Click here for previous

SPECIES

GRNDNUT	75
(64)	86
SOVAREAN	150
SUTROLING	-02
(05)	95
COTTON	104
(66)	93
JUTE	0
(67)	0
KENAF	75
(68)	86
SESAMUM	47
(70)	64
TOMATO	72
(71)	86
OR PUNCT	119
(73)	50
ELEU IND	3
(74)	14
ECH CRUS	68
(75)	50
ROTT EXA	63
(76)	50
DIG SANG	0
(77)	0

RP 20810 is confidential (Rhone Poulenc)

CHLORNITROFEN

0.67 KG/HA

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	М		105	XXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	М		64	XXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	131	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	112	XXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	79	XXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	58	XXXXXXXXXXXX	115	XXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	93	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	86	XXXXXXX
	0		0	
	0		0	
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	95	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	82	XXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	57	XXXXXX
XXXXXXXXX	37	XXXXXXX	28	XXXXXX
XXXXXXXXXXXXX	50	XXXXXXXXXX	21	XXXX
XXXXXXXXXXXXXX	44	XXXXXXXXX	22	XXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	57	XXXXXXXXXXX	36	XXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	75	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXX
XXXXXXXXXX	29	XXXXXX	21	XXXX
x	0		С	
XXX	0		C	
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	0		0	
XXXXXXXXX	0		0	
XXXXXXXXXXXXX	0		32	XXXXXX
XXXXXXXXXX	0		21	XXXX
	0		0	
	0		0	

CHLORNITROFEN

2.00 KG/HA

-	69		-	-	۴.
1	1	L	a	1	6
-	e i	C	1	л	L

		٠	
	r	5	
8	68	6	i
z		1	
1			
	۰.	ø	1

LORNITROFEN

5.00 KG/HA

******************** XXXXXXXX

XXXXXXXXXXXXXXX + XXXXXXXXXXX

* XXXXXXXXXXXXXX + XXXXXXXXXXXX

XXXXXXXXXXX XXXXXX

XX

XXXXXXXXXXXXXXXXX

PR I EMERGENCE SELEC TI EXPER IMENT

AMAR RET (78)	0 0		0 C		0 0	
CYP ESCU (85)	94 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	103 86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	112 64	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
CYP ROTU (86)	90 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	82 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	75 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

CHLORNITROFEN

0.67 KG/HA

CHLORNITROFEN

2.00 KG/HA

CHLORNITROFEN

6.00 KG/HA

XXXXXXXXXXX + XXXXX

XXXXXXX XXXXXXXXXXXX

PR tri EMERGENCE SELEC H formed EXPER IMENT

 $NO_2 \longrightarrow O \longrightarrow C1$

Rohm and Haas (UK) Ltd Lennig House 2 Masons Avenue Croydon Surrey

Information available and suggested uses

Nitrofen was introduced around 1964 and is recommended for preemergence control of certain annual grass and broad-leaved weeds. As uptake is primarily through the emerging shoot it requires application as a layer to the soil surface. Incorporation greatly reduces activity. In the UK it is approved for use pre-emergence in many brassica crops. Temperate cereals are tolerant and it has been approved for control of blackgrass (A. myosuroides) in winter sown wheat. Nitrofen has also been used in transplanted rice.

Formulation used 24.0 w/v a.i. emulsifiable concentrate

Spray volume for selectivity experiment 413 1/ha (36.8 gal/ac)

RESULTS

Full histogram results are given on pages 34-38 and potential selectivities are summarised in the following table.

RATE	CROPS: vigour reduced	WEEDS: number or vigour
(kg a.i./ha)	by 15% or less	reduced by 70% or more
6.00	dwarf bean pea kale swede carrot	<u>Galium aparine</u> <u>Allium vineale</u> + species below

radish chickpea soyabean

(Table continued overleaf)

 3	2	-

RATE (kg a.i./ha)	CROPS: vigour reduced by 15% or less	WEEDS: number or vigour reduced by 70% or more
2.00	species above + field bean rape kenaf	Avena fatua Senecio vulgaris Convolvulus arvensis Oryza punctata Rottboellia exaltata + species below
0.67	<pre>species above * wheat lettuce sugar beet maize cotton</pre>	Alopecurus myosuroides Poa annua Poa trivialis Polygonum lapathifolium Polygonum aviculare Rumex obtusifolius Eleusine indica Echinochloa crus-galli Digitaria sanguinalis Amaranthus retroflexus

Comments on results

Nitrofen was included in this experiment for comparison with the closely related chlornitrofen. No activity experiment data are available on the type and route of action of nitrofen.

Symptoms

These were typical for nitrophenyl ether herbicides. The foliar spray caused contact scorch of treated leaves while pre-emergence applications caused severe inhibition of both grasses and broad-leaved species.

Soil persistence

This test confirmed that nitrofen can exist for a considerable period of time in the soil after application as a surface spray. Using <u>Poa trivialis</u> as the sensitive test species, 2.0 kg/ha was causing a 93% reduction of plant fresh weight, 32 weeks after treatment, but was undetectable at 45 weeks. Plants were still being killed 45 weeks after application of 6.0 kg/ha.

Selectivity among temperate species

All annual grass weeds were controlled or severely reduced by 0.67 kg/ha. Certain annual broad-leaved weeds were controlled, with the Polygonaceae being particularly sensitive. Stellaria media and the Cruciferae were resistant. The perennials Agropyron repens, Cirsium arvense and Tussilago farfara were resistant. Convolvulus arvensis was eventually completely killed at 0.0 kg/ha while at 2.0 kg/ha, emergence of most plants was very late. There was a high mortality of Allium vineale (68 and 95% with 2.0 and 6.0 kg/ha respectively).

Carrot and the brassicas all showed good tolerance of nitrofen, although rape suffered a moderate reduction in plant number and vigour at the highest dose. Pea germination and development was variable at 2.0 kg/ha but some degree of tolerance was apparent. Dwarf bean germination was somewhat reduced by 6.0 kg/ha of nitrofen but survivors were healthy. Wheat was the only cereal to show any tolerance, its vigour being reduced by only 21% at 2.0 kg/ha.

This test confirms the potential of nitrofen for controlling mainly annual grass and certain broad-leaved weeds in a variety of broad-leaved crops and wheat, including the control of <u>A. mysoruoides</u> in the latter. No clear advantages over herbicides currently used in these crops are apparent. The sensitivity of the perennial, <u>Allium vineale</u>, has perhaps not been appreciated hitherto and some further investigation of this may be worthwhile.

- 33 -

Selectivity among tropical species

Good control of all annual weeds was achieved at 2.0 kg/ha or below. The perennial Cyperus spp. recovered from minor symptoms at 6.0 kg/ha.

The legumes, chickpea and soyabean were particularly tolerant; groundnut showed only marginal resistance at 0.67 kg/ha but was not reduced much more at 6.0 kg/ha. Cotton, although only completely tolerant at 0.67 kg/ha, was not severely affected at higher doses. The tolerance of kenaf parallels that found previously with this species (Dean and Parker, 1971) when Oxalis latifolia was also well controlled.

WHEAT	100
(1)	93
BARLEY	95
(2)	71
OAT	104
(3)	64
PER RYGR	30
(4)	36
ONION	95
(8)	64
DWF BEAN	100
(9)	100
FLD BEAN	126
(10)	100
PEA	120
(11)	100
W CLOVER	53
(12)	43
RAPE	101
(14)	100
KALE	100
(15)	100
SWEDE	100
(17)	100

NITROFEN

•

0.67 KG/HA

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	107	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	87	XXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	79	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	64	XXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	75	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	14	xxx
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	36	XXXXXXX	7	x
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	85	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	78	XXXXXXX
XXXXXXXXXXXX	43	XXXXXXXXX	36	XXXXXXX
XXXXX	7	x	0	
XXXXX	7	X	0	
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	15	XXX	0	
XXXXXXXXXXXXX	7	X	0	
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	67	XXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	93	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	86	XXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	95	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	95	XXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	93	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	79	XXXXXX
XXXXXXXXXXXXXXXXX *	60	XXXXXXXXXXX	120	XXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	79	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	86	XXXXXX
XXXXXXXXXX	5	x	5	x
XXXXXXXXX	36	XXXXXXX	29	XXXXXX
XXXXXXXXXXXXXXXXXXXXX +	92	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	66	XXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	93	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	71	XXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	95	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	92	XXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	93	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	96	XXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	86	XXXXXX

NITROFEN

2.00 KG/HA

NITROFEN 6.00 KG/HA

XXXXXXXXXXX XXXXXXX

XXXXXXXXXX

XXXXXXX XXXXXXXXXXX

XXXXXXXXXXXXXX XXXXXXXXXXX

XXXXXXXXXXXXXXXX + XXXXXXXXXXX

PRE ERGEN 1.11 S EL EO 1 IV H EX P ER IMENT

34

XXXXXXXX XXXXXXXXX

XXXXXXXXXXXX XXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXXX XXXXXXXXXXX

CARROT	79	;
(18)	100	;
LETTUCE	104	;
(20)	100	3
SUG BEET	89	;
(21)	100	
AVE FATU	87	1
(26)	43	3
ALO MYOS	64	;
(27)	29	
POA ANN	3	
(28)	7	
POA TRIV	0	
(29)	0	
SIN ARV	78	1
(30)	93	
RAPH RAP	100	
(31)	100	
TRIP MAR	76	
(33)	57	
SEN VULG	103	
(34)	93	
POL LAPA	29	
(35)	71	

NITROFEN

0.67 KG/HA

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	102	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	91	XXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXX
XXXXXXXXXXXXXXXXXX +	78	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	74	XXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	71	XXXXXXXXXXXXX	43	XXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	73	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	73	XXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	57	XXXXXXXXXXX	50	XXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	23	XXXXX	0	
XXXXXXX	21	XXXX	0	
XXXXXXXXXXXX	0		0	
XXXXX	0		0	
	0		0	
	0		0	
	0		0	
	0		0	
xxxxxxxxxxxxx	57	XXXXXXXXXXX	46	XXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	79	XXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	105	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	105	XXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	86	XXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	43	XXXXXXXXX	33	XXXXXXX
XXXXXXXXXX	43	XXXXXXXXX	50	XXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	21	XXXX	0	
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	43	XXXXXXXXX	0	
XXXXX	0		0	
CXXXXXXXXXXXX	0		0	

NITROFEN

2.00 KG/HA

NITROFEN

6.00 KG/HA

XXXXXXXXXXXX XXXXXXXXXXXXXXX

XXXXXXXXX XXX

XXXXXXXXX XXXX

XXX XXXXXXXXXX

XXXXXXXXXXXXX * XXXXXXXXXXX

XXXX

PRI EMERGENCE S ELEC. H IVI H R IMENT

POI AVIC	3	Y	0		0	
(36)	21	XXXX	0		0	
GAL APAR	102	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	70	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	9	xx
(38)	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	71	XXXXXXXXXXXXXX	21	XXXX
STEL MED	90	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	94	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	88	XXXXXXX
(40)	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXX
RUM OBTU	29	XXXXXX	0		0	
(44)	29	XXXXXX	0		0	
AG REPEN	97	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	88	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	106	XXXXXXX
(47)	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	93	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	79	XXXXXXX
ALL VIN	63	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	32	XXXXXX	5	x
(49)	71	XXXXXXXXXXXXX	43	XXXXXXXXX	21	XXXX
CIRS ARV	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	83	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	50	XXXXXXX
(50)	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	93	XXXXXXX
TUS FARF	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	87	XXXXXX
(51)	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	93	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	93	XXXXXXX
CONV ARV	53	XXXXXXXXXXX	20	XXXX	0	
(52)	64	XXXXXXXXXXXX	36	XXXXXXX	0	
MAIZE	106	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	97	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	97	XXXXXXX
(58)	86	XXXXXXXXXXXXXXXXXX	71	XXXXXXXXXXXXX	57	XXXXXXX
RICE	88	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	95	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	102	XXXXXXX
(60)	79	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	64	XXXXXXXXXXXXX	43	XXXXXXX
CHICKPEA	143	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	129	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXX
(63)	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	93	XXXXXXXX

NITROFEN

0.67 KG/HA

NITROFEN

2.00 KG/HA

XXXXXXXXXXXXX XXXXXXXXXXXX

NITROFEN

6.00 KG/HA

XXXXXXXXXXX XXXXXXXXXXXXXX

XXXXXXXXXXXX + XXXXXXXXXX

XXX XXXXXXXXXXXX

XXXXXXXXXXX XXXXXXXXXXXXX

XXXXXXXXXXXX XXXXX

* XXXXXXXXXXXXXX * XXX

PH H EMERGENCE SELECTI VIT EXPER IMENT

		NITROFEN		NITROFEN		NITR
SPECIES		0.67 KG/HA		2.00 KG/HA		6.00
GRNDNUT	105	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	75	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	120	XXXXXXXXXXX
(64)	79	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	57	XXXXXXXXXXX	71	XXXXXXXXXX
SOYABEAN	112	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	75	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	169	XXXXXXXXXX
(65)	86	XXXXXXXXXXXXXXXXX	86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	93	XXXXXXXXXX
COTTON	81	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	58	XXXXXXXXXXXX	92	XXXXXXXXXX
(66)	86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	79	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	79	XXXXXXXXXXX
JUTE	0		0		0	
(67)	0		0		0	
KENAF	95	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	123	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	34	XXXXXXX
(68)	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	64	XXXXXXXXXX
SESAMUM	28	XXXXXX	0		0	
(70)	21	XXXX	0		0	
TOMATO	67	XXXXXXXXXXXXX	6	x	17	XXX
(71)	71	XXXXXXXXXXXXX	21	XXXX	21	XXXX
OR PUNCT	144	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	87	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	125	XXXXXXXXXXX
(73)	36	XXXXXXX	21	XXXX	14	XXX
ELEU IND	0		0		0	
(74)	0		0		0	
ECH CRUS	11	XX	0		0	
(75)	14	XXX	0		0	
ROTT EXA	79	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	32	XXXXXX	0	2 Caller States
(76)	57	XXXXXXXXXXX	29	XXXXXX	0	
DIG SANG	0		0		0	
(77)	0		0		0	

ROFEN

KG/HA

XXXXXXXXXX + XXXXX

XXXXXXXXX + XXXXXXXXXX

XXXXXXXXX XXXXXXX

XXX

XXXXXXXXXX +

PRE-EMERGENCE SEI H V EXPER IMENT

AMAR RET	0		0		0	
(78)	0		0		0	
CYP ESCU	94	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	112	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	103	XXXXXXX
(85)	71	XXXXXXXXXXXXXX	86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	57	XXXXXXX
CYP ROTU	90	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	90	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	142	XXXXXXX
(86)	100	xxxxxxxxxxxxxxxxxxx	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	93	XXXXXXX

4

M. Ma

a the second and the

1. 19

· • *

NITROFEN

0.67 KG/HA

NITROFEN

2.00 KG/HA

NITROFEN 6.00 KG/HA

XXXXXXXXXXXXXXXX + XXXXX

* XXXXXXXXXXXXX * XXXXXXXXXXXXX

the stand

RE EMERGENCE SELECTIV IT EXPER IMENT

. .

38

- 39 -

 $F - (fritzerow h - CH) = 0.00 CH(CH_3)_2$

Woodstock Agricultural Research Centre Shell Research Organization Sittingbourne Kent

Information available and suggested uses

Flamprop-isopropyl is recommended for the post-emergence control of wild oats (Avena spp.) in spring sown barley at 1.0 kg a.i./ha. The timing of spraying is important and should be between the end of tillering and appearance of the first node of the crop. Application is best in a volume of 250 to 600 1/ha but aerial applications in 25 to 50 1/ha have been successful. It can not be "tank mixed" with the commonly used broadleaved weed killers, and these should not be applied within several days of spraying flamprop-isopropyl.

Formulation used 20% w/v a.i. emulsifiable concentrate

Spray volume

for activity experiment 305 1/ha (27.1 gal/ac) for pre-emergence selectivity experiment 413 1/ha (36.8 gal/ac)

RESULTS

Full histogram results are given on pages 42-47 and potential selectivities are summarised in the following table.

RATE	CROPS: vigour reduced	WEEDS: number or vigour
(kg a.i./ha)	by 15% or less	reduced by 70% or more
8.00	barley	Avena fatua

Oryza punctata perennial ryegrass Amaranthus retroflexus dwarf bean + species below field bean pea carrot **lettuce** maize chickpea groundnut soyabean cotton

(Table continued overleaf)

RATE (kg a.i./ha)	CROPS: vigour reduced by 15% or less	WREDS: number or vigour reduced by 70% or more
2.00	species above * wheat white clover rape kale swede sugar beet radish rice kenaf tomato	Alopecurus myosuroides + species below
0.5	species above + oat onion	<u>Poa trivialis</u>

- 40 -

Comments op result

Activity experiment (see page 42)

In the activity experiment the only appreciable phytotoxicity occurred with pre-emergence surface sprays to Avena fatua, which was very surprising in view of the expected foliar activity on this species. Although scorch symptoms were seen initially with foliar sprays of 1.0 and 3.0 kg/ha, A. fatua made excellent recovery. This contrasted with foliar sprays of the related benzoylprop-ethyl which was included for comparison. Doses of 1.0 and 3.0 kg/ha of the latter caused severe inhibition. It is possible that the stage of growth at spraying (2-22 leaves) was too early, but this was also the case for benzoylprop-ethyl. However the susceptibility of A. fatua to pre-emergence surface sprays of flamprop-isopropyl warranted further investigation.

Symptoms

The foliar spray at 3 kg/ha caused contact scorch on A. fatua and to a lesser extent on Agropyron repens, kale and dwarf bean. This was only temporary however, no inhibition of growth resulting and all affected plants recovered. Pre-emergence surface sprays caused a severe inhibition of the main shoot of A. fatua, the first leaf usually emerging from the coleoptile but eventually turning necrotic and dying. Leaves were usually darker green. No symptoms were seen on wheat or barley within the first 4 or 5 weeks after treatment but subsequently a slight inhibition occurred which was accompanied by a yellowing of the 4th and 5th leaves in wheat. This coincided with the production of the secondary roots, which were inhibited for a time, resulting in plants becoming weakly anchored in the soil and tending to fall over. All plants succeeded in producing panicles however. Some perennial ryegrass plants also had a weak root system but shoots were healthy. An inhibition of growth of certain broad-leaved species also occurred, sometimes accompanied by yellowing of leaves, notably in the brassica family.

Soil persistence

Residues were detectable in the soil for a considerable period of time, using Poa trivialis as the sensitive test species. 0.5 kg/ha had almost disappeared when the soil was assayed after 18 weeks. A dose of 2.0 kg/ha was undetectable after 28 weeks, but 8.0 kg/ha was still causing a fresh weight reduction of 92% after 45 weeks.

Selectivity among temperate species

In the pre-emergence selectivity experiment, all annual grasses were

- 41 -

controlled except Poa annua which was much more resistant than Poa trivialis. Avena fatua was controlled at 8.0 kg/ha and reduced in vigour by 64% at 2.0 kg/ha. The perennials and annual broad-leaved species were resistant, although Agropyron repens exhibited severe inhibition for several weeks before recovering.

Barley was the most tolerant cereal, fresh weights of shoots being in excess of controls when harvested. At the same time wheat showed a slight reduction in fresh weight at the two higher doses. Oat showed a similar sensitivity to Avena fatua. Perennial ryegrass, large seeded legumes, carrot and lettuce were tolerant at the highest dose. Onion was only slightly reduced in vigour at 2.0 kg/ha.

Although several other pot tests have confirmed that A. fatua and certain other annual grass weeds, including A. ludoviciana and A. <u>myosuroides</u>, can be controlled by pre-emergence application in certain varieties of wheat, barley and S. 23 perennial ryegrass, field tests have not been encouraging. A subsequent pot test also demonstrated that preemergence activity was less in the open than under glass. Also, as the dose required for post-emergence control of A. fatua is reputed to be lower than for pre-emergence control, development of this herbicide for the latter use is probably not economical.

Selectivity among tropical species

Only Oryza punctata and Amaranthus retroflexus were controlled at 8.0 kg/ha. The other annual tropical grass weeds were particularly resistant. Cyperus spp. recovered from very minor symptoms. No obvious uses are apparent in tropical crops.

ACTIVITY EXPERIMENT

- 42 -

FLAMPROP-ISOPROPYL

		0.33 kg/ha	1.00 kg/ha	3.00 kg/ha
	F	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
DWARF	S	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
BEAN	P	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
	I	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
	F	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
VATE	S	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
AALE	P	XXXXXXXXXXXXXXXX *	XXXXXXXXXXXXXXX *	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
	I	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
	F	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
POL YGONUM	S	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
AMPHIBIUM	P	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
	I	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
	F	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
PERENNIAL	S	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
RIEGRASS	P	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
	I	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
	F	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
AVENA	S	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
FAIUA	P	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXX
	I	XXXXXXXXXXXXXXXXX *	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
	F	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
AGROPYRON	S	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
REPENS	P	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

I

XXXXXXXXXXX XXXXXXXXXXXXXXXXX

Key: F = post-emergence, foliar application S = post-emergence, soil drench P = pre-emergence, surface film I = pre-planting, incorporated

. .

SPECIES

.

WHEAT	107	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	107	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	+ 8	0 xxxxxxxxx
(1)	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	7	9 xxxxxxxxx
BARLEY	109	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	109	XXXXXXXXXXXXXXXXXXXXXXXX	+ 10	9 xxxxxxxxx
(2)	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	93	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	8	6 xxxxxxxxx
OAT	98	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	98	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	9	8 xxxxxxxxx
(3)	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	50	XXXXXXXXXX	2	9 xxxxxx
PER RYGR	107	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	104	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	+ 10	0 xxxxxxxxx
(4)	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	10	0 xxxxxxxxx
ONION	120	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	75	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	9	0 xxxxxxxxx
(8)	86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	79	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	5	7 XXXXXXXXX
DWF BEAN	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	10	0 xxxxxxxxx
(9)	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	10	0 xxxxxxxxx
FLD BEAN	126	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	111	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	+ 12	6 xxxxxxxxx
(10)	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	10	0 xxxxxxxxx
PEA	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	120	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	+ 8	0 xxxxxxxxx
(11)	93	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	10	0 xxxxxxxxx
W CLOVER	96	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	96	xxxxxxxxxxxxxxxxx	8	2 xxxxxxxxxx
(12)	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	5	0 xxxxxxxxx
RAPE	85	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	98	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	9	2 xxxxxxxxx
(14)	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	7	1 xxxxxxxxx
KALE	95	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	105	xxxxxxxxxxxxxxxxxx	+ 8	4 xxxxxxxxxx
(15)	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	7	1 xxxxxxxxx
SWEDE	111	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	8	5 xxxxxxxxx
(17)	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	7	1 xxxxxxxxxx

FLAMPROP-ISOPROPYL

0.50 KG/HA

FLAMPROP-ISOPROPYL

2.00 KG/HA

FLAMPROP-ISOPROPYL

8.00 KG/HA

XXXXXXXX XXXXXXX

XXXXXXXXXXX + XXXXXXXXX

XXXXXXXXXXX

XXXXXXXXXXXX XXXXXXXXXXXX

XXXXXXXXXX XX

XXXXXXXXXXXX XXXXXXXXXXXX

XXXXXXXXXXX + XXXXXXXXXXX

XXXXXXX XXXXXXXXXXXX

XXXXXXX X

XXXXXXXXXX XXXXXX

XXXXXXXXX XXXXX

XXXXXXXXX XXXXXX

PRE EMERGENCE SELECTIVIT R EXPER IMENT

CARROT	85
(18)	100
LETTUCE	91
(20)	100
SUG BEET	76
(21)	100
AVE FATU	115
(26)	93
ALO MYOS	77
(27)	71
POA ANN	99
(28)	93
POA TRIV	53
(29)	21
SIN ARV	95
(30)	93
RAPH RAP	95
(31)	93
TRIP MAR	102
(33)	93
SEN VULG	103
(34)	86
POL LAPA	132
(35)	100

FLAMPROP-ISOPROPYL		FLAMPROP-ISOPROPYL		FLAMP
0.50 KG/HA		2.00 KG/HA		8
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	113	XXXXXXXXXXXXXXXXXXXXXXX	125	XXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	104	xxxxxxxxxxxxxxxxxxxxxx	• 100	xxxxxx
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	86	XXXXXX
XXXXXXXXXXXXXX	82	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	76	XXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	79	XXXXXX
XXXXXXXXXXXXXXXXXXXXX *	98	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	98	XXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	36	XXXXXXX	29	XXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	51	XXXXXXXXXX	51	XXXXXX
XXXXXXXXXXXXX	14	XXX	14	XXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	77	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	51	XXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	71	XXXXXXXXXXXXXX	36	XXXXXX
XXXXXXXXXXX	12	xx	0	
XXXX	14	XXX	0	
xxxxxxxxxxxxxxxxxx	104	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	+ 83	XXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	86	XXXXXXXXXXXXXXXXXX	57	XXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	111	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	+ 74	XXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	57	XXXXXX
XXXXXXXXXXXXXXXXXXXX +	59	XXXXXXXXXXX	53	XXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	71	XXXXXXXXXXXXX	57	XXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	52	XXXXXXXXXX	93	XXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	93	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	93	XXXXXXX
XXXXXXXXXXXXXXXXXXXX +	102	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	+ 88	xxxxx
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	71	XXXXXXXXXXXXXX	57	XXXXXX

PROP-ISOPROPYL

.00 KG/HA

XXXXXXXXXXXXXXXX + XXXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXX XXXXXXXXXXX

XXXXXXXXX XXXXXXXXXXX

XXXXXXXXXXXXXXXXX

XXXXX

XXXXX

XXXXXXXXXXXX XXXXXX

XXXXXXXXXX XXXXXX

XXXXXX XXXXXX

XXXXXXXXXXXXXX XXXXXXXXXXXXX

XXXXXXXXXXXXX XXXXXX

PRE-**IERGENCE** S. ELEC here < 1 EXPER IMENT

-

and the

122

POL AVIC	104
(36)	100
GAL APAR	82
(38)	100
STEL MED	98
(40)	100
RUM OBTU	102
(44)	93
AG REPEN	106
(47)	100
ATT UTN	100
ALL VIN	100
(49)	TUU
CIRS ARV	83
(50)	100
TUS FARF	100
(51)	100
CONV ARV	93
(52)	100
MATTE	106
(58)	100
(50)	100
RICE	88
(60)	100
CHICKPEA	129
(63)	93

FLAMPROP-ISOPROPYL			FLAMPROP-ISOPROPYL			FLAMP
0.50 KG/HA			2.00 KG/HA			8
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	+	110	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	+	91	XXXXXX
xxxxxxxxxxxxxxxxxx		100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		86	XXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		111	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	+	82	XXXXXX
xxxxxxxxxxxxxxxxxx		100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		64	XXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		107	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	+	96	xxxxxx
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		100	XXXXXX
xxxxxxxxxxxxxxxxx	+	161	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	+	102	XXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		86	XXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	+	106	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	4	106	XXXXXX
XX XX XX XX XX XX XX XX XXX XXX		71	XXXXXXXXXXXXX		36	XXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		89	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		95	XXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		86	XXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		117	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	+	117	XXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		71	XXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		100	XXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		79	XXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		80	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		40	XXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		86	XXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	+	97	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		106	XXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		100	XXXXXXXXXXXXXXXXXXXXXXXXX		86	XXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		110	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	+	117	XXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		93	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		79	XXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	+	114	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	4	114	XXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		93	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		93	XXXXXX

PROP-ISOPROPYL

.00 KG/HA

XXXXXXXXXXXX XXXXXXXXXXX

XXXXXXXXXX XXXXXXXX

XXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXX

* * * * XXXXXXXXXXX

XXXXXXXXXXXXX +

XXXXXXXXXXXXXX XXXXXXXXXXX

XXXXXXXXXXXXXXX * XXXXXXXXX

XXXXXXXXXXXXXXXXXX XXXXXXXXXXX

XXX XXXXXXXXXXXX

Plant with

XXXXXXXXXXXXXXX * XXXXXXXXXXXX

* XXXXXXXXXXXXXXXX * XXXXXXXXXXX

* XXXXXXXXXXXXXXX * XXXXXXXXXXXXXXX

PRE-EMERGENCE SELEC ITY EXPERIMENT

		FLAMPROP-ISOPROPYL		FLAMPROP-ISOPROPYL		FLAMPR
SPECIES		0.50 KG/HA		2.00 KG/HA		8.
GRNDNUT	75	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	105	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	90	XXXXXXX
(64)	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXX
SOYABEAN	112	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	- 56	XXXXXXXXXXX	112	XXXXXXX
(65)	93	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	93	XXXXXXX
COTTON	46	XXXXXXXXX	69	XXXXXXXXXXXXXX	104	XXXXXXX
(66)	93	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	86	XXXXXXX
JUTE	137	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	- 50	XXXXXXXXXX	112	XXXXXXX
(67)	71	XXXXXXXXXXXXXX	64	XXXXXXXXXXXX	64	XXXXXXXX
KENAF	82	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	102	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	68	XXXXXXX
(68)	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	2 93	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	79	XXXXXXXX
SESAMUM	37	XXXXXXX	94	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	9	xx
(70)	71	XXXXXXXXXXXXX	71	XXXXXXXXXXXXXX	50	XXXXXXX
TOMATO	111	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	94	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXX
(71)	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	79	XXXXXXX
OR PUNCT	125	xxxxxxxxxxxxxxxxxxxxxxxxxx	- 131	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	112	XXXXXXX
(73)	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	64	XXXXXXXXXXXXX	29	XXXXXX
ELEU IND	89	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	102	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	72	XXXXXXX
(74)	86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	93	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	79	XXXXXXX
ECH CRUS	106	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	95	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	95	XXXXXXX
(75)	93	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	79	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	71	XXXXXXX
ROTT EXA	95	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	126	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	32	XXXXXX
(76)	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	93	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXX
DIG SANG	60	XXXXXXXXXXXX	86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	69	XXXXXXXX
(77)	57	XXXXXXXXXXX	79	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	86	XXXXXXX

ROP-ISOPROPYL

.00 KG/HA

R XXXXXXXXXXX XXXXXXXXXXXXX R

XXXXXXXXXXXX + XXXXXXXXXXXXX

XXXXXXXXXXXX + XXXXXXXXXXX

XXXXXXXXXXXXX + XXXXXXX

XXXXXXXX XXXXXXXXXX

XXXX

XXXXXXXXXXXXXXX XXXXXXXXXX

XXXXXXXXXXXX +

XXXXXXXX XXXXXXXXX

XXXXXXXXXXXX XXXXXXX

XXXXXXXXXXXXXX

XXXXXXXX XXXXXXXXXXX PRE-EMERGENCE SELECTI < Ind H EXPER IMENT

1.2

in the second

AMAR RET	60
(78)	64
CYP ESCU	84
(85)	100
CYP ROTU	97
(86)	100

FLAMPROP-ISOPROPYL		FLAMPROP-ISOPROPYL		FLAM
0.50 KG/HA		2.00 KG/HA		
XXXXXXXXXXXX	50	XXXXXXXXXX	10	xx
XXXXXXXXXXXXX	57	XXXXXXXXXX	21	XXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	103	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	84	XXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	86	XXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	97	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	82	XXXXXX
xxxxxxxxxxxxxxxxxx	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXX

IPROP-ISOPROPYL 8.00 KG/HA

XXXXXXXXXXXXX XXXXXXXXXXXX

XXXXXXXXXXXX XXXXXXXXXXXXXXXXXX PRE EMERGENCE SELECTIVITY EXPERIMENT

ACKNOWLEDGEMENTS

We are most grateful to the Statistics Department, ARC Letcombe Laboratory for processing the experimental data; to Mrs. S. O'Keeffe, Miss A.M. Hitchcock, Mr. T.M. West and Messrs. R.H. Webster, R.M. Porteous and D.J. Cambray for technical and practical assistance; to Miss B.E. Watson for the preparation and typing of this report and to the various commercial firms for providing the chemicals and relevant technical data.

- 48 -

The work of the ODM Tropical Weeds Group was carried out under Research Scheme R 2617 financed by H.M. Overseas Development Administration.

REFERENCES

BURGAUD, L., DELORAINE, J., DESMORAS, J., GUILLOT, M., PETRINKO, P. and RIOTTOT, M. (1969) Activity and selectivity in the greenhouse and in the field of a new herbicide: 2 tert. buty1-4(2,4-dichloro-5isopropyloxy phenyl) A_-1,3,4-oxadiazoline-5-one. Proceedings of the 3rd European Weed Research Council Symposium on New Herbicides, 219-236.

DEAN, M.L. and PARKER, C. (1971) The pre-emergence selectivity of some recently developed herbicides in jute, kenaf and sesamum; and their activity against Oxalis latifolia. Technical Report Agricultural Research Council Weed Research Organization (19), pp. 24.

KAWAMURA, Y. (1975) Studies on a new herbicide oxadiazon (G-315, 17623-RP) III. The selective herbicidal activity of oxadiazon. Zasso Kenkyu, 20, (2), 55-60.

RICHARDSON, W.G. and DEAN, M.L. (1973a) The pre-emergence selectivity of some recently developed herbicides; lenacil, RU 12068, metribuzin, cyprazine, EMD-IT 5914 and benthiocarb. Technical Report Agricultural Research Council Weed Research Organization, (25), pp. 57.

RICHARDSON, W.G. and DEAN, M.L. (1973b) The post-emergence selectivity of some recently developed herbicides; bentazon, EMD-IT 6412, cyprazine, metribuzin, chlornitrofen, glyphosate, MC 4379 and chlorfenpropmethyl. Technical Report Agricultural Research Council Weed Research Organization, (26), pp. 79.

RICHARDSON, W.G. and DEAN, M.L. (1974) The activity and post-emergence selectivity of some recently developed herbicides: oxadiazone, U-29,722, U-27,658, metflurazone, norflurazone, AC 50,191, AC 84,777 and iprymidan. Technical Report Agricultural Research Council Weed Research Organization, (32), pp. 74.

- 49 -

Species, abbreviations, cultivars and stage of growth at Appendix 1. assessment

Stage of growth at Designa-Depth assessment Cultivar of tion and No. (untreated computer planper or controls, ting serial pot source leaf numbers number (cm) exclusive of

cotyledons)

Temperate species

Wheat (Triticum aestivum)	WHEAT (1)	Kolibri	8	1.2	4 leaves
Barley (Hordeum vulgare)	BARLEY (2)	Sultan	8	1.2	4 leaves
Oat (Avena sativa)	OAT (3)	Condor	8	1.2	3½ leaves
Perennial ryegrass (Lolium perenne)	PER RYGR (4)	S 23	15	0.6	5 leaves, tillering
Onion (Allium cepa)	ONION (8)	Robusta	15	0.6	2 leaves
Dwarf bean (Phaseolus vulgaris)	DWF BEAN (9)	The Prince	3	1.8	1-1 ¹ / ₂ trifoliate leaves
Field bean (Vicia faba)	FLD BEAN (10)	Maris Bead	4	1.8	6½ leaves
Pea (Pisum sativum)	PEA (11)	Dark Skinned	4.	1.2	6 ¹ / ₂ leaves
White clover (Trifolium repens)	W CLOVER (12)	S 100	15	0.6	1 trifoliate leaf
Rape (Brassica napus oleifera)	RAPE (14)	Victor	15	0.6	2 ¹ / ₂ leaves

Kale (Brassica oleracea acephala)	KALE (15)	Marrowstem	15	0.6	2½ leaves
Swede (Brassica napus)	SWEDE (17)	Lord Derby	10	0.6	$3-3\frac{1}{2}$ leaves
Carrot (Daucus carota)	CARROT (18)	Chantenay Red Core	8	0.6	2 leaves

Appendix 1 (cont.)

Designation and computer serial number

- 50 -

Cultivar or source No. of per planpot ting (cm)

Stage of growth at assessment (untreated controls, leaf numbers exclusive of cotyledons)

Lettuce (Lactuca sativa)	LETTUCE (20)	Borough Wonder	10	0.6	$3\frac{1}{2}$ leaves
Sugar beet (Beta vulgaris)	SUG BEET (21)	'Klein E'	20	0.6	2 ¹ / ₂ leaves
Avena fatua	AVE FATU (26)	Hensington 1969	10	1.2	3 leaves
<u>Alopecurus</u> myosuroides	ALO MYOS (27)	Rothamsted 1968	30	0.6	5 leaves, tillering
Poa annua	POA ANN (28)	WRO 1966	30	0.6	3 leaves
Poa trivialis	POA TRIV (29)	Watts 1972	30	0.6	3 leaves
Sinapis arvensis	SIN ARV (30)	WRO 1966	50	0.6	$3\frac{1}{2}$ leaves
<u>Raphanus</u> raphanistrum	RAPH RAP (31)	French Breakfast	12	0.6	$3-3\frac{1}{2}$ leaves
<u>Tripleurospermum</u> <u>maritimum</u>	TRIP MAR (33)	WRO 1968	30	Sur- face	8 ¹ / ₂ leaves
Senecio vulgaris	SEN VULG (34)	WRO 1970	30	0.6	$3\frac{1}{2}$ leaves
Polygonum lapathifolium	POL LAPA (35)	WRO 1970	15	0.6	$2\frac{1}{2}$ leaves
Polygonum aviculare	POL AVIC (36)	WRO 1972	25	0.6	3½ leaves

GAL APAR Galium aparine WRO 1970 25 4½ whorls 0.6 (38)CHEN ALB Chenopodium album WRO 1972 $2\frac{1}{2}$ leaves 25 0.6 (39) Band S STEL MED Stellaria media supplies, 30 0.6 11 leaves (40) 1972

Appendix 1 (cont.)

Designation and computer serial number

Cultivar or source No. of per planpot ting (cm) Stage of growth at assessment (untreated controls, leaf numbers exclusive of cotyledons)

*

- 51 -

	COL NIC	Band S			nil
Solanum nigrum	(43)	supplies, 1973	20	0.3	germination
<u>Rumex</u> obtusifolius	RUM OBTU (44)	Shipton 1968	15	0.3	2 leaves
Agropyron repens	AG REPEN (47)	WRO Clone 31	64	1.2	3½ leaves
Allium vineale	ALL VIN (49)	WRO 1972	10*	0.6	3 leaves
<u>Cirsium arvense</u>	CIRS ARV (50)	WRO Clone 1	44	1.2	4 ¹ / ₂ leaves
<u>Tussilago farfara</u>	TUS FARF (51)	WRO Clone 1	4	1.2	4 ¹ / ₂ leaves
<u>Convolvulus</u> arvensis	CONV ARV (52)	WRO Clone 1	5#	1.2	
Tropical species (gro	own under hi	igher temperatu	re re	gime)	
Maize (Zea mays)	MAIZE (58)	Caldera	6	1.8	$3\frac{1}{2}-4$ leaves
Sorghum (Sorghum vulgare)	SORGHUM (59)	Fetereita	8	1.2	$3\frac{1}{2}-4\frac{1}{2}$ leaves
Rice (Oryza sativa)	RICE (60)	IR5	10	0.6	1-4 leaves
Cowpea (Vigna unguiculata)	COWPEA (62)	Nigeria 1972	5	1.2	nil germination
Chickpea (Cicer arietinum)	CHICKPEA (63)	Ethiopia 1970	6	1.2	7 ¹ / ₂ -10 pinnate leaves
Groundnut (Arachis hypogaea)	GRNDNUT (64)	Natal Common	4	1.8	4 trifoliate leaves
Soyabean (Glycine max)	SOYABEAN (65)	Wayne	6	1.2	1 ¹ / ₂ -2 trifoliate leaves
Cotton (Gossypium hirsutum)	COTTON (66)	Samaru 26J	5	1.8	$1\frac{1}{2}-2$ leaves

- 52 -

Appendix 1 (cont.)

Designation and Cultivar computer or serial source number

Depth of planper ting (cm)

No.

pot

Stage of growth at assessment (untreated controls, leaf numbers exclusive of cotyledons)

Jute (Corchorus olitorius)	JUTE (67)	Egypt 1971	15	0.6	$2\frac{1}{2}$ -3 leaves
Kenaf (Hibiscus cannabinus)	KENAF (68)	Thai Native	10	0.6	$\frac{1}{2}-1\frac{1}{2}$ leaves
Sesamum (Sesamum indicum)	SESAMUM (70)	Addis Ababa 1971	10	0.6	0-3 leaves
Tomato (Lycopersicum esculentum)	TOMATO (71)	Ailsa Craig	10	0.6	$3-3\frac{1}{2}$ leaves
Oryza punctata	OR PUNCT (73)	Swaziland 1967	30	0.6	1-2 leaves
Eleusine indica	ELEU IND (74)	WRO 1968	15	0.6	3-4 leaves
<u>Echinochloa</u> crus-galli	ECH CRUS (75)	WRO 1969	15	0.6	3-5 leaves
<u>Rottboellia</u> exaltata	ROTT EXA (76)	Rhodesia 1971	15	1.2	$3\frac{1}{2}$ -5 leaves
<u>Digitaria</u> sanguinalis	DIG SANG (77)	WRO 1965	15	0.2	3-4 leaves
<u>Amaranthus</u> retròflexus	AMAR RET (78)	WRO 1969	20	0.3	$1\frac{1}{2}-5$ leaves
<u>Cyperus</u> esculentus	CYP ESCU (85)	WRO Clone 2 (ex South Africa)	6**	1.8	4 ¹ / ₂ -7 leaves/ shoot

Cyperus rotundus	CYP ROTU (86)	WRO Clone 1 (Rhodesia)	5**	1.8	3-10½ leaves/ shoot
Oxalis latifolia	OXAL LAT (87)	WRO Clone 2 (Cornwall)	25 bulbs	1.2	nil germination

- one node rhizome fragments 4
- 14 4 cm root fragments
- temperate species raised under higher temperature +

aerial bulbils * * tubers

茶

ABBREVIATIONS

angström	8
Abstract	Abs.
acid equivalent*	a.e.
acre	ac
active ingredient*	a.i.
approximately equal to*	~~~
aqueous concentrate	a.c.
bibliography	bibl.
boiling point	b.p.
bushel	bu
centigrade	C
centimetre*	cm
concentrated	concd
concentration	concn
concentration x time product	ct
concentration required to kill 50% test animals	LC50
cubic centimetre*	cm ³
cubic foot*	ft ³
cubic inch*	in ³
cubic metre*	m ³
cubic yard*	yd ³
cultivar(s)	CV.
curie*	Ci
degree Celsius*	°c
degree centigrade*	°c
degree Fahrenheit*	°F
diameter	diam.

freezing point from summary gallon gallons per hour gallons per acre gas liquid f.p. F.s. gal/h gal/ac

.

•

•

NU

m

mg

ml

um (or pl)

pm (or p) mile/h

m.equiv.

chromatography	GLC
gramme	g
hectare	ha
hectokilogram	hkg
high volume	HV
horse power	hp
hour	h
hundredweight*	cwt
hydrogen ion concentration	* pH
inch	in.
infra red	i.r.
kilogramme	kg
$kilo(x10^{3})$	k
less than	<
litre	. 1.
low volume	LV
maximum	max.
median lethal d	ose LD50
medium volume	MA
melting point	pop.p.
metre	1
micro (x10 ⁻⁶)	. pi
microgramme*	pg.
micromicro	

. . .

diameter at breast height	d.b.h.	micrometre (micron)*
divided by*	÷ or /	micron (micrometre)*X
dry matter	d.m.	miles per hour*
emulsifiable concentrate	e.c.	milli (x10 ⁻³)
equal to*	-	milliequivalent*
fluid	fl.	milligramme*
foot	ft	millilitre

× The name micrometre is preferred to micron and µm is preferred to µ.

millimetre* millimicro* (nano: x10⁻⁹) mini mm minus minute molar concentration* molecule, molecular

mana than

n or mu min. min M (small cap) mol.

mon

- 2 -

r.h. relative humidity rev/min revolution per minute* 8 second soluble concentrate 8.C. soluble powder s.p. soln solution species (singular) sp. species (plural) spp.

more than	~	specific gravity	sp. gr.
multiplied by*	×	square foot#	ft ²
normal concentration*	N (small cap)	square inch*	in ²
not dated	n.d	square metre*	m ²
oil miscible concentrate	O.M.C. (tables only)	square root of*	5
organic matter	o.m.	sub-species*	ssp.
ounce	02	summery	S
ounces per gallon,	oz/gal	temperature	temp.
page	p.	ton	ton
pages	pp.	tonne	t
parts per million*	ppm	ultra-low volume	ULV
parts per million		ultra violet.	u.v.
by volume#	ppmv	vapour density	v.d.
parts per million		vapour pressure	v.p.
by weight*	ppmw	varietas	var.
percent(age)*	%	volt	V
pico $(micromicro: 10^{-12})$	D OF III	volume	vol.
nint	nint	volume per volume	V/V
pints per acre	pints/ac	water soluble powder	w.s.p. (tables only)
plus or minus*	+	watt	W
post-emergence	post-em.	weight	wt
pound	1b	weight per volume#	w/w
pound per acre*	lb/ac	weight per weight#	w/w
pounds per minute	lb/min	wettable powder	w.p.
pound per square inch*	1b/in ²	yard	yd
powder for dry application	p. (tables only)	yards per minute	yd/min
power take off	p.t.o.		
precipitate (noun)	ppt.		
pre-emergence	pre-em.		
quart	quart		

* Those marked * should normally be used in the text as well as in tables, etc.

AGRICULTURAL RESEARCH COUNCIL

WEED RESEARCH ORGANIZATION

TECHNICAL REPORTS (Price includes surface mail; airmail £0.50 extra)

- 6. The botany, ecology, agronomy and control of Poa trivialis L. roughstalked meadow-grass. November 1966. G P Allen. Price - £0.25
- 7. Flame cultivation experiments 1965. October, 1966. G W İvens. Price - £0.25
- 8. The development of selective herbicides for kale in the United Kingdom.
 2. The methylthiotriazines. Price £0.25
- 10. The liverwort, <u>Marchantia polymorpha L. as a weed problem in</u> horticulture; its extent and control. July 1968. I E Henson. Price - £0.25
- 11. Raising plants for herbicide evaluation; a comparison of compost

types. July 1968. I E Henson. Price - £0.25

- Studies on the regeneration of perennial weeds in the glasshouse;
 I. Temperate species. May 1969. I E Henson. Price £0.25
- 13. Changes in the germination capacity of three Polygonum species following low temperature moist storage. June 1969. I E Henson. Price. - £0.25
- 14. Studies on the regeneration of perennial weeds in the glasshouse. II. Tropical species. May 1970. I E Henson. Price - £0.25
- 16. Report on a joint survey of the presence of wild oat seeds in cereal seed drills in the United Kingdom during Spring 1970. November 1970. J G Elliott and P J Attwood. Price - £0.25
- 17. The pre-emergence selectivity of some newly developed herbicides, Orga 3045 (in comparison with dalapon), haloxydine (PP 493), HZ 52.112, pronamide (RH 315) and R 12001. January 1971. W G Richardson, C Parker and K Holly. Price - £0.25
- 18. A survey from the roadside of the state of post-harvest operations in Oxfordshire in 1971. November 1971. A Phillipson. Price - £0.12
- 19. The pre-emergence selectivity of some recently developed herbicides in jute, kenaf and sesamum, and their activity against Oxalis latifolia. December 1971. M L Dean and C Parker. Price - £0.25

20. A survey of cereal husbandry and weed control in three regions of England. July 1972. A Phillipson, T W Cox and J G Elliott. Price - £0.35

- 2 -

- 21. An automatic punching counter. November 1972. R C Simmons. Price - £0.30
- 22. The pre-emergence selectivity of some newly developed herbicides: bentazon, BAS 3730H, metflurazone, SAN 9789, HER 52.123, U 27,267.

December 1972. W G Richardson and M L Dean. Price - £0.25

- 23. A survey of the presence of wild oats and blackgrass in parts of the United Kingdom during summer 1972. A Phillipson. Price - £0.25
- 24. The conduct of field experiments at the Weed Research Organization. February 1973. J G Elliott, J Holroyd and T O Robson. Price -£1.25
- 25. The pre-emergence selectivity of some recently developed herbicides: lenacil, RU 12068, metribuzin, cyprazine, EMD-IT 5914 and benthiocarb. August 1973. W G Richardson and M L Dean. Price - £1.75.
- 26. The post-emergence selectivity of some recently developed herbicides: bentazon, EMD-IT 6412, cyprazine, metribuzin, chlornitrofen, glyphosate, MC 4379, chlorfenprop-methyl. October 1973. W G Richardson and M L Dean. Price - £3.31
- 27. Selectivity of benzene sulphonyl carbamate herbicides between various pasture grasses and clover. October 1973. A M Blair. Price £1.05
- 28. The post-emergence selectivity of eight herbicides between pasture grasses: RP 17623, HOE 701, BAS 3790, metoxuron, RU 12068, cyprazine, MC 4379, metribuzin. October 1973. A M Blair. Price - £1.00
- 29. The pre-emergence selectivity between pasture grasses of twelve herbicides: haloxydine, pronamide, NC 8438, Orga 3045, chlortoluron, metoxuron, dicamba, isopropalin, carbetamide, MC 4379, MBR 8251 and EMD-IT 5914. November 1973. A M Blair. Price - £1.30
- 30. Herbicides for the control of the broad-leaved dock (Rumex obtusifolius L.). November 1973. A M Blair and J Holroyd. Price - £1.06
- 31. Factors affecting the selectivity of six soil acting herbicides against Cyperus rotundus. February 1974. M L Dean and C Parker. Price - £1.10
- 32. The activity and post-emergence selectivity of some recently developed herbicides: oxadiazon, U-29,722, U-27,658, metflurazone, norflurazone, AC 50-191, AC 84,777 and iprymidan. June 1974. W G Richardson and M L Dean. Price - £3.62
- A permanent automatic weather station using digital integrators.
 September 1974. R C Simmons. Price £0.63.
- 34. The activity and pre-emergence selectivity of some recently developed herbicides: trifluralin, isopropalin, oryzalin, dinitramine, bifenox and perfluidone. November 1974. W G Richardson and M L Dean. Price - £2.50

35. A survey of aquatic weed control methods used by Internal Drainage Boards, 1973. January 1975. T O Robson. Price - £1.39

- 3 -

- 36. The activity and pre-emergence selectivity of some recently developed herbicides: Bayer 94871, tebuthiuron, AC 92553. March 1975. W G Richardson and M L Dean. Price - £1.54
- 37. Studies on Imperata cylindrica (L.) Beauv. and Eupatorium odoratum L. October 1975. G W Ivens. Price - £1.75
- 38. The activity and pre-emergence selectivity of some recently developed herbicides: metamitron, HOE 22870, HOE 23408, RH 2915, RP 20630. March 1976. W G Richardson, M L Dean and C Parker. Price - £3.25
- 39. The activity and post-emergence selectivity of some recently developed herbicides: HOE 22870, HOE 23408, flamprop-methyl, metamitron and cyperquat. May 1976. W G Richardson and C Parker. Price £3.20
- 40. The activity and pre-emergence selectivity of some recently developed herbicides: RP 20810, oxadiazon, chlornitrofen, nitrofen, flamprop--isopropyl. August 1976. W G Richardson, M L Dean and C Parker. Price - £2.75.

AGRICULTURAL RESEARCH COUNCIL

WEED RESEARCH ORGANIZATION

BEGBROKE HILL, YARNTON, OXFORD