIG	100		100
(34)	100		100
POL LAPA	100		100
(35)	100		86
POL AVIC	100		100
(36)	100		100
GAL APAR	100		100
(38)	93		86
CHEN ALB	100		100
(39)	86		71
STEL MEID	100		100
(40)	100		86
SPER ARV	100	mxxxxxxxxxxxxxxxxxxx	100
(41)	79		79
VER PERS	100		100
(42)	100	mxxxxxxxxxxxxxxxxxxx	100
RUM OBTU	100	mxxxxxxxxxxxxyxxyxxix	100
(44)	93		86
HOLC LAN	100	mxxxxxxxxxxxxxxxxxxxx	100
(45)	100	mxxxxxxxxxxxxyxxxxxx	100

TRICLOPYR
$0.2 \mathrm{~kg} / \mathrm{ha}$
0

Xxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxx xXXXXXXXXXXXXXXXXXXX
xxxxxxxxxxxxxxxxxxxx XXXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXXXXXX Xxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxx Xxxxxxxxxxxxxxxxxx

XxXXXXXXXXXXXXXXXXXX Xxxxxxxxxxxxxx

Xxxxxxxxxxxxxxxxxxxx XXXXXXXXXXXXXXXXX
xxxxxxxxxxxxxxxxxxxxx Xxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxx XXXXXXXXXXXXXXXXXXXX
xxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxx

TRICLOPYR
$0.8 \mathrm{~kg} / \mathrm{ha}$

100	xxxxxxxxxxxxxxxxxxxx
79	xxxxxxxxxxxxxxxx
100	xxxxxxxxxxxxxxxxxxxx
86	xxxxxxxxxxxxxxxxx
100	xxxxxxxxxxxxxxxxxxxx
86	xxxxxxxxxxxxxxxxx
100	xxxxxxxxxxxxxxxxxxxx
100	xxxxxxxxxxxxxxxxxxxx
100	xxxxxxxxxxxxxxxxxxxx
71	xxxxxxxxxxxxxx
100	xxxxxxxxxxxxxxxxxxxx

SPECIES	TRICLOPYR		TRICLOPYR		TRICLOPYR	
		$0.05 \mathrm{~kg} / \mathrm{ha}$		$0.2 \mathrm{~kg} / \mathrm{ha}$		$0.8 \mathrm{~kg} / \mathrm{ha}$
$\begin{aligned} & \text { JUTE } \\ & (67) \end{aligned}$	$\begin{array}{r} 100 \\ 57 \end{array}$	xxxxxxxxyxxyxxxyxxxx xxxxxxxxxxx	$\begin{aligned} & 90 \\ & 43 \end{aligned}$	xxxxxxxxxxxyxxxxxx xxxxxxxxx	$\begin{aligned} & 90 \\ & 29 \end{aligned}$	xxxxxxxxxyxxxxxxxxx xxxxxx
$\begin{aligned} & \text { KENAF } \\ & (68) \end{aligned}$	$\begin{array}{r} 100 \\ 79 \end{array}$	xxxxxxxxxxxxxxyxzxxx xxxxxxxxxxxxxxxx	$\begin{array}{r} 100 \\ 71 \end{array}$	xxxxxxxxxxxxxx	$\begin{aligned} & 56 \\ & 14 \end{aligned}$	xxxxyxxyxxx xxx
$\begin{aligned} & \text { TOBACCO } \\ & (69) \end{aligned}$	$\begin{array}{r} 100 \\ 57 \end{array}$	xxxxxxxxxxx	$\begin{aligned} & 90 \\ & 14 \end{aligned}$	xxxxxxxxxxxxxxxxxxx xxx	$\begin{aligned} & 90 \\ & 43 \end{aligned}$	xxxxxxxxxxyxxxxxxxx xxxxxxxxx
$\begin{aligned} & \text { SESAMUM } \\ & (70) \end{aligned}$	$\begin{aligned} & 30 \\ & 21 \end{aligned}$	$\begin{aligned} & \operatorname{xxxxxx} \\ & x x x x \end{aligned}$	20 7	xxxx_{x}	0	
$\begin{aligned} & \text { TOMATO } \\ & (71) \end{aligned}$	$\begin{array}{r} 100 \\ 71 \end{array}$	zxxxxxxxxxxxzxxzxyxx xxxxxxxxxxxxxx	$\begin{array}{r} 100 \\ 29 \end{array}$	xxxxxxxxxxxxxxzxxzxxx xxxxxx	$\begin{array}{r} 100 \\ 14 \end{array}$	 xxx
$\begin{aligned} & \text { OR PUNCT } \\ & (73) \end{aligned}$	$\begin{gathered} 100 \\ 86 \end{gathered}$	xxxxxxxxxxxxxxxxx	$\begin{array}{r} 100 \\ 79 \end{array}$	xxxxxxxxxxxxxxxx	$\begin{array}{r} 100 \\ 50 \end{array}$	xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxx
$\begin{aligned} & \text { ELEU IND } \\ & (74) \end{aligned}$	$\begin{array}{r} 100 \\ 79 \end{array}$	zxxxxxxxxxyxxxxxxxxxx xxxxxxxxxxxxxxxxx	$\begin{array}{r} 100 \\ 64 \end{array}$	xxxxxxyxxxxxx	$\begin{array}{r} 100 \\ 50 \end{array}$	xxxxxxxxxx
$\begin{aligned} & \text { ECH CRUS } \\ & (75) \end{aligned}$	$\begin{array}{r} 100 \\ 93 \end{array}$	 xxxxxxxxxxxxxxyxxxx	$\begin{array}{r} 100 \\ 71 \end{array}$	xxxxxxxxxxxxxx	$\begin{array}{r} 100 \\ 43 \end{array}$	zxxxxxxxxxxxxxyxxxxxx xxxxxxxxx
$\begin{aligned} & \text { ROTT EXA } \\ & \left.(76)^{2}\right) \end{aligned}$	$\begin{array}{r} 100 \\ 93 \end{array}$	xxxxxxxxxxxxxxyxxxx	$\begin{array}{r} 100 \\ 64 \end{array}$	xxxxxxxxxxxxx	$\begin{array}{r} 100 \\ 57 \end{array}$	 xxxxxxxxxxx
$\begin{aligned} & \text { DIG SANG } \\ & (77) \end{aligned}$	$\begin{array}{r} 100 \\ 79 \end{array}$	xxxxxxyxxyxxyxxx	$\begin{array}{r} 100 \\ 57 \end{array}$	xxxyxyxxxxxyxxyxyxxx xxxxxyxxxxx	$\begin{array}{r} 100 \\ 50 \end{array}$	 xxxxxxxxxx
$\begin{aligned} & \text { AMAR RET } \\ & \left.(78)^{2}\right) \end{aligned}$	$\begin{array}{r} 100 \\ 57 \end{array}$	xxxxxxxxxxx	$\begin{array}{r} 100 \\ 57 \end{array}$	xxxxxxxxxxx	$\begin{array}{r} 100 \\ 43 \end{array}$	xxxxxxxxx

TRICLOPYR
SPECIES

PORT OIE	100	
(79)	86	
SOL NIG	90	mxxxxxxxxxxxxxxxxx
(81)	43	x $x \times x \times x x x x$
SNOW POL	100	
(83)	71	
CYP ESCU	100	
(85)	79	
CYP ROTU	100	
(86)	86	
OXAL LAT	92	mxxxxxxxxxxxxxxxxx
(87)	71	x $x^{\prime} \times x \times x \times x \times x \times x \times x$

TRICLOPYR
$0.2 \mathrm{~kg} / \mathrm{ha}$

100		100	xxxxxxxxxxxxxxxxxxxx
71		36	x xxxxxx
40	xxxxxxxx	70	mxxxxxxxxxxxxx
36	x $x \times x \times x \times$	14	xxx
100		100	
57		50	x $x^{\prime} \times \mathrm{xxxxxx}$
100	mxxxxxxxxxxxxxxxxxxxx	100	
71		71	
100	xxxxxxxxxxxxxxxxxxxxx	100	
86		57	
92	mxxxxxxxxxxxxxxxxxx	100	xxxxxxxxxxxxxxxxixixix
71		71	

TRICLOPYR
$0.8 \mathrm{~kg} / \mathrm{ha}$
xxxxxxxxxxxxxxx

DOWCO 290

Lontrel

Chemical name

3,6-dichloropicolinic acid

Structure

Source

Dow Chemical Co Ltd
Heathrow House
Bath Road
Hounslow
Middlesex TW5 9QY
Information available and suggested uses
Post-emergence control of broad-leaved weeds with a spectrum confined mainly to members of the Compositae, Polygonaceae, Umbelliferae and Papilionaceae. Tolerant crops are: cereals, maize, sorghum, flax, grasses and brassicae, such as oil seed rape. In most situations it will form part of a herbicide mixture with products such as dalapon and benazolin. Mixtures with mecoprop and dichlorprop are also available.

Formulation used
Spray volume for selectivity experiment 345 l/ha

RESULTS

Full results are given in the histograms on pages $43-48$ and potential selectivities are summarised in the following table.

RATE $(\mathrm{kg} \mathrm{a.i./ha)}$	CROPS: vigour reduced by 15\% or less	WEEDS: number or vigour reduced by 70\% or more
0.8	wheat barley oat perennial ryegrass cabbage radish maize sorghum rice	$\frac{\text { Rumex obtusifolius }}{\text { +species below }}$

RATE $(\mathrm{kg} \mathrm{a.i} / \mathrm{ha})$	CROPS: vigour reduced by 15\% or less	WEEDS: number or vigour reduced by 70\% or more
0.2	species above + rape kale	$\frac{\text { Senecio vulgaris }}{\text { Cirsium arvense }}$ + species below
0.05	species above + onion sugar beet kenaf	$\frac{\text { Tripleurospermum maritimum }}{\text { Solanum nigrum }}$

Comments on results

Activity test data, symptoms and pre-emergence selectivity was reported previously for this herbicide (Richardson and Parker, 1976 b). A high level of foliar and surface pre-emergence activity was found on dwarf bean and Polygonum amphibium in the activity experiment, symptoms being typical of those caused by picloram with severe epinastic and growth regulatory effects, while kale and grasses were relatively tolerant, suggesting the possibility of selective weed control, both pre- and post-emergence. This was verified in the pre-emergence test when composite and polygonaceous weeds in particular were selectively controlled in cereals, perennial ryegrass and brassica crops. Certain crops eg carrot, lettuce and legumes were also highly sensitive (Richardson and Parker, 1976 b).

Post-emergence selectivity among temperate species

Composite weeds, were very sensitive, Tripleurospermum maritimum, Senecio vulgaris and the perennial, Cirsium arvense being controlled at the lower doses. Solanum nigrum, at $0.05 \mathrm{~kg} / \mathrm{ha}$ and Rumex obtusifolius at $0.8 \mathrm{~kg} / \mathrm{ha}$ were the only other weeds to be controlled. Polygonum species showed some resistance. All grass weeds and certain broad-leaved weeds were resistant, notably Stellaria media, Veronica persica and crucifers.

Perennial ryegrass and the cereals tolerated the high dose of $0.8 \mathrm{~kg} / \mathrm{ha}$ as did two of the brassica crops, cabbage and radish, while the other two, kale and rape were only slightly reduced in vigour at this dose. Onion and sugar beet tolerated $0.05 \mathrm{~kg} / \mathrm{ha}$ and were reduced in vigour by only 2% at $0.2 \mathrm{~kg} / \mathrm{ha}$. Lettuce, parsnip, carrot and all four leguminous crops were very sensitive.

The importance of composite weeds in cereals and brassica crops, indicates that Dowco 290 may have a high potential for use in these crops. The possibility of controlling established Cirsium arvense in these crops and perennial ryegrass is very interesting. The post-emergence weed control and crop tolerance spectrum is similar to that found pre-emergence (Richardson and Parker, 1976 b).

Post-emergence selectivity among tropical species

As with pre-emergence treatments of this compound (Richardson and Parker 1976 b) grass weeds and cereals were highly tolerant and were almost unaffected by the highest dose. Several of the legume crops were again extremely sensitive but other broad-leaved crops and the broad-leaved weeds Amaranthus and Portulaca were not so severely affected. Solanum nigrum and tomato were severely damaged at the lowest dose. There is a potential for control of specific weed problems involving Solanaceae, Leguminosae and perhaps Compositae in the cereals, kenaf and perhaps jute, as well as in perennial crops.

Activity on important tropical Compositae including Mikania micrantha and Eupatorium odoratum is being studied in a further experiment.

		DOWCO 290		DOWCO 290		DOWCO 290	
SPECIES $0.05 \mathrm{~kg} / \mathrm{ha}$							
TRIP MAR	100		85		65	xxxxxxxxxxxxxx	
(33)	29	x xxxxx	14	xxx	14	xxx	
SEN VUIG	100	xxxxxxxxxxxxxxxxxxxxx	50	xxxxxxxxxx	100	xxxxxxxxxxxxxxxxxxxx	
(34)	50	xxxxxxxxxx	14	xxx	14	xxx	
POL LAPA	100	xxxxxxxxxxxxxxxxxxixix	100		100		
(35)	100		86		64	x $x \times x \times x \times x \times x \times x$ x	
POL AVIC	100		100		100		
(36)	86		86		64	xxxxxxxxxxxxx	
GAL APAR	100		100		100		
(38)	100	mxxxxxxxxxxxxxxxxxxxx	71		57		込
ChEN ALB	100	mxxxxxxxxxxxxxxxxxxx	100		100		-
(39)	86		71		57		H
STEL MED	100		100		100		
(40)	100		100		86		
SPER ARV	100		100		100		
(41)	86		71		57	xxxxxxxxxxx	
VER PERS	100	mxxxxxxxxxxxxxxxxxxx	100		100		
(42)	100	mxxxxxxxxxxxxxxxxxxx	100		86		
RUM OBIU	100	mxxxxxxxxxxxxxxxxxxx	100	mxxxxxxxxxxxxxxxxxxx	100	mxxxxxxxxxyxxxxxxxxx	
(44)	100		50		29	x $x \times x x x$	
HOLC LAN	100		100	mxxxxxxxxxxxxxxxxxxx	100		
(45)	100		100		93		

		DOWCO 290		DOWCO 290		DOWCO 290
SPECIES		$0.05 \mathrm{~kg} / \mathrm{ha}$		$0.2 \mathrm{~kg} / \mathrm{ha}$		$0.8 \mathrm{~kg} / \mathrm{ha}$
$\begin{aligned} & \text { JUTE } \\ & (67) \end{aligned}$	$\begin{array}{r} 100 \\ 79 \end{array}$		$\begin{array}{r} 100 \\ 79 \end{array}$		$\begin{array}{r} 100 \\ 57 \end{array}$	xxxxxxxxxxxxxxxxxxxx xxxxxxxxxxx
$\begin{aligned} & \text { KENAF } \\ & (68) \end{aligned}$	$\begin{array}{r} 100 \\ 86 \end{array}$	xxxxxxxxxxxxxxxxxxxx Xxxxxxxxxxxxxxxxx	$\begin{array}{r} 100 \\ 71 \end{array}$	xxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxx	$\begin{array}{r} 100 \\ 71 \end{array}$	xxxxxxxxxxxxxxxxxxxx Xxxxxxxxxxxxxxx
$\begin{aligned} & \text { TOBACCO } \\ & (69) \end{aligned}$	$\begin{array}{r} 100 \\ 64 \end{array}$	xxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxx	$\begin{array}{r} 100 \\ 57 \end{array}$	xxxxxxxxxxxxxxxxxxxx xxxxxxxxxxx	$\begin{aligned} & 90 \\ & 21 \end{aligned}$	xxxxxxxxxxxxxxxxxx xxxx
$\begin{aligned} & \text { SESAMUM } \\ & (70) \end{aligned}$	100 50		$\begin{aligned} & 70 \\ & 43 \end{aligned}$	xxxxxxxxxx xxxxxx	$\begin{array}{r} 20 \\ 7 \end{array}$	$\begin{aligned} & \mathrm{xxxx} \\ & \mathrm{x} \end{aligned}$
$\begin{aligned} & \text { TOMATO } \\ & (71) \end{aligned}$	$\begin{array}{r} 100 \\ 29 \end{array}$		$\begin{array}{r} 100 \\ 14 \end{array}$	xxxxxxxxxxxxxxxxxxxxx xxx	$\begin{aligned} & 90 \\ & 21 \end{aligned}$	xxxxxxxxxxxxxxxxxx xxxx
OR PUNCT (73)	$\begin{array}{r} 100 \\ 79 \end{array}$		$\begin{array}{r} 100 \\ 93 \end{array}$		$\begin{array}{r} 100 \\ 86 \end{array}$	xxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxx
$\begin{aligned} & \text { ELEEU IND } \\ & (74) \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \end{aligned}$		100 100		$\begin{array}{r} 100 \\ 71 \end{array}$	xxxxxxxxxxxxxx
ECH CRUS (75)	100		100 100		100 79	xxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxx
$\begin{aligned} & \text { ROTT EXA } \\ & (76) \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \end{aligned}$		100 100		100 100	
$\begin{aligned} & \text { DIG SANG } \\ & (77) \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \end{aligned}$	xyxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxx	$\begin{array}{r} 100 \\ 93 \end{array}$		$\begin{array}{r} 100 \\ 86 \end{array}$	mxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxx
AMAR RET (78)	$\begin{array}{r} 100 \\ 86 \end{array}$	mxxxxxxxxzxyxxxxxxxx xxxxxxxxxxxyxxxxxx	$\begin{array}{r} 100 \\ 86 \end{array}$	mxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxx	$\begin{array}{r} 100 \\ 86 \end{array}$	xxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxx

SPECIES	DOWCO 290		DOWCO 290		DOWCO 290	
	$0.05 \mathrm{~kg} / \mathrm{ha}$			$0.2 \mathrm{~kg} / \mathrm{ha}$	$0.8 \mathrm{~kg} / \mathrm{ha}$	
$\begin{aligned} & \text { PORT OLE } \\ & (79) \end{aligned}$	$\begin{array}{r} 100 \\ 79 \end{array}$	xxxxxxxxxxxxxxxx	$\begin{array}{r} 100 \\ 57 \end{array}$	xxxxxxyxxyxxyxxyxxxx xxxxxxxxxxx	$\begin{array}{r} 100 \\ 57 \end{array}$	 xxxxxxxxxxx
$\begin{aligned} & \text { SOL NIG } \\ & (81) \end{aligned}$	$\begin{array}{r} 100 \\ 29 \end{array}$	xxxxxx	$\begin{aligned} & 80 \\ & 14 \end{aligned}$	xxxxyxxxxxyxxyxx $x x x$	50 7	xxxxxxxxxx x
$\begin{aligned} & \text { SNOW POL } \\ & (83) \end{aligned}$	$\begin{gathered} 100 \\ 86 \end{gathered}$	XXXXXXXXXXXXXXXXXXXX xxxxxxxxxxxxxxxxx	$\begin{array}{r} 100 \\ 93 \end{array}$	xxxxyxzxxyxzxyxyxzxx xxxxxxxxxxxxxxxxxxx	$\begin{aligned} & 100 \\ & 100 \end{aligned}$	xxxxxxxxxxxxxxxxxxxx
$\begin{aligned} & \text { CYP ESCU } \\ & (85) \text { (} \end{aligned}$	$\begin{gathered} 100 \\ 71 \end{gathered}$	xxxxxxxxxxxxxxx	$\begin{array}{r} 100 \\ 86 \end{array}$	xxxxxxxxxxxxxxxxx	$\begin{array}{r} 100 \\ 79 \end{array}$	xxxxyxxyxxyxxxxx
$\begin{aligned} & \text { CYP ROTU } \\ & (86) \text { (} \end{aligned}$	$\begin{array}{r} 100 \\ 93 \end{array}$	zxxxxxyxxyxzxyxzxxzx xxxxxxxyxxxxxxxxxxx	$\begin{aligned} & 100 \\ & 100 \end{aligned}$	xxxxxxxxxxxxxxxxxxxx	$\begin{aligned} & 100 \\ & 100 \end{aligned}$	xzxyxzxyxxyxzxyzxyzx xxxyxxyxxxxxyxxyxxxx
$\begin{aligned} & \text { OXAL LAT } \\ & (87) \end{aligned}$	$\begin{array}{r} 100 \\ 71 \end{array}$	zxxxxxyxxxxxxxxyxxxx xxxxxxxxxxxxxx	$\begin{array}{r} 100 \\ 71 \end{array}$	xxxxxxxxxxxxxxxxxxxx xxxyxxxxxxxxxx	$\begin{aligned} & 92 \\ & 71 \end{aligned}$	xxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxx

ACKNOWLEIDGEMENIS
We are most grateful to the joint Letcombe/WRO Statistics Section, ARC Letcombe Laboratory for processing the experimental data; to Mr T M West, Miss F Hutchison, Miss B Emery, Mr P Chinnery and Messrs R H Webster, R M Porteous and A Grace for technical and practical assistance; to Miss J Thompson for the preparation and typing of this report and to the various commercial firms for providing the herbicides and relevant technical data.

The work of the ODM Tropical Weeds Group was carried out under Research Scheme R 3029 financed by HM Ministry of Overseas Development.

REFFERENCES
RICHARDSON, W.G. and DEAN, M.L. (1974) The activity and post-emergence selectivity of some recently developed herbicides: oxadiazon, $\mathrm{U}-29,722$, U-27,658, metflurazone, norflurazone, AC 50,191, AC 84,777 and iprymidam. Technical Report Agricultural Research Council Weed Research Organization (32), pp 74.

RICHARDSON, W.G., DEAN, M.I. and PARKER, C. (1976) The activity and preemergence selectivity of some recently developed herbicides: metamitron, HOE 22870, HOE 23408, RH 2915 and RP 20630. Technical Report Agricultural Research Council Weed Research Organization, (38), pp 55.

RICHARDSON, W.G. and PARKER, C. (1976a) The activity and post-emergence selectivity of some recently developed herbicides: HOE 22870, HOE 23408, flampropmethyl, metamitron and cyperquat. Technical Report Agricultural Research Council Weed Research Organization, (39), pp 56.

RICHARDSON, W.G. and PARKER, C. (1976b) The activity and pre-emergence selectivity of some recently developed herbicides: K1441, melfluidide, WL 29226, epronaz, Dowco 290 and triclopyr. Technical Report Agricultural Research Council Weed Research Organization, (41), pp 65.

Appendix 1. Species, abbreviations, varieties and stages of growth at spraying and assessment for post-emergence selectivity test

Stage of growth at
Designa-
tion and computer

Cultivar or
serial
number
assessment (untreated controls, leaf numbers exclusive of cotyledons)

Wheat (Triticum aestivum)	$\begin{aligned} & \text { WHEAT } \\ & \text { (1) } \end{aligned}$	Maris Dove	$\begin{aligned} & 5 \text { leaves, } \\ & \text { tillering } \end{aligned}$	9-11 leaves tillering
Barley (Hordeum vulgare)	BARLEY (2)	Maris Mink	3 leaves	8-13 leaves, tillering
Oat (Avena sativa)	$\begin{aligned} & \text { OAT } \\ & \text { (3) } \end{aligned}$	Condor	$3 \frac{1}{2}$ leaves	8-11 leaves, tillering
Perennial ryegrass (Lolium perenne)	PER RYGR (4)	S 23	3 leaves	8-14 leaves, tillering
Onion (Allium cepa)	ONION (8)	Robusta	2 leaves	$2 \frac{1}{2}-3$ leaves
Dwarf bean (Phaseolus vulgaris)	DWF BEAN (9)	The Prince	$1 \frac{1}{2}$ trifoliate leaves	$2 \frac{1}{2}$ trifoliate leaves
Field bean (Vicia faba)	$\begin{aligned} & \text { FLD BEAN } \\ & (10) \end{aligned}$	Maris Bead	$2 \frac{1}{2}-3 \frac{1}{2}$ leaves	8 leaves
Pea (Pisum sativum)	$\begin{aligned} & \text { PEA } \\ & (11) \end{aligned}$	Dark Skinned Perfection	4 leaves	10 leaves
White clover (Trifolium repens)	$\begin{aligned} & \text { W CLOVER } \\ & \text { (12) } \end{aligned}$	S 100	$\begin{aligned} & 2 \frac{1}{2}-3 \text { tri- } \\ & \text { foliate } \\ & \text { leaves } \end{aligned}$	10 trifoliate leaves
Rape (Brassica napus oleifera)	$\begin{aligned} & \text { RAPE } \\ & \text { (14) } \end{aligned}$	Victor	$2 \frac{1}{2}$ leaves	$4 \frac{1}{2}-5$ leaves
Kale $\frac{\text { (Brassica oleracea }}{\text { acephala) }}$	$\begin{aligned} & \text { KALE } \\ & \text { (15) } \end{aligned}$	Marrowstem	$2 \frac{1}{2}-3$ leaves	$3 \frac{1}{2}-4$ leaves
$\begin{aligned} & \text { Cabbage } \\ & \text { (Brassica oleracea } \\ & \hline \text { Capitata) } \end{aligned}$	$\begin{aligned} & \text { CABBAGE } \\ & (16) \end{aligned}$	Primo.	$2 \frac{1}{2}-3 \frac{1}{2}$ leaves	$5 \frac{1}{2}-6$ leaves
Carrot (Daucus carota)	$\begin{aligned} & \text { CARROT } \\ & (18) \end{aligned}$	Chantenay Red Core	$2 \frac{1}{2}-3$ leaves	5 leaves

ndix	Designation and computer serial number	Cultivar or source	Stage of growth at spraying	Stage of growth at assessment (untreated controls, leaf numbers exclusive of cotyledons)
Parsnip (Pastinaca sativa)	PARSNIP (19)	Avonresister	1-2 leaves	$2 \frac{1}{2}-3$ leaves
Lettuce (Lactuca sativa)	$\begin{aligned} & \text { IETIUCE } \\ & (20) \end{aligned}$	Unrivalled	4-6 leaves	10 leaves
Sugar beet (Beta vulgaris)	SUG BEETT (21)	Klein monogerm	3-31	6 leaves
Avena fatua	AVE FATU (26)	Farthinghoe 1972	3 leaves	6-10 leaves, tillering
Alopecurus myosuroides	ALO MYOS (27)	B and S supplies, 1972	$4 \frac{1}{2}$ leaves, tillering	2-3 tillers
Poa annua	$\begin{aligned} & \text { POA ANN } \\ & (28) \end{aligned}$	WRO 1974	2-3 leaves	6 tillers
Poa trivialis	$\begin{aligned} & \text { POA TRIV } \\ & (29) \end{aligned}$	cv. Omega	4 leaves, tillering	7-8 tillers
Sinapis arvensis	$\begin{aligned} & \text { SIN ARV } \\ & (30) \end{aligned}$	WRO 1971	$3 \frac{1}{2}-4 \frac{1}{2}$ leaves	7 leaves
Raphanus raphanistrum	RAPH RAP (31)	Long Black Spanish	$2 \frac{1}{2}$ leaves	5 leaves
$\frac{\text { Tripleurospermum }}{\text { maritimum }}$	TRIP MAR (33)	WRO 1975	6 leaves	12 leaves
Senecio vulgaris	SEN VULG (34)	WRO 1974	2-4 2 leaves	12 leaves, flowering
$\frac{\text { Polygonum }}{\text { lapathifolium }}$	POL LAPA (35)	WRO 1974	4-5 leaves	11 leaves, flowering
$\frac{\text { Polygonum }}{\text { aviculare }}$	$\begin{aligned} & \text { POL AVIC } \\ & (36) \end{aligned}$	WRO 1976	$3 \frac{1}{2}$ leaves	$\begin{aligned} & 6-7 \\ & \text { axillaries } \end{aligned}$
Galium aparine	GAL APAR (38)	WRO 1975	1-2 2 whorls	25 whorls
Chenonodium album	$\begin{aligned} & \text { CHEN AIB } \\ & \text { (39) } \end{aligned}$	B and S supplies, 1975	6-8 leaves	15 leaves
Stellaria media	$\begin{aligned} & \text { STEL MEDD } \\ & (40) \end{aligned}$	B and S supplies, 1975	6-8 leaves	20 leaves
Spergula arvensis	$\begin{aligned} & \text { SPER ARV } \\ & (41) \end{aligned}$	WRO 1968	$2 \frac{1}{2}$ whorls	$20-25$ whorls

Appendix 1. (cont.)

Designa-		
tion and	Cultivar	Stage of
computer	or	growth at
serial	source	spraying

Stage of growth at assessment (untreated controls, leaf numbers exclusive of cotyledons)

Veronica persica	$\begin{aligned} & \text { VER PERS } \\ & (42) \end{aligned}$	WRO 1975	4 leaves	25 leaves, flowering
Rumex obtusifolius	$\begin{aligned} & \text { RUM OBTU } \\ & \text { (44) } \end{aligned}$	$\begin{aligned} & \text { Tackley, } \\ & 1972 \end{aligned}$	1-2 leaves	$3 \frac{1}{2}-4$ leaves
Holcus lanatus	HOLC LAN (45)	WRO 1973	3 leaves, starting to tiller	5-6 tillers
Agropyron repens	$\begin{aligned} & \text { AG REPEN } \\ & (47) \end{aligned}$	WRO Clone 31*	$2 \frac{1}{2}-3$ leaves	2-3 tillers
$\begin{aligned} & \text { Agrostis } \\ & \text { Stolonifera } \end{aligned}$	$\begin{aligned} & \text { AG STOLO } \\ & \text { (48) } \end{aligned}$	$\begin{aligned} & B \text { and } S \text { supp- } \\ & \text { lies, } 1975 \end{aligned}$	$\begin{aligned} & 9 \text { leaves, } \\ & \text { tillering } \end{aligned}$	5-6 tillers
Cirsium arvense	$\begin{aligned} & \text { CIRS ARV } \\ & (50) \end{aligned}$	WRO Clone 1**	2-5 leaves	9 leaves

Tropical species (grown under higher temperature regime)

Maize (Zea mays)	$\begin{aligned} & \text { MAIZE } \\ & \text { (58) } \end{aligned}$	Julia	4 leaves	$6 \frac{1}{2}-7 \frac{1}{2}$ leaves
Sorghum (Sorghum bicolor)	$\begin{aligned} & \text { SORGHUM } \\ & \text { (59) } \end{aligned}$	YE 90L	$2 \frac{1}{2}$ leaves	7-7 ${ }^{\frac{1}{2}}$ leaves
Rice (Oryza sativa)	$\begin{aligned} & \text { RICE } \\ & \text { (60) } \end{aligned}$	Blue Bonnet	3 leaves	5-51
Pigeon pea (Cajanus cajan)	$\begin{aligned} & \text { PIGEON P } \\ & (61) \end{aligned}$	Jamaica 1975	$\begin{aligned} & 0-\frac{1}{2} \text { tri } \\ & \text { foliate leaf } \end{aligned}$	5-6 trifoliate leaf
Cowpea (Vigna unguiculata)	$\begin{aligned} & \text { COWPEA } \\ & (62) \end{aligned}$	Nigeria 1974	1-1 $\frac{1}{2}$ trifoliate leaves	3 trifoliate leaves
Chickpea (Cicer arietinum)	$\begin{aligned} & \text { CHICKPEA } \\ & (63) \end{aligned}$	India 1976	$2 \frac{1}{2}-3$ pinnate leaves	16-17 pinnate leaves
Groundnut (Arachis hypogaea)	GRNDNUT (64)	S 38	4 pinnate leaves	20 pinnate leaves
Soyabean (Glycine max)	SOYABEAN (65)	Amsoy	Bad germination	-
Cotton (Gossypium hirsutum)	$\begin{aligned} & \text { COTTION } \\ & (66) \end{aligned}$	26 J	2 leaves	$4 \frac{1}{2}$ leaves
Jute (Corchorus olitorius)	$\begin{aligned} & \text { JUTE } \\ & (67) \end{aligned}$	Egypt 1971	41-5 leaves	3-12 leaves

Appendix 1. (cont.)	Designation and computer serial number	Cultivar or source	Stage of growth at spraying	Stage of growth at assessment (untreated controls, leaf numbers exclusive of cotyledons)
Kenaf (Hibiscus cannabinus)	$\begin{aligned} & \text { KENAF } \\ & (68) \end{aligned}$	$\begin{aligned} & \text { Tanzania } \\ & 1968 \end{aligned}$	$\begin{aligned} & 2 \frac{1}{2}-3 \text { tri- } \\ & \text { foliate leaves } \end{aligned}$	7 leaves
Tobacco (Nicotiana tabacum)	$\begin{aligned} & \text { TOBACCO } \\ & (69) \end{aligned}$	Yellow Mammoth	3-4 leaves	$5 \frac{1}{2}-6 \frac{1}{2}$ leaves
Sesamum (Sesamum indicum)	SESAMUM (70)	var S . Uganda 1972	2 leaves	8-10 leaves
Tomato $\frac{\text { (Lyconersicum }}{\text { esculentum) }}$	TOMATO (71)	Eurocross BB	2 pinnate leaves	5 pinnate leaves
Oryza punctata	OR PUNCT (73)	$\begin{aligned} & \text { Swaziland } \\ & 1974 \end{aligned}$	2-2 2 leaves	5-6 leaves, tillering
Eleusine indica	$\begin{aligned} & \text { ELEEU IND } \\ & (74) \end{aligned}$	Rhodesia 1967	$4 \frac{1}{2}$ leaves	$\begin{aligned} & 8 \frac{1}{2}-10 \text { leaves, } \\ & \text { tillering } \end{aligned}$
$\begin{aligned} & \frac{\text { Echinochloa }}{\text { crus-galli }} \\ & \hline \end{aligned}$	ECH CRUS (75)	WRO 1972	4 leaves	$6 \frac{1}{2}-7 \frac{1}{2}$ leaves
$\frac{\text { Rottboellia }}{\text { exaltata }}$	ROT EXAL (76)	Rhodesia 1971	4 leaves	$5 \frac{1}{2}-6 \frac{1}{2}$ leaves
$\frac{\text { Digitaria }}{\text { sanguinalis }}$	DIG SANG (71)	WRO 1973	4 leaves	6 leaves, tillering
$\frac{\text { Amaranthus }}{\text { retroflexus }}$	$\begin{aligned} & \text { AMAR RET } \\ & (78) \end{aligned}$	WRO 1972	$6 \frac{1}{2}$ leaves	12-14 leaves
$\frac{\text { Portulaca }}{\text { oleracea }}$	PORT OLE (79)	WRO 1973	6-11 leaves	numerous leaves, flowered
Solanum nigrum	SOL NIG (81)	B and S supplies, 1973	$\frac{1}{2}-2 \frac{1}{2}$ leaves	8-11 leaves
$\frac{\text { Snowdenia }}{\text { polystachya }}$	$\begin{aligned} & \text { SNOW POL } \\ & (83) \end{aligned}$	Ethiopia 1974	4 leaves	$6 \frac{1}{2}-8 \frac{1}{2}$ leaves
$\begin{aligned} & \text { Cyperus } \\ & \text { esculentus } \end{aligned}$	$\begin{aligned} & \text { CYP ESCU } \\ & (85) \end{aligned}$	WRO Clone 2* (ex South Africa	4-5 leaves	8-10 leaves
Cuperus rotundus	$\begin{aligned} & \text { CYP ROTU } \\ & \text { (86) } \end{aligned}$	WRO Clone 1* (ex Rhodesia)	$6 \frac{1}{2}$ leaves	12-14 leaves
Oxalis latifolia	$\begin{aligned} & \text { OXAL LAT } \\ & \text { (87) } \end{aligned}$	WRO Clone 2** (ex Cornwall)	1 trifoliate leaf	4-5 trifoliate leaves, flowering

[^0]| Angstrla | 8 | freezing point | 1.p. |
| :---: | :---: | :---: | :---: |
| Abstract | Abs. | from sumary | F.8. |
| acid equivalent* | a.e. | gallon | gal |
| acre | ac | gallons per hour | $\mathrm{gal} / \mathrm{h}$ |
| active ingredient* | a.i. | gallons per acre | gal/ac |
| approximately equal to* | \simeq | gas liquid chromatography | GLC |
| aqueous concentrate | a.c. | gramme | g |
| bibliography | bibl. | hectare | ha |
| boiling point | b.p. | hectokilogram | hkg |
| bushel | bu | high volume | HV |
| centigrade | C | horse power | hp |
| centimetre* | cm | hour | h |
| concentrated | coned | hundredweight* | cwt |
| concentration | concn | hydrogen ion concentration* | pH |
| concentration x time product | ct | inch | in. |
| concentration | | infra red | i.f. |
| required to kill
 50% test animals | | kilograme | kg |
| 50% test animals
 cubic centimetre* | cm^{2} | kilo ($\times 10^{3}$) | k |
| cubic foot* | ft^{3} | less than | \leqslant |
| cubic inch | in ${ }^{3}$ | litre | 1. |
| cubic metre* | ${ }^{3}$ | low volume | LV |
| cubic yard* | yd^{3} | maximus | max. |
| cultivar(s) | cr. | median lethal dose | LD50 |
| curie* | Ci | medium volume | nv |
| degree Celsius* | ${ }^{\circ} \mathrm{C}$ | melting point | mo. |
| degree centigra | ${ }^{\circ} \mathrm{C}$ | metre | - |
| degree Pahrenheit* | ${ }_{\text {O }}$ | micro ($\times 10^{-6}$) | μ |
| diameter | diam. | microgramme* | 肘 |
| diameter at breast | | micranicro ${ }^{-12}$) | |
| diamater at breast height | d.b.h. | (pico: $\times 10$
 micrametre (micron)* | μm (or μ) |
| divided by* | \div or / | micron (micrometre)* ${ }^{\text {a }}$ | NM (or μ) |
| dry matter | d.m. | les per hour* | mille/h |
| amolsifiable concentrate | e.c. | milli ($\times 10^{-3}$) | m |
| equal to* | | milliequivalent* | m.equiv. |
| Pluid | 17. | milligrame* | 㷿 |
| | It | millilitre | mil |

${ }^{x}$ The name micrometre is preferred to micron and pmis preferred to μ_{0}

millimetre*	mim	relative humidity	r.h.
millimicro		revolution per minute*	rev/min
(nano: $\times 10^{-9}$)	n or mp	second	8
mini mam	min.	soluble concentrate	8.c.
minus	-	soluble powder	s.p.
minute	min	solution	soln
molar concentration	M (small cap)	species (singular)	өp.
molecule, molecular	mol.	species (plural)	spp.
more than	>	specific gratity	sp. gr
multiplied by*	\times	square foot.	Pt
normal concentration*	\$ (small cap)	square inch*	in^{2}
not dated	nod.	square metre*	m^{2}
ofl miseible concentrate	o.m.c. (tables only)	square root of*	$\sqrt{ }$
organic matter	O.m.	b-specie	sp.
ounce	Oz	summary	s.
ounces per gallon	oz/gal	temperature	temp.
		ton	ton
ge	p.	tonne	t
pages	pp.	ultra-low volume	ULV
parts per million*	ppm	ultra violet	u.v.
parts per million by volume*	ppav	vapour density	\checkmark.d.
parts per million by woight*	ppum	vapour pressure varietes	v.p.
percent(age)*	8	volt	∇
pico (micromicro: $\times 10^{-12}$)	p or $\mu \mathrm{m}$	volume	vol.
pint		volume per volume	
pints per acre	pints/ac	water soluble powd	W. 3.p. (tables
plus or minus\%	\pm	watt	
post-amergence	post-am.	weight	wt
pound	1 b	weight per volume*	w / v
pound per acre*	1b/ac	weight per weight*	w/w
pounds per minute	$1 \mathrm{~b} / \mathrm{min}$	wettable powder	w.p.
pound per square inch	$1 \mathrm{~b} / \mathrm{in}^{2}$	yard	
powder for dry application	$\begin{aligned} & \text { p. } \\ & \text { (tables only) } \end{aligned}$	yards per minute	yd/uen
power take off	p.t.o.		
precipitate (nown)	ppt.		
pre-emergence	preaem.		
quart	quart		

* Those mariked * should normally be used in the text as well as in tables, otc.

AGRICULTURAL RESEARCH COUNCIL

WEED RESEARCH ORGANIZATION

TECHNICAL REPORTS

(Price includes surface mail; airmail $£ 0.50$ estra)
6. The botany, ecology, agronomy and control of Poa trivialie Lo roughstalked meadow-grass. November 1966. G P Allen. Price $=0.25$
7. Flame cultivation experiments 1965. October, 1966. G W Ivene. Price - $£ 0.25$
8. The development of selective herbicides for kale in the United Kingdom. 2. The methylthiotriazines. Price - 0.25
10. The liverwort, Marchantia polymorpha L. as a weed problem in horeiculture; its extent and control. July 1968. I E Henson. Price - £0. 25
11. Raising plants for herbicide evaluation; a comparison of compost types. July 1968. I E Henson. Price- $£ 0.25$
12. Studies on the regeneration of perennial weeds in the glasshouse; I. Temperate species. May 1969. I E Henson. Price- $£ 0.25$
13. Changes in the germination capacity of three Polygonum species following low temperature moist storage. June 1969. I E Henson. Price. - $£ 0.25$
14. Studies on the regeneration of perennial weeds in the glasshouse. II. Tropical species. May 1970. I E Henson. Price-£0.25
16. Report on a joint survey of the presence of wild oat seeds in cereal seed drills in the United Kingdom during Spring 1970. November 1970. J G Elliott and P J Attwood. Price - $£ 0.25$
17. The pre-emergence selectivity of some newly developed herbicides, Orga 3045 (in comparison with dalapon), haloxydine (PP 493), HZ 52.112, pronamide (RH 315) and R 12001. January 1971. W G Richardson, C Parker and K Holly. Price - $£ 0.25$
18. A survey from the roadside of the state of post-harvest operations in Oxfordshire in 1971. November 1971. A Phillipson. Price - £0. 12
19. The pre-emergence selectivity of some recently developed herbicides in jute, kenaf and sesamum, and their activity against Oxalis latifolia. December 1971. ML Dean and C Parker. Price- $£ 0.25$
20. A survey of cereal husbandry and weed control in three regions of England. July 1972. A Phillipson, T W Cox and J G Elliott. Price - £0. 35
21. An automatic punching counter. November 1972. R C Simmons. Price - £0. 30
22. The pre-emergence selectivity of some newly developed herbicides: bentazon, BAS 3730 H , metflurazone, SAN 9789, HER 52.123, U 27,267. December 1972. W G Richardson and M L Dean. Price - £0. 25
23. A survey of the presence of wild oats and blackgrass in parts of the United Kingdom during summer 1972. A Phillipson. Price-£0. 25
24. The conduct of field experiments at the Weed Research Organization. February 1973. J G Elliott, J Holroyd and T O Robson. Price £1. 25
25. The pre-emergence selectivity of some recently developed herbicides: lenacil, RU 12068, metribuzin, cyprazine, EMD-IT 5914 and benthiocarb. August 1973. W G Richardson and ML Dean. Price - £1.75.
26. The post-emergence selectivity of some recently developed herbicides: bentazon, EMD-IT 6412, cyprazine, metribuzin, chlornitrofen, glyphosate, MC 4379, chlorfenprop-methyl. October 1973. W G Richardson and M L Dean. Price - £3.31
27. Selectivity of benzene sulphonyl carbamate herbicides between various pasture grasses and clover. October 1973. A M Blair. Price - £1.05
28. The post-emergence selectivity of eight herbicides between pasture grasses: RP 17623, HOE 701, BAS 3790, metoxuron, RU 12068, cyprazine, MC 4379, metribuzin. October 1973. A M Blair. Price - £ 1.00
29. The pre-emergence selectivity between pasture grasses of twelve herbicides: haloxydine, pronamide, NC 8438, Orga 3045, chlortoluron, metoxuron, dicamba, isopropalin, carbetamide, MC 4379, MBR 8251 and EMD-IT 5914. November 1973. A M Blair. Price - $£ 1.30$
30. Herbicides for the control of the broad-leaved dock (Rumex obtusifolius L.). November 1973. A M Blair and J Holroyd. Price-£1.06
31. Factors affecting the selectivity of six soil acting herbicides against Cyperus rotundus. February 1974. ML Dean and C Parker. Price- $£ 1.10$
32. The activity and post-emergence selectivity of some recently developed herbicides: oxadiazon, $\mathrm{U}-29,722, \mathrm{U}-27,658$, metflurazone, norflurazone, AC 50-191, AC 84, 777 and iprymidan. June 1974. W G Richardson and M L Dean. Price - $£ 3.62$
33. A permanent automatic weather station using digital integrators. September 1974. R C Simmons. Price $£ 0.63$.
34. The activity and pre-emergence selectivity of some recently developed herbicides: trifluralin, isopropalin, oryzalin, dinitramine, bifenox and perfluidone. November 1974. W G Richardson and M L Dean. Price - £2. 50
35. A survey of aquatic weed control methods used by Internal Drainage Boards, 1973. January 1975. T O Robson. Price - £1. 39
36. The activity and pre-emergence selectivity of some recently developed herbicides: Bayer 94871, tebuthiuron, AC 92553. March 1975. W G Richardson and M L Dean. Price - £1.54
37. Studies on Imperata cylindrica (L.) Beauv. and Eupatorium odoratum L. October 1975. GW Ivens. Price - £1.75
38. The activity and pre-emergence selectivity of some recently developed herbicides: metamitron, HOE 22870, HOE 23408, RH 2915, RP 20630. March 1976. W G Richardson, M L Dean and C Parker. Price - £3.25
39. The activity and post-emergence selectivity of some recently developed herbicides: HOE 22870, HOE 23408, flamprop-methyl, metamitron and cyperquat. May 1976. W G Richardson and C Parker. Price - $£ 3.20$
40. The activity and pre-emergence selectivity of some recently developed herbicides: RP 20810, oxadiazon, chlornitrofen, nitrofen, flamprop--isopropy1. August 1976. W G Richardson, M L Dean and C Parker. Price - £2.75.
41. The activity and pre-emergence selectivity of some recently developed herbicides: K 1441, mefluidide, WL 29226, epronaz, Dowco 290 and triclopyr. November 1976. W G Richardson and C Parker. Price - £3.40.
42. The activity and post-emergence selectivity of some recently developed herbicides: KUE 2079A, HOE 29152, RH 2915, Triclopyr and Dowco 290. March 1977. W G Richardson and C Parker. Price - £3.50.

AGRICULTURAL RESEARCH COUNCIL WEED RESEARCH ORGANIZATION

BEGBROKE HILL, YARNTON, OXFORD

[^0]: * tubers
 ** bulbs

