Click here for previous

Orga 3045 is flupropanate-sodium, HZ 52.112 is credazine, Pronamide is propyzamide, R 12001 is S-isopropyl 5-ethyl-2-methylpiperidine-1carbothiolate (Stauffer)

Comments on results

1. Haloxydine is active at low doses, giving control of <u>Stellaria media</u> and <u>Amaranthus retroflexus</u> and vigour reduction of 50% or more with white clover and the <u>Avena sp.</u>, oat and wild oat, at 0.0625 lb/ac. The learlier Initial Activity Test showed that incorporation into the soil lowered the activity and this should be borne in mind when considering these results.

2. No specificity for a particular category of plants was found, severe effects occurring against perennial rhizomatous species as well as small and large seeded annual species. The effect on <u>Agropyron repens</u> was particularly noteworthy as all aerial shoots, rhizomes and roots were eventually killed by 7 weeks after application of 0.25 lb/ac.

3. The weed spectrum is very similar to that found for the chemically related pyriclor in an earlier test of this type, the degree of phytotoxicity being almost the same for both herbicides. Symptoms on affected plants were also similar, a progressive dieback occurring from an early growth stage following severe chlorosis. However the chlorosis resulting from haloxydine, although severe, is without the 'bleaching' effect caused by pyriclor.

4. The results of this experiment lend support to the suggested selectivity in kale, this crop being unaffected at 0.25 lb/ac. In an earlier postemergence experiment kale was also tolerant to a foliar spray at the same rate, while there was a high level of activity against broadleaved weeds. From the present test good control of grasses and of <u>Stellaria media</u> is probable with pre-emergence treatments. Selectivities in other Brassicae seem probable, swede being tolerant at 0.06 lb/ac and reduced in vigour by only 30% at 0.25 lb/ac.

5. Some variation in susceptibility between the cereals is evident, with oat (and Avena fatua) more affected than wheat or barley.

6. Maize, groundnut and cotton tolerated 0.25 lb/ac but, among the tropical weed species in this experiment only <u>Amaranthus retroflexus</u> was controlled at this dose.

7. <u>Cyperus rotundus</u> was not controlled at 0.25 lb/ac but 1 lb/ac caused severe suppression lasting for a full 3 months. <u>C. esculentus</u> and <u>Cynodon</u> dactylon were similarly suppressed at this dose.

8. From results so far available a long period of persistence for haloxydine in the soil is indicated. When the soil was assayed three months after treatment using <u>Avena fatua</u> as test species, plants were reduced to 50% of fresh-weight of control at 0.25 lb/ac and killed at 1.0 lb/ac indicating very little, if any, breakdown in this period. This potential for persistence, coupled with a high water solubility and a proneness to leach as suggested by the manufacturer, may be of advantage for weed control in non-crop situations, but may be a disadvantage when used in annual crop rotations.

TRIAL NUMBER 5 SPECIES H	511 HALOXY	DINE 0.0625 LB/AC	HALOX	TREATMENTS YDINE 0.2500 LE/AC	HALC	XYDINE 1.0000
WHEAT (l)	88 86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	80 43	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	77	x
BARLEY (2)	105 79	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	56 36	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	77.	x
DAT (3)	100 50	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	6 7	X X	000	
PER RYGR (4)	83 93	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	66 43	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	3 14	XXXX
DWF BEAN (9)	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	83 50	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	83 43	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
FLD BEAN (10)		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	53 50	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
PEA (11)		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	71 50	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 36	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
W CLOVER (12)	62 43	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	000		00	
KALE (15)	104	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	104 93	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	75 43	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
EWEDE (17)	117 93	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	117 71	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	13 14	XXX XXX
CARROT (18)	135 86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	39 36	XXXXXXXX XXXXXXXX	10 14	XX XXX
LETTUCE (20)	130 93	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	78 50	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	29	XXXXXX XXXXXXX
SUG BEET (21)	127 93	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	50 36	XXXXXXXXXX XXXXXXXX	00	

.

.

.

DO LB/AC

.

,

XXX

XXXXXX

- 20 -

X

TRIAL NUMBER	511	TREATMENTS	HALOXYDINE 1.
SPECIES	HALOXYDINE 0.0625 LB/AC	HALOXYDINE 0.2500 LB/AC	
AVE FATU	68 xxxxxxxxxxxxxx	0	0
(26)	43 xxxxxxxxx		0
ALO MYOS	107 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	37 xxxxxx	33 XXXXXXX
(27)		43 xxxxxxxx	21 XXXX
POA ANN (28)	81 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	5 x 14 xxx	00
SEN VULG (34)	121 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	102 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	5 x 21 xxxx
CHEN ALB	93 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	31 XXXXXX	0
(39)		36 XXXXXXX	0
STEL MED	C	0	0
(40)	C	0	0
AG REPEN	100 <u>xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx</u>	40 XXXXXXXX	10 xx
(47)		21 XXXX	14 xxx
ALL VIN (49)	94 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	103 xxxxxxxxxxxxxxxxxxxxxxxx 100 xxxxxxxxxx	94 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
MAIZE (58)	100 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx	100 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx	83 xxxxxxxxxxxxx 50 xxxxxxxxxx
SCIRGHUM	100 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	63 XXXXXXXXXXX	0
(59)		50 XXXXXXXXXX	0
RICE (60)	85 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	85 xxxxxxxxxxxxxxxxx 79 xxxxxxxxxxxxxxx	96 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
GRNDNUT	91 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	78 xxxxxxxxxxxxxxxx	78 xxxxxxxxxx
(64)		86 xxxxxxxxxxxxxx	29 xxxxxx
SOYABEAN	140 xxxxxxxxxxxxxxxxxxxxxxx	120 xxxxxxxxxxxxxxxxxxxxxx	40 XXXXXXX
(65)	86 xxxxxxxxxxxx	43 xxxxxxxxx	29 XXXXXX

. .

×.

+

.

.

.

.0000 LB/AC

- 21 -

XXXXXXXXXXX

XXXXXXXX

XXXXXXXXXX

.

.

XXXXXXX

TRIAL NUMBER SPECIES	511 HALOXY	DINE 0.0625 LB/AC	HATOY	TREATMENTS YDINE 0.2500 LB/AC	TTATO	TTTTTTTTT
DITIOTIO	IIVTOVI	DTIME (2005) TD/HO	MALOA	YDINE 0.2500 LB/AC	HALO	XYDINE 1.
COTTON	91	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	104	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	78	XXXXXXXXXX
(66)	93	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	43	XXXXXXXXXX
KENAF	102	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	83	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	0	
(68)	64	XXXXXXXXXXXXXXX	57	XXXXXXXXXXX	0	
ECH CRUS	84	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	33	XXXXXXX	0	
(75)	79	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	36	XXXXXXX	0	
AMAR RET	. 9	XX	0		0	
(78)	21	XXXX	0		0	
CYP ROTU	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	90	XXXXXXXXXXXXXXXXXX	70	XXXXXXXXXX
(86)	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	79	XXXXXXXXXXXXXXXXX	43	XXXXXXXXX
	*99	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	93	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	8	XX
FOL LAPA	89	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	61	XXXXXXXXXX
(35)	71	XXXXXXXXXXXXX	64	XXXXXXXXXXXXX	36	XXXXXXX
HISTOGRAMS B	ASED ON	VIGOUR SCORES ONLY				
CIRS ARV	64	XXXXXXXXXXXXX	57	XXXXXXXXXXX	36	XXXXXXX
(50)						
TUS FARF	93	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	64	XXXXXXXXXXXXX	29	XXXXXX
(51)						
CONV ARV	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	14	XXX
(52)						
RUM ACET	93	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	43	XXXXXXXXX	36	XXXXXXX
(53)	-					

.

.

.

* Based on fresh weight of foliage as a percentage of untreated control three months after treatment.

1.0000 LB/AC

XXXXXXXX

XXXXXX

XXXX

22

.

.

Pre-emergence selectivity experiment G.69.37 (511) RESULTS AND COMMENTS:

- 23 -

HZ 52.112

Code number:

.

HZ 52.112 Suggested common name: credazine

PARTY DE CALGARY TE

Chemical name: 3-(2-methyl phenoxy) pyridazine

and the second second the

Other designations:

RZ Si 1197 HER 52.112 SW 6701 H 722 SW 6721 ASS-722 130-547

Sourcea

Sandoz Ltd., 3090 Agro Research, CH-4002 Basle, Switzerland.

Originally developed by Sankyo in Japan.

Technical information available:

Sandoz preliminary Data Sheet dated 15.5.70

Manufacturers suggestions for principal uses: Pre-emergence control of annual grasses and some

> dicotyledonous species in a variety of crops including potato, sugar beet, fruit crops and many leguminous crops.

Other W.R.O. experiments: Initial Activity Test G.69.21

80% w/w wettable powder Formulation used:

1b/ac 8.0 Doses: 0.5 2.0 kg/ha 0.56 2.24 8.97 338 1/ha (30.1 gal/ac) Spray volume:

Summary of results:

Full results are given in the histograms and are summarised in the selectivity table below.

RATE lb/ac (kg/ha)	CROPS: vigour reduced by less than 15%	WEEDS: vigour reduced by more than 70%
0.5 (0.56)	Dwarf French bean	<u>Poa annua</u> <u>Chenopodium album</u> <u>Stellaria media</u> <u>Allium vineale</u> <u>Rumex acetosella</u>

Comments on results

1. A high level of activity was found, with control of <u>Poa annua</u>, <u>Chenopodium</u> <u>album</u>, <u>Stellaria media</u>, <u>Allium vinealle</u> and <u>Rumex acetosella</u> at the low dose rate of 0.5 lb/ac. Twenty one of the other crop and weed species tested were reduced in vigour by 50% or more at this same rate, eleven of these being grasses and ten being broadleaved species. In the earlier Initial Activity Test symptoms of damage were found on the grasses at dose rates as low as 0.2 lb/ac.

- 24 -

2. The histograms show that for many broadleaved species such as <u>Chenopodium</u> <u>album</u>, and <u>Stellaria media</u> the vigour of surviving plants is the same at all doses. In these cases plants had reached the cotyledon leaf stage, these being fully opened and green, but the main bud was severely inhibited. The cotyledons usually remained green for a considerable time before eventual necrosis. However, with the grasses, inhibition of the main shoot usually accompanied by a mild chlorosis of all leaves, had progressed to the death of all tissue by the time of assessment. These symptoms above ground were associated with and at least to some extent a result of severe inhibition of have a very stunted root system.

3. The effects described above are comparable to those obtained with chlorfenac and the spectrum of susceptibility is much the same with a few exceptions including <u>Convolvulus arvensis</u>. The latter is generally considered susceptible to chlorfenac but was apparently tolerant of HZ 52112. However the <u>C. arvensis</u> in this experiment had very poorly developed roots even in the controls and the HZ 52112 did not therefore have the opportunity to secure such marked effects on the plant by way of root inhibition.

4. Crop tolerance is very low for both herbicides, many graminaceous crops in particular being very sensitive. The anomalous species is dwarf french bean which was tolerant of 0.5 lb/ac. In the earlier Initial Activity Test it was tolerant to 1 lb/ac, again with incorporation into the soil, while there was only 21% reduction in vigour with surface application at this rate. Considerable tolerance was found with post-emergence foliar sprays and soil drenches even at 5.0 lb/ac. In this same Initial Activity Test incorporation of 1 lb/ac reduced the vigour of Agropyron repens by more than 60%. In the present experiment only one plant of A. repens in each replicate pot ultimately survived treatment with 0.5 lb/ac. With the possibility of control of a number of other assorted species it would seem worthwhile to investigate further its possible use in dwarf bean to evaluate its merits in comparison with dinoseb acetate monolinuron mixtures.

5. Groundnut and kenaf were the tropical crops showing the best tolerance to 0.5 lb/ac, with cotton, maize and soyabean also showing partial tolerance. The tropical grass species were mostly controlled by 0.5 lb/ac but there is no very promising margin of selectivity for general weed control.

6. <u>Cyperus rotundus</u> showed prolonged suppression by 0.5 lb/ac (75% reduction in fresh weight at 3 months). Symptoms of reduced root development and weak, narrow foliage were very reminiscent of those caused by chlorfenac. 8 lb/ac caused complete suppression of growth of both <u>Cyperus</u> species but by transfer of <u>C. esculentus</u> tubers from this treatment to clean soil it was shown that the tubers were not killed and that continued suppression depended on persistence of the herbicide in the soil. The root development of <u>Cynodon dactylon</u> was completely prevented at 0.5 lb/ac. Possible selective control of <u>Cyperus</u> in groundnuts is indicated at 0.5 lb/ac. - 25 -

.

.

7. From the results so far available a long period of persistence seems probable. Using perennial ryegrass as a test species, plants were reduced to only 5% of the fresh weight of the controls when soil was bicassayed 3 months after treatment at 0.5 lb/ac.

8. The results obtained against perennial species, together with the capacity to persist in soil suggest the possible use of this herbicide in non crop situations.

FRIAL NUMBER		HZ52.112 0.5000 LB/AC		TREATMENTS HZ52.112 2.0000 LB/AC		HZ52.112 8.0000 1
WHEAT (l)	73 43	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	00		. 0	
BARLEY (2)	91 29	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	00		000	
OAT (3)	75 36	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	6 7	x x	00	
PER RYGR (4)	3 14	X XXX.	0		00	
DWF BEAN (9)	100 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	67 36	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	0	
FID BEAN (10)	141 50	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		XXXX XXX	00	
PEA (11)	43 64	XXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	- 1	XXX XXX	000	
W CLOVER (12)	95 29	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	84 29	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	40 29	XXXXXXXX XXXXXXX
KALE (15)		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	110 29	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	92 29	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
SWEDE (17)	91 43	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	117 29	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	111 29	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
CARROT (18)	97 29	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	19 7	XXXX X	000	
LETTUCE (20)	98 36	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	85 29	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	78 21	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
SUG BEET (21)	105 43	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	86 29	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	86 29	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

.

.

•

.

.

. . . .

TRIAL NU SPECIES			HZ52.112 0.5000 LB/AC		TREATMENTS HZ52.112 2.0000 LB	/AC	HZ52.112 8.
AVE FATU (26)	J		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		X XXX	000000000000000000000000000000000000000	
ALO MYOS (27)	3	4036	XXXXXXXX XXXXXXXX	00		000000000000000000000000000000000000000	
POA ANN (28)		- 7 29	XXXXXXX	00		000000000000000000000000000000000000000	
SEN VULC (34)	77	68 36	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		XXX XXXXXXX	19 7	XXXXX
CHEN ALE (39)	В		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	52 29	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	72 29	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
STEL MEI (40)	2	-	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	95 29	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	85 29	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
AG REPEN (47)	1	20 43	XXXX XXXXXXXXXXX	00		000000000000000000000000000000000000000	
ALL VIN (49)		111 29	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	60 29	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	17 21	XXX XXXX
MAIZE (58)		100 71	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 57	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	x 67 29	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
SORGHUM (59)		50 43	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		XXX XXXX	000000000000000000000000000000000000000	
RICE (60)		102 43	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	11 21	XX XXXX	000000000000000000000000000000000000000	
GRNDNUT (64)			XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	91 79	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	104 64	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
SOYABEAN (65)		120 71	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	120 57	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	x+ 120 29	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

.

the second

.

.

.

*

8.0000 LB/AC

.

.

27

XXXXX

XXXXXXXX

XXXX

*XXXXXXXXXXX+ XXXX

XXXXXXXXXXXXX+

.

-

TRIAL NUMBER SPECIES		HZ52.112 7.5000 LB/AC		TREATMENTS HZ52.112 2.0000 LB/AC		HZ52,112 8
COTTON (66)	91 57	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	143	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
KENAF (68)	96 79	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	57 57	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		XXXXXX XXXXXX
ECH CRUS (75)	28 36	XXXXXXX XXXXXXXX	000		000	
AMAR RET (78)	-	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	61 29	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	35 14	XXXXXXXX XXX
CYP ROTU (86)	100 50 *27	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	60 43 2	XXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXX	0000	
POL LAPA (35)		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	106 71	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	67 57	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
HISTOGRAMS BAS	SED ON	VIGOUR SCORES ONLY				
CIRS ARV (50)	57	XXXXXXXXXXX	29	XXXXXX	0	
TUS FARF (51)	57	XXXXXXXXXX	57	XXXXXXXXXXX	0	
CONV ARV (52)	71	XXXXXXXXXXXXX	93	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXX
RUM ACET (53)	0		0		. 0	

.

.

1

* Based on fresh weight of foliage as a percentage of untreated control three months after treatment.

8.0000 LB/AC

.

*

28

XXXXXXXXXXXX+

XXXX XX

XXXXXXXXXXX

RESULTS AND COMMENTS: Pre-emergence selectivity experiment G69.37 (511)

PRONAMIDE

- 29 -

Code number:

.

RH 315

Chemical name:

N-(1,1-dimethylpropynyl)-3,5-dichlorobenzamide

Trade name:

Source:

'KERB'

Lennig Chemicals Ltd., 17 Ware Road, Hertford

as agents for Rohm & Haas, Philadelphia, U.S.A.

Technical information available:

Rohm & Haas Technical bulletin dated September 1969. Proceedings 3rd E.W.R.C. Symposium on New Herbicides 1969, 249-259.

BOOR JOR STATE STATE STATE OF STATE OF STATE SALES SALES SALES AND STATES AND STATES OF BOODS

The state of a the state of the state with the with the state of the the state of t

Manufacturers' suggestions for principal uses: Pre-emergence and early post-emergence control of a wide range of seedling grass and dicotyledonous weeds, and of Agropyron repens. Selective in new plantings of small-seeded legumes and in lettuce, with additional possibilities in leguminous and composite crops. Agropyron repens control when land is out of crop.

Other W.R.O. experiments:
Initial Activity Test G.69.16Formulation used:75% w/w wettable powderDoses:1b/ac
kg/ha0.25
0.281.0
1.12Spray volume:338 1/ha (30.1 gal/ac)

Summary of results

Full results are given in the histograms and are summarised in the table below.

		the state was a state of the st
RATE lb/ac (kg/ha)	CROPS: vigour reduced less than 15%	WEEDS: vigour reduced by more than 70%
4.0 (4.48)	lettuce	Echinochloa crus-galli Convolvulus arvensis + species below
1.0 (1.12)	As above + field bean pea white clover swede carrot groundnut soyabean cotton	<u>Chenopodium album</u> <u>Stellaria media</u> <u>Polygonum lapathifolium</u> <u>Amaranthus retroflexus</u> <u>Rumex acetosella</u> + species below
0.25 (0.28)	as above + kale sugar beet maize *sorghum rice konaf	Avena fatua Alopecurus myosuroides Poa annua Agropyron repens

+

kenaf

* But note some reduction in stand

Comments on results

1. A high level of activity was found with control of all the main annual and perennial grass weeds at 0.25 lb/ac, and five dicotyledonous weeds at 1.0 lb/ac. The type of activity was similar to that found with other amides and carbamates. Grasses either failed to emerge from the soil, or died back at an early growth stage before or soon after emergence from the coleoptile. Foliage often became a much darker green colour. This latter effect was also seen with some of the dicotyledonous species. <u>Stellaria media</u> plants were seen to have shortened, swollen internodes. Stems of sugar beet and swede were also swollen below their cotyledons. With <u>Agropyron repens</u>, rhizome fragments were still firm six weeks after treatment but growth of buds had been completely prevented at all doses. In other pot experiments with perennial grasses, swollen internodes and apical shoots have been found on

rhizomes, symptoms very similar to those produced by dichlobenil. The swelling of stem internodes of dicotyledonous species has been observed with another amide, carbetamide (RP 11561) especially on Polygonaceae.

2. A wide range of broadleaved weed species was controlled. In common with other amides and carbamates such as carbetamide and chlorpropham, Polygonaceae were very sensitive. Polygonum lapathifolium was controlled at 1.0 lb/ac and although results obtained with Polygonum aviculare were unsatisfactory for processing due to poor germination, plants which did succeed in emerging at the 1.0 lb/ac and 4.0 lb/ac rates died back soon afterwards due to the herbicide. Results obtained with <u>Rumex acetosella</u> confirm the susceptibility of this species found in an earlier experiment. In this test, there was complete absence of bud development on the root fragments treated with 1.0 lb/ac. At 0.25 lb/ac growth of buds on some root fragments was completely inhibited while with others the shoots which developed showed obvious, although non-lethal effects from the herbicide. In the earlier Initial Activity Test, Polygonum amphibium was controlled at 1.0 lb/ac.

.

.

.

- 31 -

3. The tolerance of lettuce to RH 315 extends to other Compositae thereby creating a gap in the weed control spectrum. The vigour of <u>Senecio vulgaris</u>, <u>Cirsium arvense and Tussilago farfara was relatively unaffected at 4.0 lb/ac</u>.

4. As with some amides and carbamates, crop tolerance was found in many broadleaved species, notably the Leguminosae. The small seeded white clover was tolerant at 1.0 lb/ac lending support to the suggested use in the establishment of small seeded legumes. The tolerance found with field bean at 1.0 lb/ac is important as many problem weeds found in this crop were controlled by RH 315 e.g. <u>Avena fatua</u>, <u>Agropyron repens</u> and <u>Polygonum aviculare</u>. Testing of this herbicide in comparison with tri-allate and simazine for field bean seems desirable. Although simazine is widely used there are still reports of damage when high rainfall and soil type favours leaching. RH 315 would seem to have a greater potential for weed control in winter beans than in spring beans, in view of the reported greater stability and effectiveness under cool moist conditions; it may be particularly relevant where beans are following cereals as a break crop on land infested with couch and other grasses. In a similar way comparison with other herbicides in use for weed control in peas is warranted; in the present experiment this crop was tolerant of 1.0 lb/ac.

5. Lettuce was the most tolerant of all crop species tested, being unaffected

at 4.0 lb/ac. Reports elsewhere have shown tolerance to higher doses.

6. Of the Brassica crops tested swede was a little more tolerant than kale at 1.0 lb/ac. The short persistence of the herbicide could prove a disadvantage, although with kale this may be just long enough to control weeds until an adequate foliar canopy is attained.

7. The tropical legumes, groundnut and soyabean together with cotton, tolerated 1 lb/ac, so suggesting the possibility of selective control of annual grasses and some dicots, including <u>Amaranthus</u>. However, it is understood that this compound does not perform so well under hot, dry conditions. Certainly <u>Echinochloa</u> shows less susceptibility than the temperate small-seeded grasses and <u>Cynodon</u> was distinctly less susceptible than <u>Agropyron</u>. In view of the reports of greater effectiveness under cool moist conditions particular care is needed in comparing the susceptibility of species maintained in the greenhouse with the higher temperature with that of species kept at a lower temperature (see Table 1).

8. Cyperus species tolerated 4 1b/ac.

TRIAL NUMBER SPECIES	511 PRON	IAMIDE 0.2500 LB/AC	PRON	TREATMENTS AMIDE 1.00
WHEAT (l)	00		00	
BARLEY (2)	84 29	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	00	
OAT (3)	63 25	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	00	
PER RYGR (4)	10 25	XXXXXXX	0.0	
DWF BEAN (9)	83 79	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 36	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
FID BEAN (10)	106 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	106 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
PEA (11)	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	71 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
W CLOVER (12)	91 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	88 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
KAIE (15)	115 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	104 79	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
SWEDE (17)	111 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	117 93	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
CARROT (18)	97 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	77 86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
LETTUCE (20)	143 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	117 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
SUG BEET (21)	109 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	18 29	XXXX XXXXXX

.

DOOO LB/AC PRONAMIDE 4.0000 LB/AC ANT ANTER 0 ALL AND AND A 0 0 0 0 0 Statistic State 0 0 33 XXXXXXXX XXXXXXXXXX 7 X XXXXXXXXX+ 5 XXXXXX XXXXXXXXX 71 XXXXXXXXXXXXXXXXX XXX 64 XXXXXXXXXXXXXX XXXXXXXXX 44 XXXXXXXXX XXXXXXX 29 XXXXXX XXXXXXXXX Carlow Martin States and the second sec 81 xxxxxxxxxxxxxxxx XXXXXXXXXX+ 25 XXXXXXX XXXXX 65 XXXXXXXXXXXXXXXXX XXXXXXXXX+ 29 XXXXXX XXXXXXXX 68 XXXXXXXXXXXXXX XXXX 36 XXXXXXX XXXXXX XXXXXXXXXXXXXXXXXXX XXXXXXXXXX+ 91 XXXXXXXXXXXXXXXXXXXXXXXX 100 XXXXXXXXX 23 XXXXXX 29 XXXXXXX

. . .

32

.

TRIAL NUMBER SPECIES	511 PRON	AMIDE
AVE FATU (26)	23	XXXXX XXXX
ALO MYOS (27)		XXXXXX
POA ANN (28)	214	XXX
SEN VULG (34)	-	XXXXXX
CHEN ALB (39)		XXXXX
STEL MED (40)		XXXXXXX
AG REPEN (47)	00	
ALL VIN (49)		XXXXXXX
MAIZE (58)		XXXXXX
SCRGHUM (59)	1	XXXXXX
RICE (60)		XXXXXX
GRNDNUT (64)		XXXXXX
SOYABEAN (65)		XXXXXX
	1	

P . .

.

0.2500 LB/AC PRONAMIDE 15 XXX 21 XXXX XX 10 CXXXXXX 7 x X 0 0 58 XXXXXXXXXX XXXXXXXXXXXXX 93 XXXXXXXXXX XXXXXXXXXXXXXXXX 83 XXXXXXXXX XXXXXXXXXXXXXXXXXXX 29 XXXXXX XXXXXXXXXXXXXXX 25 XXXXX XXXXXXXX 29 XXXXXXX XXXXXX 0 0 94 XXXXXXXXXX +XXXXXXXXXXXXXXXXXX 93 XXXXXXXXXX XXXXXXXXXXXXXXXXX 100 XXXXXXXXXX XXXXXXXXXXXXXXXXX XXXXXXXXXXX 57 XXXXXXXXXXXXXXXXX 42r xxxxxxxx XXXXXXXX 70r xxxxxxxxx XXXXXXXXXXXXXX 108 XXXXXXXXXXX XXXXXXXXXXXXXXXXX+ 71 XXXXXXXXXXX XXXXXXXXXXXXXXXXXXX XXXXXXXXXX 91 XXXXXXXXXXX 93 XXXXXXXXXXXXXXXX XXXXXXXXXXX 120 XXXXXXXXXXXXXXXXX+ 86 XXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXX

TREATMENTS MIDE 1.0000 LB/AC	PRO	NAMIDE 4.000
~~~~	0	
XXX XXXX	0	
XX	0	
X	0	
	00	
XXXXXXXXXXXX	-	XXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	79	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		XXXXXXXX XXXXXXX
XXXXX XXXXXX		XXXXXXX XXXXXX
	0	
	0	
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	and the second se	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXX		XXX
XXXXXXXXXXXXX	. 1	X
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	000	
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

. .

.

XXX

*

- 33 --

XXXXXXX+

XXXXXXX

XXXXXXX+

XXXXXXXX+

.

.

TRIAL NUMBER SPECIES		NAMIDE 0.2500 LB/AC	PRON	TREATMENTS AMIDE 1.0000 LB/AC		NAMIDE 4.
COTTON (66).	117 93	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	104 86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	157 79	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
KENAF (68)	96 86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	83 57	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	32 21	XXXXXX XXXX
ECH CRUS (75)	75 93	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		XXX XXXXXXXX	000000000000000000000000000000000000000	
AMAR RET (78)	87 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	9 21	XX XXXX	000	
CYP ROTU (86)		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
POL LAPA (35)	83 57	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	33 29	XXXXXX XXXXXX	000000000000000000000000000000000000000	
HISTOGRAMS H	BASED ON	VIGOUR SCORES ONLY				
CIRS ARV (50)	71	XXXXXXXXXXXXX	93	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	71	XXXXXXXXXXX
TUS FARF (51)	86	XXXXXXXXXXXXXXX	79	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	71	XXXXXXXXXX
CONV ARV (52)	43	XXXXXXXX	64	XXXXXXXXXXXXX	21	XXXX
RUM ACET (53)	71	XXXXXXXXXXXXXX	0		0	

• • •

* Based on fresh weight of foliage as a percentage of untreated control three months after treatment.

• 4 •

## 1.0000 LB/AC

.

e

XXXXXXXXXX+

42

XXXXX

XXXXX

## RESULTS AND COMMENTS: Pre-emergence selectivity experiment G.69.37 (511)

- 35 -

Code number:

R 12001

Chemical name:

S-isopropyl 1-(5-ethyl-2-methyl-piperidine)carbothioate

8.0



1

Stauffer Chemical Company, P.O. Box 760, Mountain View, California 94040, U.S.A.

Manufacturers' suggestions for principal uses: Control of Cyperus species in cotton at 4 1b/ac pre-plant incorporated; also control of other perennial grasses, annual grasses and some broadleaved weeds.

Other W.R.O. Experiments: Initial Activity Test G.69.27

Formulation used:

90.6% w/w emulsifiable concentrate

Doses:

0.5 2.0

1b/ac kg/ha 0.56 8.97 2.24

Spray volume:

338 1/ha (30.1 gal/ac)

Summary of results:

ZEW -

Full results are given in the histograms and are summarised in the table below.

RATE 1b/ac (kg/ha)	CROPS: vigour reduced by less than 15%	WEEDS: vigour reduced by more than 70%				
2.0 (2.24)	dwarf french bean kale maize	<u>Avena fatua</u> <u>Chenopodium album</u> <u>Stellaria media</u>				

		Allium vineale Amaranthus retroflexus Convolvulus arvensis + species below
0.5(0.56)	As above + barley oat field bean pea white clover swede groundnut cotton	<u>Alopecurus myosuroides</u> <u>Poa annua</u> <u>Echinochloa crus-galli</u>

### Comments on results

1. R 12001 appears to be an active herbicide for the control of annual grasses. Alopecurus myosuroides, Poa annua and Echinochloa crus-galli were all controlled at 0.5 lb/ac. At 2.0 lb/ac a range of broadleaved weeds were controlled as well. Symptoms produced on many plants were typical of those caused by thiolcarbamate herbicides with leaves dark green in colour, wax development affected, leading to sticking together of leaf surfaces during bud expansion, and consequent trapping, deformity and inhibition of shoots. The earlier Initial Activity Test had shown that for pre-emergence treatments, incorporation into the soil was more effective than surface application.

- 36 -

2. Useful effects were found on some of the perennial weeds. With Agropyron repens, treatment at 2.0 lb/ac resulted in 80% plant kill. One plant in each replicate pot managed to survive. Examination of underground systems two months after treatment showed that although buds on the rhizome fragments had sprouted, they were completely inhibited soon afterwards and did not succeed in emerging. Similar effects were seen with Tussilago farfara, controlled at 8.0 1b/ac and Convolvulus arvensis controlled at 2.0 lb/ac. In the latter species there were cases of several buds having sprouted on a root fragment but none succeeded in emerging.

3. Apart from Polygonum lapathifolium controlled at 8.0 lb/ac, other Polygonaceae showed considerable tolerance. Polygonum aviculare and Rumex autosella survived treatment at this dose. In the earlier Initial Activity Test, Polygonum amphibium was tolerant at 4.5 lb/ac.

4. Several of the leguminous crops were resistant, particularly dwarf french bean which was unaffected at 2.0 lb/ac. At 8.0 lb/ac there was

some retardation of growth, while unifoliate leaves became a darker green colour than those of the controls with some marginal necrotic spots. The tolerance level is probably much higher than the 2 1b/ac indicated here, for in the earlier Initial Activity Test, plants were unaffected by preemergence treatments at 4.5 lb/ac. Inclusion of this herbicide in field experiments with this crop seems justified.

5. Although kale appears in the histograms and table as satisfying the criteria for selectivity at 2.0 lb/ac there was complete removal of wax from the leaf surfaces with one or two marginal necrotic spots.

6. Although of the temperate cereals, barley and oat were tolerant at 0.5 lb/ac, they were severely reduced at 2.0 lb/ac. As only grass weeds were controlled at the lower rate and incorporation is necessary, this herbicide would not appear to have any advantage over existing herbicides used in cereals.

7. Maize showed a marked tolerance, and this compound seems worthy of

comparison with EPTC and butylate for selectivity against annual grasses and Cyperus spp.

8. Groundnut and cotton have a lower tolerance and the selectivity against Cyperus rotundus in cotton, suggested by the manufacturers, is hardly borne out, though there is still some selectivity against annual grasses.

9. Effects on Cyperus species were maintained much more persistently than would be expected of EPTC. There was still 90% suppression of C. rotundus by 2 lb/ac after 3 months. Complete suppression at 8 lb/ac was shown to depend on herbicide persistence in the soil: tubers of C. esculentus regrew on removal to clean soil. Cynodon dactylon was also susceptible at 2 1b/ac.

10. A reasonable period of persistence is apparent, as seen from a test showing that three months after spraying at 2 lb/ac perennial ryegrass plants were still killed.

TRIAL NUMBER SPECIES		R 12001 0.5000 IB/AC		TREATMENTS R 12001 2.0000 LB/AC		R 12001 8.0000
WHEAT ( 1)	102 71	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	000		00	
BARLEY (2)	98 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	28 29	XXXXXX XXXXXX	21 7	XXXX X
OAT ( .3 )	100 86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	31 36	XXXXXX XXXXXXX	00	
PER RYGR ( 4 )	86 43	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	34 21	XXXXXXX XXXX	000	
DWF BEAN (9)	83 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	83 86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	83 64	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
FLD BEAN ( 10 )	141 93	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	141 50	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	71 21	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
PEA (11)	86 93	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	43 14	XXXXXXXXX XXX	57 14	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
W CLOVER ( 12 )	77 86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	88 43	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	11 29	XX XXXXXXX
KALE (15)	98 86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	92 64	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
SWEDE (17)		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	-	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	111 50	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
CARROT (18)	77 79	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	126 43	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	19 14	XXXX XXX
LETTUCE ( 20 )	78 71	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		XXX XXX	00	
SUG BEET (21)	1 1 1 1 1	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	105 43	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		XXX XXX
	1,					

*****

2 . . .

. . .

•	•

DOO LB/AC

.

. .

XXXX

S

• • •

.

.

XXXXX

XXXXXXX+

TRIAL NUMBER	511	TREATMENTS	R 12001 8.
SPECIES	R 12001 0.5000 LB/AC	R 12001 2.0000 LB/AC	
AVE FATU	68 xxxxxxxxxxxxx	7 x	000000000000000000000000000000000000000
(25)	57 xxxxxxxxxxx	21 xxxx	
ALO MYOS	53 XXXXXXXXXXX	27 xxxxx	0
(27)	29 XXXXXXX	21 xxxx	0
POA ANN	0	000	0
(28)	0		0
SEN VULG	82 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	44 xxxxxxxx	0
(34)		50 xxxxxxxxx	0
CHEN ALB (39)	98 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	000	0 0
STEL MED		63 xxxxxxxxxx	25 xxxxx
(40)	87 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	29 xxxxxx	29 xxxxxx
AG REPEN	110 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	20 xxxx	0
(47)		43 xxxxxxxx	0
ALL VIN	103 xxxxxxxxxxxxxxxxxxxxxxx	77 XXXXXXXXXXXXXXXX	26 xxxxx
(49)	71 xxxxxxxxxxxx	29 XXXXXXX	14 xxx
MAIZE (58)	100 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
SORGHUM (59)	00	000	0 0
RICE (60)	102 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	91 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	6 x 7 x
GRNDNUT (64)	91 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	91 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	91 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
SOYABEAN (65)	120 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	80 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx	0

. . .

****

.

. . .

4

.

.

## 3.0000 LB/AC



. . .

XXXXXXXXXX

XXXXXXXXXX

TRIAL NUMBER SPECIES		R 12001 0.5	OCO LI	B/AC	I	TREATME 12001		I.B/AC		R 12001
COTTON (66)		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX			130 71	XXXXXXXXX		XXXX+	117 57	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
KENAF ( 68 )	89 64	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX			57 36	XXXXXXXXXXXX	XXX			x
ECH CRUS (75)	52 29	XXXXXXXXXXXXX			19 14	XXX			000	
AMAR RET (78)	35	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXX		00				00	
CYP ROTU (86)	100 57 *85	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		CX	20 43 10	XXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	X		0000	
POL LAPA (35)	89 86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX			89 64	XXXXXXXXX		XX	44 29	XXXXXXXX
HISTOGRAMS BA	SED ON	VIGOUR SCORE	S ONLY							
CIRS ARV (50)	93	XXXXXXXXXXXX	XXXXXXX	5	93	XXXXXXXX	XXXXXXXX	XXX	71	XXXXXXXX
TUS FARF (51)	50	XXXXXXXXXX			64	XXXXXXXX	XXXXX		21	XXXX
CONV ARV (52)	71	XXXXXXXXXXX	XX		14	XXX			0	
RUM ACET (53)	79	XXXXXXXXXXXX	XXXX		79	XXXXXXXX	XXXXXXXX		57	XXXXXXXX

. . .

• • •

* Based on fresh weight of foliage as a percentage of untreated control three months after treatment.

8.0000 LB/AC

. . .

xxxxxxxxxxxxxxx+ XXXXX

XX



XXXXXXXX

XXXXX

#### AGRICULTURAL RESEARCH COUNCIL

.

.

.

٠

1

.

WEED RESEARCH ORGANIZATION

Technical reports available

5. A survey of the problem of aquatic weed control in England and Wales. October, 1967. T.O. Robson. Price - £0.25.

- The botany, ecology, agronomy and control of <u>Poa trivialis</u> L. rough-stalked meadow-grass. November 1966. G.P. Allen. Price - £0.25.
- 7. Flame cultivation experiments 1965. October, 1966. G.W. Ivens. Price - £0.25.
- 8. The development of selective herbicides for kale in the United Kingdom. 2. The methylthiotriazines. Price £0.25.
- 9. The post-emergence selectivity of some newly developed herbicides (NC 6627, NC 4780, NC 4762, BH 584, BH 1455). December, 1967. K. Holly and Mrs. A.K. Wilson. Price - U.K. and overseas surface mail - £0.25; overseas airmail - £0.50.
- 10. The Liverwort, <u>Marchantia polymorpha</u>, L. as a weed problem in horticulture; its extent and control. July, 1968. I.E. Henson. Price - £0.25.
  - 11. Raising plants for herbicide evaluation; a comparison of compost types. July, 1968. I.E. Henson. Price £0.25.
  - Studies on the regeneration of perennial weeds in the glasshouse:
    I. Temperate species. May, 1969. I.E. Henson. Price £0.25.
  - 13. Changes in the germination capacity of three <u>Polygonum</u> species following low temperature moist storage. June, 1969. I.E. Henson. Price - £0.25.
  - 14. Studies on the regeneration of perennial weeds in the glasshouse. II. Tropical species. May, 1970. I.E. Henson. Price - U.K. and overseas surface mail - £0.25; overseas airmail - £0.50.
  - 15. Methods of analysis for herbicide residues in use at the Weed Research Organization. December, 1970. R.J. Hance and C.E. McKone. Price -

U.K. and overseas surface mail - £0.25; overseas airmail - £0.50.

- 16. Report on a joint survey of the presence of wild oat seeds in cereal seed drills in the United Kingdon during Spring 1970. November, 1970. J.G. Elliott and P.J. Attwood. Price - £0.25.
- 17. The pre-emergence selectivity of some newly developed herbicides, Orga 3045 (in comparison with dalapon), haloxydine (PP 493), HZ 52.112, pronamide (RH 315) and R 12001. January, 1971. W.G. Richardson, C. Parker and K. Holly. Price - U.K. and overseas surface mail -£0.25; overseas airmail - £0.50.