Table 7. Crop tolerance and weed sensitivity to post-emergence treatments of triasulfuron

RATE a.i./ha)	Tolerant crops ^a	Sensitive Weeds ^b
0.05	Wheat +/- safener Barley +/- safener Maize + safener	Poa trivialis Raphanus raphanistrum Polygonum lapathifolium Senecio vulgaris Lamium purpureum Viola arvensis Rumex obtusifolius Convolvulus arvensis plus species listed below
0.01	species listed above plus Maize Oat +/- safener	Sinapis arvensis Matricaria perforata Chrysanthemum segetum Beta vulgaris Spergula arvensis Papaver rhoeas Cirsium arvense plus species listed below
0.002	Species listed above plus Onion	Stellaria media

Vigour reduced by less than 15% number or vigour reduced by 70% or more

Comments on results

· Activity

This herbicide was active pre- and post-emergence on the broad-leaved species and perennial ryegrass. The foliar spray was slightly more active on dwarf bean and Polygonum amphibium than the soil drench, while kale was equally sensitive to all methods of application. Perennial ryegrass was affected more by the post-emergence soil drench and pre-emergence treatments than by the foliar spray only.

Elymus repens and Avena fatua were generally tolerant, although some suppression occurred at 0.08 kg/ha, with post-emergence soil drenches and pre-emergence treatments.

Symptoms on susceptible species

Symptoms were similar to those produced by other sulphonyl-urea herbicides.

On sensitive broad-leaved weed species, post-emergence treatments caused rapid inhibition of growth, followed by yellowing/reddening, interveinal chlorosis then necrosis. Pre-emergence treatments in the activity test did not affect germination of sensitive species but often growth was inhibited at the cotyledon stage.

Grasses were generally more tolerant, although some did suffer inhibition of main shoots initially, but most recovered.

Post-emergence selectivity

Fifteen broad-leaved weed species and one grass were controlled, notably Stellaria media at 0.002 kg/ha, Matricaria perforata and Cirsium arvense at 0.01 kg/ha and Viola arvensis, Lamium purpureum and Convolvulus arvensis at 0.05 kg/ha.

Species not controlled included Geranium dissectum, Veronica persica, Chenopodium album and most grass species. A few plants of Galium aparine were regrew from 0.05 kg/ha after severe initial damage.

Wheat, barley and maize + NA tolerated 0.05 kg/ha, while maize and oat + NA tolerated 0.01 kg/ha, onion being the only other tolerant crop at 0.002 kg/ha.

The most sensitive crops were field bean and lettuce, both severely affected by 0.002 kg/ha, while sugar beet, brassicas and perennial ryegrass were sensitive to 0.01 kg/ha.

This herbicide has similar post-emergence activity to chlorsulfuron (Richardson, West and Parker, 1980), with regard to its weed control spectrum and crop tolerance. For complete weed control in cereals, mixtures or sequences with other herbicides would be required to control problem broad-leaved weeds i.e. Veronica and Geranium spp. and grass weeds. There were decreased herbicidal effects on maize and oat when seed was dressed with NA, which may be worth following up.

The activity against some perennial weed species also warrants further investigation.

Table 8

ACTIVITY EXPERIMENT

Triasulfuron

		0.005 kg a.i./ha	0.02 kg a.i./ha	0.08 kg a.i./ha
	F	XXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXX
DWARF	S	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXX
BEAN	P	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
	Ι	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXX	XXXXXXXXXXXXXXXX
	F	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXX ·	XXXXXXXXXXXXXXXX
KALE	S	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXX	XXXXXXXX
	P	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXX	XXXXXXXX
	Ι	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXX	XXXXXXXXX
	F	XXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXX	XXXXXXXXXXXX
POLYGONUM AMPHIBIUM	S	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXX
AMITHEDION	P	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXX
	Ι	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXX	X
	F	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXX
PERENNIAL RYEGRASS	S	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXX	XXXXX
NIEGNADO	P	XXXXXXXXXX	XXXXX	XXXX
	Ι	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXX	XXX
	F	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXX
AVENA FATUA	S	XXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
	P	XXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
	I	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
	F	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXX
ELYMUS	S	XXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXX
REPENS	P	XXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXX
	I	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXX

Key F = post-emergence, foliar application

S = post-emergence, soil drench
P = pre-emergence, surface film
I = pre-planting, incorporated

xxxxxxxxxxxxx = number of plants
xxxxxxxxxxxxx = vigour
(14 x's = 100% of untreated control, + = > 100%)

xxxxx = number of plants

Post-emergence selectivity experiment

xxxxx = vigour

(20 x's = 100% of untreated controls)

Triasulfuron

(20 h	1000	or antereacta conterory		IL LUDULL C	ar OII	
SPECIES		0.002 kg/ha		0.010 kg/ha		0.050 kg/ha
WHEAT	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
WHEAT+S	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
BARLEY	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
BARLEY+S	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
OAT	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
OAT+S	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
PER RYGR	90	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	20	XXXX	20	XXXX
ONION	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	60 50	XXXXXXXXXXX	0	
DWF BEAN	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
FLD BEAN	67 14	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	17	XXX X	0	
PEA	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
W CLOVER		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		XXXXXX	0	
RAPE	100 57	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		XXXXXXXX	0	

SPECIES		0.002 kg/ha		0.010 kg/ha		0.050 kg/ha
KALE	90	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 57	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	90	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
CABBAGE	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	70 14	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
CARROT	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	10	XXX	0	
PARSNIP	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	80 29	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
LETTUCE	10	XXX	10 7	XX X	0	
SUG BEET	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	10	XX X
BETA VUL	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	50 29	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	30	XXXXXX
BROM STE	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
FEST RUB	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 64	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 43	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
AVE FATU	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
ALO MYOS	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 57	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
POA ANN	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 64	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	92	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
POA TRIV	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	67 50	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	0	

SPECIES	0.002 kg/ha		0.010 kg/ha		0.050 kg/ha
SIN ARV 100 43	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	90	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
RAPH RAP 82 64	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	24 43	XXXXXXX	24 21	XXXXX
CHRY SEG 100 43	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		XXXXXXX		XXXXXXXXXX
MAT PERF 100 57	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		XXXXXX	0	
SEN VULG 100 57	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		XXXXXXXXX	0	
POL LAPA 100 64	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 43	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
LAM PUR 100 64	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	90	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
GAL APAR 100 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 57	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	60 36	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
CHEN ALB 100 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
STEL MED 50 21	XXXXXXXXXX	0		0	
SPER ARV 90 43	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	60 21	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	0	
VER PERS 100 86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
VI ARVE 100 57	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	00	

SPECIES		0.002 kg/ha		0.010 kg/ha		0.050 kg/ha
GER DISS		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 57	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
PAPA RHO	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		XXXX	0	
RUM OBTU	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	87 43	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	50 29	XXXXXXXXX
EL REPEN	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 79	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
AG STOLO	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
CIRS ARV	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	40 29	XXXXXXX
CONV ARV	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	86 29	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
MAIZE+S	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
MAIZE	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
SOL NIG	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

DPX-A7881

Code number

DPX-A7881

Trade Name None at time of publication

Common name (None at time of publication)

Chemical name methyl 2-[3-(4-methoxy-6-methylamino-1,3,5-triazin-2-yl)carbamoylsulphamoyl]benzoate

Structure

Information available and suggested uses from originating company

Has shown potential for use in brassica crops, especially oilseed rape, predominantly for post-emergence use around 60 g a.i./ha against a range of broad-leaved and grass weeds. It also has residual activity.

Formulation used Dry flowable 75% a.i.

Results

Full results are given in the histograms on pages 39 - 43 and potential selectivities in Table 9.

Table 9. Crop tolerance and weed sensitivity to post-emergence treatments of DPX-A7881

RATE kg a.i./ha)	Tolerant Crops ^a	Sensitive Weeds ^D
0.16	Oilseed rape Cabbage	Bromus sterilis Avena fatua Poa annua Beta vulgaris Lamium purpureum Galium aparine Spergula arvensis Papaver rhoeas Rumex obtusifolius Cirsium arvense Convolvulus arvensis plus species listed below
0.04	species listed above plus Barley + safener Maize + safener Kale	Festuca rubra Alopecurus myosuroides Poa trivialis Elymus repens Agrostis stolonifera Chrysanthemum segetum Polygonum lapathifolium Geranium dissectum plus species listed below
0.01	Species listed above plus Wheat +/- safener Barley Oat +/- safener Maize Dwarf bean Pea White clover Lettuce	Stellaria media

a vigour reduced by less than 15%

number or vigour reduced by 70% or more.

Comments on results

Activity

DPX-A7881 exhibited activity both post-emergence and pre-emergence against sensitive species, e.g. perennial ryegrass. As a post-emergence treatment, soil drenches were more active than foliar sprays, on grass species.

Kale appeared tolerant to post-emergence and pre-emergence surface spray applications, but appreciable damage was found with pre-emergence soil incorporation. Dwarf bean and Polygonum amphibium were only moderately and equally affected by all methods of application.

Symptoms on susceptible species

On grasses there was inhibition of main shoots, chlorosis followed by necrosis; lower doses caused proliferation of small chlorotic tillers. Pre-emergence treatments generally did not affect germination but many perennial ryegrass plants died soon after emergence. Main shoots of Polygonum amphibium were inhibited but several new shoots arose from the base of the old stems.

In the post-emergence test, most grasses again showed considerable growth inhibition and necrosis, but also many broad-leaved weed species were susceptible. Symptoms were of severe growth inhibition, yellowing/reddening and interveinal chlorosis of leaves following by necrosis. Sub-lethal doses often causing proliferation of small chlorotic axillary shoots.

Post-emergence selectivity

Twelve broad-leaved and eight grass weed species were controlled by 0.16 kg/ha. At this dose Veronica persica, Matricaria perforata and Solanum nigrum were considerably suppressed while Senecio vulgaris, Raphanus raphanistrum and Chenopodium album were very tolerant.

Oilseed rape and cabbage tolerated 0.16 kg/ha and kale, maize + NA and barley + NA tolerated 0.04 kg/ha. At 0.01 kg/ha dwarf bean, pea, white clover, lettuce and the cereals were tolerant, but only Stellaria media was controlled.

The most sensitive crops were perennial ryegrass, field bean and onion.

This herbicide shows good potential for controlling many weed species post-emergence in brassica crops, particularly in oilseed rape. Some of the problem weeds controlled include Galium aparine, Lamium purpureum, Stellaria media and Alopecurus myosuroides.

The safening response with NA on maize and barley and the symptoms of this herbicide, especially on broad-leaved species, bear a close resemblance to that of the sulphonyl-urea cereal herbicides. This is interesting in that the weed control spectrum and crop tolerance of this herbicide are quite different to the other sulphonyl-urea herbicides tested; to which most brassicas are sensitive and most grasses reasonably tolerant.

Table 10

ACTIVITY EXPERIMENT

DPX-A7881

		0.01 kg a.i./ha	0.04 kg a.i./ha	0.160 kg a.i./ha
	F	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
DWARF	S	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXX
BEAN	P	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
	Ι	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
	F	XXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
KALE	S	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
	P	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
	Ι	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXX
	F	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
POLYGONUM AMPHIBIUM	S	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
ALIL HITDION	P	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXX
	I	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
	F	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
PERENNIAL RYEGRASS	S	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXX	XXXXXXXXXX
HILLGHADD	P	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXX	XXXX
	Ι	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXX	XXX
	F	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
AVENA FATUA	S	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXX
	P	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
	Ι	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
	F	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
ELYMUS REPENS	S	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXX
TIDI DIVO	P	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXX
	I	XXXX		

```
Key F = post-emergence, foliar application
```

S = post-emergence, soil drench P = pre-emergence, surface film I = pre-planting, incorporated

xxxxxxxxxxxxx = number of plants
xxxxxxxxxxxxx = vigour
(14 x's = 100% of untreated control, + = >100%)

xxxxx = number of plants

Post-emergence selectivity experiment

xxxxx = vigour

(20 x's = 100% of untreated controls)

DPX-A7881

SPECIES	0.010 kg/ha		0.040 kg/ha		0.160 kg/ha
WHEAT 100 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 79	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
WHEAT+S 100 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
BARLEY 100 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	90	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
BARLEY+S 100 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 57	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
OAT 100 93	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	0	
OAT+S 100 93	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	50 21	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
PER RYGR 50 50	XXXXXXXXX	0		0	
ONION 70 43	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	10 14	XX XXX	0	
DWF BEAN 100 86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
FLD BEAN 100 43	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	83 14	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
PEA 100 86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
W CLOVER 100 86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 64	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
RAPE 100 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

DPX-A7881

SPECIES	0.010 kg/ha		0.040 kg/ha		0.160 kg/ha
KALE 100 93	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
CABBAGE 100 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
CARROT 100 79	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 57	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	80 36	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
PARSNIP 100 57	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 43	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
LETTUCE 100 93	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
SUG BEET 100 71	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	30 14	XXXXXX
	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	40 21	XXXXXXXX
BROM STE 100 79	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
FEST RUB 80 43	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	20	XXXX	0	
AVE FATU 100 79	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	80 43	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	0	
ALO MYOS 80 57	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	40 29	XXXXXXX	0	
POA ANN 100 57	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	83 36	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	0	
POA TRIV 100 50	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	0		0	

SPECIES	0.010 kg/ha		0.040 kg/ha		0.160 kg/ha
SIN ARV 100 43	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
RAPH RAP 100 100		94 86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	82	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
CHRY SEG 100 57	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	25 7.	XXXXX X
MAT PERF 100 64	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
SEN VULG 100 86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
POL LAPA 100 50	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	90	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
LAM PUR 100 57	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	70 14	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
GAL APAR 100 79	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	50 21	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
CHEN ALB 100 86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 57	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
STEL MED 60 21	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	40	XXXXXXXX	0	
SPER ARV 100 71	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	90	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
VER PERS 100 100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	78 43	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
VI ARVE 100 86	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

SPECIES		0.010 kg/ha		0.040 kg/ha		0.160 kg/ha
GER DISS	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
PAPA RHO	90	XXXXXXXXXXXXXXXXXX		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
RUM OBTU	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
EL REPEN		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		XXXXXXXX	0	
AG STOLO		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		XXXXX	0	
CIRS ARV	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 57	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
CONV ARV	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		XXXXXX
MAIZE+S	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
MAIZE	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100 43	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
SOL NIG	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	100	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

ACKNOWLEDGEMENTS

I am most grateful to Mr C.J. Marshall for processing the experimental data; Mr R.F. Hughes and staff for practical assistance; Mrs J.M. Fry for typing this report; Scientific Liason for its reproduction and to the manufacturers who provided the chemicals and relevant data.

REFERENCES

- Ferguson, D.T., Schehl, S.E., Hageman, L.M., Lepone, G.E. and Carraro, G.A. (1985)
 - DPX-L 5300 a new cereal herbicide, Proceedings British Crop Protection Conference Weeds, 1, 43-48.
- Nuyken, W., Maden, E., Menck, B.H. and Klingenschmitt, D., (1985) BAS 518H a new herbicide for weed control in cereals, rapeseed and sugar beets.

 Proceedings British Crop Protection Conference Weeds, 1, 71-76.
- Richardson, W.G. and Dean, M.L. (1974) The activity and post-emergence selectivity of some recently developed herbicides: oxadiazon, U-29,722, U-27,628, metflurazone, norflurazone, AC 50,191, AC 84,777 and iprymidam.

 Technical Report Agricultural Research Council Weed Research Organization, 32, pp.74.
- Richardson, W.G. and Parker, C. (1977) The activity and post-emergence selectivity of some recently developed herbicides: KUE 2079A, HOE 29152, RH 2915, triclopyr and DOWCO 290. Technical Report Agricultural Research Council Weed Research Organization, 42, pp.53.
- Richardson, W.G. and West, T.M. (1986a) The activity, pre-emergence selectivity and persistence of some recently developed herbicides: DOWCO 453, quizalofop-ethyl, BAS 51700H, cinmethylin, AC 263,499 and RST 20024H.

 Technical Report Long Ashton Research Station, Weed Research Division, No. 91, 62 pp.
- Richardson, W.G., West, T.M. (1986b) The activity and post-emergence selectivity of some recently developed herbicides: SMY 1500, PPG 884, PPG 1259 and DPX-M 6316. Technical Report Agricultural and Food Research Council, LARS, Weed Research Division, No. 92, pp. 42.
- Richardson, W.G., West, T.M. and Parker, C. (1980) The activity and post-emergence selectivity of some recently developed herbicides: R40244, DPX 4189, acifluorfen, ARD 34/02 (NP 55) and PP009. Technical Report Agricultural Research Council, Weed Research Organization, 61, pp. 57.
- Post-emergence selectivity of some recently developed herbicides: AC 252214, DPX-T 6376, and chlorazifop. Technical Report Agricultural Research Council Weed Research Organization, 74, pp. 33.

Appendix 1. Plant data for activity experiment

	Cultivar (Source)		pot	(cm)	No. of le Spraying post-em.	eaves present Asses	at: sment post-em.
			em.		poso om.	pro-om.	pobo-cm.
Dwarf bean (Phaseolus vulgaris)	The Prince (Finney Lock) 1986	3	2	2	2 unifoliate leaves	2.5 trifoliates	3 trifoliates
Kale (Brassica oleraceae acephala)	Marrowstem (Finney Lock) 1986	10	5	0.5	2-2.5 leaves	leaves	5 leaves
Polygonumamphibium	WRO Clone 1	6	5	1.5	3.5-4.5 leaves	leaves	leaves
Perenial ryegrass (Lolium perenne)	Melle (British Seedhouses)	12	8	0.5	2.5-3 leaves	5 leaves 3-5 tillers	6 leaves 1-3 tillers
Avena fatua	WRO 1980	12	5	1	2.5-3 leaves	5 leaves	6 leaves 2 tillers
Elymus repens	WRO Clone 31	6	4	1	2.5-3 leaves	6 leaves	6 leaves

Appendix 2. Species, abbreviations, varieties and stages of growth at spraying and assessment for post-emergence selectivity test.

Species	Abbreviation in histograms	Cultivar or source	Stage of growth at spraying	Stage of growth at assessment (untreated controls, leaf numbers exclusive of cotyledons)
WHEAT (Triticum aestivum)	WHEAT	AVALON	3 LEAVES	6 TILLERS
Wheat + Safener	WHEAT + S	Avalon	3 leaves	6 tillers
Barley (Hordeum vulgare)	BARLEY	Igri	3 leaves	7 tillers
Barley + safener	BARLEY + S	Igri	3 leaves	7 tillers
Oat (Avena sativa)	OAT	Peniarth	3 leaves	6 leaves, 2 tillers
Oat + safener	OAT + S	Peniarth	3 leaves	6 leaves, 2 tillers
Perennial ryegrass (Lolium perenne)	PER RYGR	Melle	2.5 to 3 leaves	16 tillers
Onion (Alium cepa)	ONION	White lisbon	2 leaves	4 to 5 leaves
Dwarf bean (Phaseolus vulgaris)	DWF BEAN	The Prince	2 unifoliate leaves	6 trifoliate flowering
Field bean (Vicia faba)	FLD BEAN	Maris bead	2.5 to 3 leaves	13 leaves, flowering
Pea (Pisum sativum)	PEA	Meteor	3 leaves	10 leaves
White clover (Trifolium repens)	W CLOVER	Huia	1.5 to 2 trifoliate leaves	16 trifoliates
Rape (Brassica napus oleifera)	RAPE	Bien venu	2 leaves	6 leaves
Kale (Brassica oleracea acephala)	KALE	Marrowstem	2 to 2.5	8 leaves

Species	Abbreviation in histograms	Cultivar or source	Stage of growth at spraying	Stage of growth at assessment (untreated controls, leaf numbers exclusive of cotyledons)
Cabbage (Brassica oleracea capitata)	CABBAGE	Golden acre primo	2 to 2.5 leaves	9 leaves
Carrot (Daucus carota)	CARROT	Chantenay Red Love	2 leaves	7 leaves
Parsnip (Pastinaca sativa)	PARSNIP	White Gem	1.5 to 2 leaves	4 to 5 leaves
Lettuce (Lactuca sativa)	LETTUCE	Webbs Wonderful	2.5 leaves	8 leaves
Sugar beet (Beta vulgaris)	SUG BEET	Samson	2 leaves	12 leaves
Beta vulgaris	BETA VUL	WRO 1981 ex Attleborough	2 leaves	12 leaves, some bolting
Bromus sterilis	BROM STE	WRO 1983	2 leaves	ll tillers
Festuca rubra	FEST RUB	B and S supplies, 1985	2.5 leaves	25 tillers
Avena fatua	AVE FATU	WRO 1983	2.5 to 3 leaves	4 tillers
Alopecurus myosuroides	ALO MYOS	WRO 1984	2.5 to 3.5 leaves	15 tillers
Poa annua	POA ANN	B and S supplies, 1985	2 to 3 1 tiller	18 tillers
Poa trivialis	POA TRIV	Emorsgate 1984	3 leaves 1 tiller	15 tillers
Sinapis arvensis	SIN ARV	B and S supplies, 1985	4 leaves	6 leaves, flowering
Raphanus raphanistrum	RAPH RAP	WRO 1984	2 leaves	8 leaves
Chrysanthemum segetum	CHRY SEG	WRO 1983	4 leaves	13 leaves, flowering

Species	Abbreviation in histograms	Cultivar or source	Stage of growth at spraying	Stage of growth at assessment (untreated controls, leaf numbers exclusive of cotyledons)
Matricaria perforata	MAT PERF	B and S supplies, 1985	4 to 5 leaves	12 leaves, axillaries, flowering
Senecio vulgaris	SEN VULG	B and S supplies, 1985	4 to 6 leaves	12 leaves, flowering
Polygonum Lapathifolium	POL LAPA	B and S supplies, 1985	3 to 4 leaves	8 leaves, flowering
Lamium purpureum	LAM PUR	B and S supplies, 1985	2 to 3 pairs of leaves	Numerous axillaries, flowering
Galium aparine	GAL APAR	N. Peters stock 1985	2 whorls	10 whorls, axillaries
Chenopodium album	CHEN ALB	B and S supplies, 1985	4 to 5 leaves	10 leaves flowering
Stellaria media	STEL MED	B and S supplies, 1985	4 to 6 leaves	20 leaves, flowering
Spergula arvensis	SPER ARV	B and S supplies, 1985	2 whorls	10 whorls, axillaries, flowering
Veronica persica	VER PERS	LARS 1986	2 to 3 pairs of leaves	7 pairs leaves, flowering
Viola arvensis	VI ARVE	B and S supplies, 1985	4 leaves + axillaries	Numerous axillaries, flowering
Geranium dissectum	GER DISS	B and S supplies, 1984	2.5 to 3 leaves	12 leaves
Papaver rhoeas	PAPA RHO	B and S supplies, 1985	4 leaves	8 leaves, flowering

Species	Abbreviation in histograms	Cultivar or source	Stage of growth at spraying	Stage of growth at assessment (untreated controls, leaf numbers exclusive of cotyledons)
Rumex obtusifolius	RUM OBTU	B and S supplies, 1985	1.5 to 2 leaves	4 leaves
Elymus repens	EL REPEN	WRO Clone 31	2 to 2.5 leaves	8 leaves, 4 tillers
Agrostis stolonifera	AG STOLO	WRO Clone 1	2 leaves	7 tillers, stolons
Cirsium arvense	CIRS ARV	WRO Clone 1	2.5 to 3 leaves	8 leaves
Convolvulus arvensis	CONV ARV	B and S supplies, 1985	3 to 4 leaves	9 leaves
Maize + safener (Zea mays)	MAIZE + S	LG 11	2.5 to 3 leaves	5.5 leaves
Maize (Zea mays)	MAIZE	LG 11	2.5 to 3 leaves	5.5 leaves
Solanum nigrum	SOL NIG	B and S supplies, 1985	3 to 3.5 leaves	9 leaves

ABBREVIATIONS

angström	R	freezing point	f.p.
Abstract	Abs.	from summary	F.s.
acid equivalent*	a.e.	gallon	gal
acre	ac	gallons per hour	gal/h
active ingredient*	a.i.	gallons per acre	gal/ac
approximately equal to*		gas liquid chromatography	GLC
aqueous concentrate	a.c.	gramme	g
bibliography	bibl.	hectare	ha
boiling point	b.p.	hectokilogram	hkg
bushel	bu	high volume	HV
centigrade	C	horse power	hp
centimetre*	cm	hour	h
concentrated	concd	hundredweight*	cwt
concentration x	concn	hydrogen ion concentration*	pH
time product	ct	inch	in.
concentration required to kill		infra red	i.r.
50% test animals	LC50	kilogramme	kg
cubic centimetre*	cm ³	kilo (x10 ³)	k
cubic foot*	ft ³	less than	<
cubic inch*	in ³	litre	1.
cubic metre*	m ³	low volume	LV
cubic yard*	yd ³	maximum	max.
cultivar(s)	cv.	median lethal dose	LD50
curie*	Ci	medium volume	MV
degree Celsius*	°C	melting point	m.p.
degree centigrade	°C	metre	m
degree Fahrenheit*	°F	micro (x10 ⁻⁶)	μ.
diameter	diam.	microgramme*	μg
diameter at breast height	d.b.h.	micromicro (pico: x10 ⁻¹²)*	141
divided by*	2 or /	micrometre (micron)*	μm (or μ)
dry matter	d.m.	micron (micrometre)*†	μm (or μ)
emulsifiable		miles per hour*	mile/h
concentrate	e.c.	milli (x10 ⁻³)	m
equal to*	=	milliequivalent*	m.equiv.
fluid	f1.	milligramme	mg
foot	ft	millilitre	m1

t The name micrometre is preferred to micron and μm is preferred to μ .

millimetre*	mm	pre-emergence	pre-em.
millimicro* _9.		quart	quart
(nano: x10 ⁻⁹)	n or mp	relative humidity	r.h.
minimum	min.	revolution per minute*	rev/min
minus	-	second	8
minute	min	soluble concentrate	s.c.
molar concentration*	M (small cap)	soluble powder	s.p.
molecule, molecular	mol.	solution	soln
more than	>	species (singular)	sp.
multiplied by*	x	species (plural)	spp.
normal concentration*	N (small cap)	specific gravity	sp. gr.
not dated	n.d.	square foot*	ft2
oil miscible	0.m.c.	square inch	in ²
concentrate	(tables only)	square metre*	m ²
organic matter	O.M.	square root of*	
ounce	02	sub-species*	ssp.
ounces per gallon	oz/gal .	summary	8.
page	p.	temperature	temp.
pages	pp.	ton	ton
parts per million	ppm	tonne	t
parts per million by volume	20.30.001.12	ultra-low volume	ULV
parts per million	ppmv	ultra violet	
by weight	ppmw		u.v.
percent(age)	%	vapour density	v.d.
nico		vapour pressure	v.p.
(micromicro: x10 ⁻¹²)	p or µµ	varietas	var.
pint	pint	volt	V
pints per acre	pints/ac		vol.
plus or minus*	+	volume per volume	V/V
post-emergence	post-em	water soluble powder	W.s.p. (tables only)
pound	1b	watt	W
pound per acre*	lb/ac	weight	wt
pounds per minute	lb/min	weight per volume*	w/v
pound per square inch*	lb/in ²	weight per weight*	W/W
powder for dry	p.	wettable powder	w.p.
application	(tables only)	yard	yd
power take off	p.t.o.	yards per minute	yd/min
precipitate (noun)	ppt.	Jan as ber mruace	J W III III

^{*} Those marked * should normally be used in the text as well as in tables etc.

WEED RESEARCH DIVISION

Long Ashton Research Station

TECHNICAL REPORTS

(Price includes surface mail; airmail £2.00 extra)

(* denotes Reports now out of print)

- 6. The botany, ecology, agronomy and control of Poa trivialis L. rough-stalked meadow-grass. November 1966. G P Allen. Price £0.25
- 7. Flame cultivation experiments 1965. October 1966. G W Ivens. Price £0.25
- 8. The development of selective herbicides for kale in the United Kingdom.
 2. The methylthiotriazines. Price £0.25
- 10. The liverwort, Marchantia polymorpha L. as a weed problem in horticulture; its extent and control. July 1968. I E Henson. Price £0.25
- 11. Raising plants for herbicide evaluation; a comparison of compost types.

 July 1968. I E Henson. Price £0.25
- *12. Studies on the regeneration of perennial weeds in the glasshouse; I. Temperate species. May 1969. I E Henson. Price - £0.25
 - 13. Changes in the germination capacity of three Polygonum species following low temperature moist storage. June 1969. I E Henson. Price £0.25
 - 14. Studies on the regeneration of perennial weeds in the glasshouse. II. Tropical species. May 1970. I E Henson. Price £0.25
 - 15. Methods of analysis for herbicide residues. February 1977. (second edition). Price £5.75
 - 16. Report on a joint survey of the presence of wild oat seeds in cereal seed drills in the United Kingdom during spring 1970. November 1970.

 J G Elliott and P J Attwood. Price £0.25
 - 17. The pre-emergence selectivity of some newly developed herbicides,
 Orga 3045 (in comparison with dalapon), haloxydine (PP 493), HZ 52.112,
 pronamide (RH 315) and R 12001. January 1971. W G Richardson, C Parker
 and K Holly. Price £0.25
 - 18. A survey from the roadside of the state of post-harvest operations in Oxfordshire in 1971. November 1971. A Phillipson. Price £0.25
- *19. The pre-emergence selectivity of some recently developed herbicides in jute, kenaf and sesamum, and their activity against Oxallis latifolia. December 1971. M L Dean and C Parker. Price £0.25

- * 20. A survey of cereal husbandry and weed control in three regions of England. July 1972. A Phillipson, T W Cox and J G Elliott. Price £0.35
 - 21. An automatic punching counter. November 1972. R C Simmons. Price £0.30
 - 22. The pre-emergence selectivity of some newly developed herbicides: bentazon, BAS 3730H, metflurazone, SAN 9789, HER 52.123, U 27,267. December 1972. W G Richardson and M L Dean. Price £0.25
 - 23. A survey of the presence of wild oats and blackgrass in parts of the United Kingdom during summer 1972. A Phillipson. Price £0.25
 - 24. The conduct of field experiments at the Weed Research Organization. February 1973. J G Elliott, J Holroyd and T O Robson. Price £1.25
 - 25. The pre-emergence selectivity of some recently developed herbicides: lenacil, RU 12068, metribuzin, cyprazine, EMD-IT 5914 and benthiocarb. August 1973. W G Richardson and M L Dean. Price £1.75.
 - 26. The post-emergence selectivity of some recently developed herbicides: bentazon, EMD-IT 6412, cyprazine, metribuzin, chlornitrofen, glyphosate, MC 4379, chlorfenprop-methyl. October 1973. W G Richardson and M L Dean. Price £3.31
 - 27. Selectivity of benzene sulphonyl carbamate herbicides between various pasture grasses and clover. October 1973. A M Blair. Price £1.05
 - 28. The post-emergence selectivity of eight herbicides between pasture grasses: RP 17623, HOE 701, BAS 3790, metoxuron, RU 12068, cyprazine, MC 4379, metribuzin. October 1973. A M Blair. Price £1.00
- *29. The pre-emergence selectivity between pasture grasses of twelve herbicides: haloxydine, pronamide, NC 8438, Orga 3045, chlortoluron, metoxuron, dicamba, isopropalin, carbetamide, MC 4379, MBR 8251 and EMD-IT 5914. November 1973. A M Blair. Price £1.30
 - 30. Herbicides for the control of the broad-leaved dock (Rumex obtusifolius L.). November 1973. A M Blair and J Holroyd. Price £1.06
 - 31. Factors affecting the selectivity of six soil acting herbicides against Cyperus rotundus. February 1974. M L Dean and C Parker. Price £1.10
 - 32. The activity and post-emergence selectivity of some recently developed herbicides: oxadiazon, U-29,722, U-27,658, metflurazone, norflurazone, AC 50-191, AC 84,777 and iprymidam. June 1974. W G Richardson and M L Dean. Price £3.62
 - 33. A permanent automatic weather station using digital integrators. September 1974. R C Simmons. Price £0.63.
 - 34. The activity and pre-emergence selectivity of some recently developed herbicides: trifluralin, isopropalin, oryzalin, dinitramine, bifenox and perfluidone. November 1974. W G Richardson and M L Dean.

 Price £2.50

- 35. A survey of aquatic weed control methods used by Internal Drainage Boards, 1973. January 1975. T O Robson. Price £1.39
- 36. The activity and pre-emergence selectivity of some recently developed herbicides: Bayer 94871, tebuthiuron, AC 92553. March 1975.

 W G Richardson and M L Dean. Price £1.54
- 37. Studies on Imperata cylindrica (L.) Beauv. and Eupatorium odoratum L. October 1975. G W Ivens. Price £1.75
- 38. The activity and pre-emergence selectivity of some recently developed herbicides: metamitron, HOE 22870, HOE 23408, RH 2915, RP 20630.

 March 1976. W G Richardson, M L Dean and C Parker. Price £3.25
- 39. The activity and post-emergence selectivity of some recently developed herbicides: HOE 22870, HOE 23408, flamprop-methyl, metamitron and cyperquat. May 1976. W G Richardson and C Parker. Price £3.20
- 40. The activity and pre-emergence selectivity of some recently developed herbicides: RP 20810, oxadiazon, chlornitrofen, nitrofen, flamprop-isopropyl. August 1976. W G Richardson, M L Dean and C Parker. Price £2.75.
- The activity and pre-emergence selectivity of some recently developed herbicides: K 1441, mefluidide, WL 29226, epronaz, Dowco 290 and triclopyr. November 1976. W G Richardson and C Parker. Price £3.40.
- 42. The activity and post-emergence selectivity of some recently developed herbicides: KUE 2079A, HOE 29152, RH 2915, Triclopyr and Dowco 290.

 March 1977. W G Richardson and C Parker. Price £3.50
- 43. The activity and pre-emergence selectivity of some recently developed herbicides: dimefuron, hexazinone, trifop-methyl, fluothiuron, buthidazole and butam. November 1977. W G Richardson and C Parker. Price £3.75.
- 44. The activity and selectivity of the herbicides: ethofumesate, RU 12709 and isoproturon. December 1977. W G Richardson, C Parker, & M L Dean. Price £4.00
- 45. Methods of analysis for determining the effects of herbicides on soil soil micro-organisms and their activities. January 1978. M P Greaves, S L Cooper, H. A Davies, J A P Marsh & G I Wingfield. Price £4.00
- 46. Pot experiments at the Weed Research Organization with forest crop and weed species. February 1978. D J Turner and W G Richardson.

 Price £2.70
- 47. Field experiments to investigate the long-term effects of repeated applications of MCPA, tri-allate, simazine and linuron effects on the quality of barley, wheat, maire and carrots. July 1078.

 J D Fryer, F D Smith and J W Ludwig. Frice £1.20.
- 48. Factors affecting the toxicity of paraquat and dalapon to grass swards.

 March 1978. A K Oswald. Price £2.90
- 49. The activity and post-emergence selectivity of some recently developed herbicides: NP 48, RH 5205 and Pyridate. May 1978. W G Richardson and C Parker. Price £2.50

- 50. Sedge weeds of East Africa II. Distribution. July 1978. P J Terry.
 Price £1.50
- 51. The activity and selectivity of the herbicides methabenzthiazuron, metoxuron, chlortoluron and cyanazine. September 1978.

 W G Richardson and C Parker. Price £2.20.
- 52. Antidotes for the protection of field bean (Vicia faba L.) from damage by EPTC and other herbicides. February 1979. A M Blair. Price £1.35
- 53. Antidotes for the protection of wheat from damage by tri-allate. February 1979. A M Blair. Price £2.00
- 54. The activity and pre-emergence selectivity of some recently developed herbicices: alachlor, metolachlor, dimethachlor, alloxydim-sodium and fluridone. April 1979. W G Richardson and C Parker. Price £3.00
- 55. The activity and selectivity of the herbicides carbetamide, methazole, R 11913 and OCS 21693. May 1979. W G Richardson and C Parker. Price £1.80
- 56. Growing weeds from seeds and other propagules for experimental purposes.

 July 1979. R H Webster. Price £1.10
- 57. The activity and pre-emergence selectivity of some recently developed herbicides: R 40244, AC 206784, pendimethalin, butralin, acifluorfen and FMC 39821. December 1979. W G Richardson, T M West and C Parker Price £3.55
- 58. The tolerance of fenugreek (Trigonella foenumgraecum L.) to various herbicides. December 1979. W G Richardson. Price £1.55
- 59. Recommended tests for assessing the side-effects of pesticides on the soil microflora. April 1980. M P Greaves, N J Poole, K H Domsch, G Jagnow and W Verstraete. Price £2.00 (Amended version to be printed in 1986).
- 60. Properties of natural rainfalls and their simulation in the laboratory for pesticide research. September 1980. R C Simmons. Price £1.25
- 61. The activity and post-emergence selectivity of some recently developed herbicides: R 40244, DPX 4189, acifluorfen, ARD 34/02 (NP 55) and PP 009. November 1980. W G Richardson, T M West and C Parker. Price £3.75
- 62. The activity and pre-emergence selectivity of some recently developed herbicides: UBI S-734, SSH-43, ARD 34/02 (= NP 55), PP 009 and DPX 4189. February 1981. W G Richardson, T M West and C Parker. Price £3.50
- 63. The activity and post-emergence selectivity of some recently developed herbicides: SSH-41, MB 30755, AC 213087, AC 2222293 and Dowco 433.

 May 1981. W G Richardson, T M West and C Parker. Price £3.50
- 64. The activity and pre-emergence selectivity of some recently developed herbicides: chlomethoxynil, NC 20484 and MBR 18337. March 1982. W G Richardson, T M West and C Parker. Price £3.00
- 65. A system for monitoring environmental factors in controlled environment chambers and glasshouses. June 1982. R C Simmons. Price £1.50

- 66. The activity and pre-emergence selectivity of some recently developed herbicides: AC 213087 and AC 222293. December 1982. W G Richardson, T M West and C Parker. Price £2.00
- 67. The activity and post-emergence selectivity of some recently developed herbicides: trifopsime, glufosinate, RH 8817, MBR 18337 and NC 20484. December 1982. W G Richardson, T M West and C Parker. Price £3.25
- 68. The activity and pre-emergence selectivity of some recently developed herbicides: WL 49818, WL 82830, WL 83627, WL 83801 and DPX 5648.

 December 1982. W G Richardson, T M West and C Parker. Price £4.00
- 69. The activity and late post-emergence selectivity of some recently developed herbicides: AC 252925, DOWCO 453, HOE 33171 and HOE 35609. March 1983. W G Richardson, T M West and G P White. Price £3.25
- 70. The potential of various herbicides for selective control of weed grasses and Stellaria media in newly sown ryegrass/clover leys and ryegrass seed crops. May 1983. F W Kirkham Price £1.75
- 71. A feasibility study of the use of chemicals for rural amenity areas.

 Sponsored by the Countryside Commission. September 1983. E J P Marshall Price £5.00
- 72. The activity and late post-emergence selectivity of FBC 32197.

 November 1983. W G Richardson, T M West and G P White. Price £1.25
- 73. Paraquat persistence statistical analysis of the WRO long term trial.

 January 1984. R J Hance, T H Byast, P D Smith and T M Weight. Price £1.00
- 74. The activity and post-emergence selectivity of some recently developed herbicides: AC 252214, DPX-T6376, and chlorazifop. February 1984. W G Richardson, T M West and G P White. Price £2.00.
- 75. The effect of temperature and soil moisture on the activity of isoproturon and chlortoluron on Alopecurus myosuroides and winter wheat. May 1984.

 A M Blair. Price £2.00
- 76. A laboratory rainfall simulator for pesticide studies. May 1984. R C Simmons. Price - £2.00
- 77. Experiments on the effects of the herbivorous fish, grass carp

 (Ctenopharyngodon idella Val.) on aquatic vascular plants, algae, zooplankton and phytoplankton and the importance of water temperature on the success of weed control. September 1984. M C Fowler. Price £3.50.
- 78, The activity and post-emergence selectivity of some recently developed herbicides: MCPA-thioethyl, MT-124, tridiphane, aclonifen and RST 20024 H. October 1984. W G Richardson and T M West. Price £5.40
- 79. A preliminary study on the effect of some agricultural herbicides on a range of field margin flora. November 1984. J E Birnie. Price £2.50
- 80. The activity and pre-emergence selectivity of some recently developed herbicides: imazaquin, isoxaben, metsulfuron-methyl, aclonifen and orbencarb. December 1984. W G Richardson and T M West. Price £6.50

- 81. The side effects of alloxydim sodium, sethoxydim, acifluorfen and fluazifop-butyl on legume growth and nodulation. January 1985. J M Bebb, M P Greaves and W G Richardson. Price £3.00
- 82. An IRGA system for continuous monitoring of CO, and H,O vapour exchange in replicate plants growing in controlled environments. January 1985. C R Merritt and R C Simmons. Price £3.00
- 83. A laboratory pot sprayer for use with controlled environment chambers. February 1985. R C Simmons and J A Drinkwater. Price £2.50
- 84. Maps of the changes in the weeds of Boddington Barn field over twenty years (1961-1981). March 1985. R J Chancellor. Price £4.50
- 85. The use of bentazone and pyridyl herbicides alone and in mixtures for the control of creeping thistle (Cirsium arvense L.) in grassland. April 1985. W G Richardson, A K Oswald and T M West. Price £1.50
- 86. The activity and pre-emergence selectivity of some recently developed herbicides: metazachlor, butamifos, MT-124, tridiphane, MK 616 and prodiamine. May 1985. W G Richardson and T M West. Price £7.00.
- 87. The potential use of grass growth retardants at Sullom Voe terminal, Shetland. A report prepared for W J Cairns and Partners, 16 Randolph Crescent, Edinburgh, Environmental Consultants to BP Petroleum Development Ltd as Operators of Sullom Voe Terminal. May 1985.

 E J P Marshall. Price £3.00.
- 88. A further study of the effect of six cereal herbicide treatments on a range of broad-leaved field margin plants. June 1985. J E Birnie.

 Price £2.50
- 89. The activity, pre-and post-emergence selectivity of diflufenican.

 December 1985. W G Richardson and T M West. Price £3.00
- 90. The pre-emergence selectivity in warm-climate species of some recently developed herbicides: imazaquin, AC263 499, cinmethylin and isoxaben January 1986. C Parker and A K Wilson. Price £2.60
- 91. The activity, pre-emergence selectivity and persistence of some recently developed herbicides: DOWCO 453, Quizalofop-ethyl, BAS 517 00H, cinmethylin, AC263,499 and RST 20024H. W G Richardson and T M West.

 Price £6.20
- 92. The activity and post-emergence selectivity of some recently developed herbicides: SMY 1500, PPG 884, PPG 1259 and DPX-M 6316. W G Richardson and T M West. February 1986. Price £4.20.
- 93. The pre-emergence selectivity in warm climate species of some recently developed herbicides: metazachlor, RST 20024H, orbencarb and diflufenican. C Parker and A K Wilson. February 1986. Price £2.70.
- 94. Screening strawberries for tolerance to 96 herbicides and growth regulators applied to the foliage and roots. D V Clay. February 1986. Price £5.00.

- 95. Grass Growth Retardant use at Sullom Voe Terminal, Shetland 1985
 Programme Report. (A report prepared for W.J. Cairns & Partners,
 16 Randolph Crescent, Edinburgh, Environmental Consultants to
 BP Petroleum Development Limited as Operators of Sullom Voe Terminal).
 E.J.P. Marshall. August 1986. Price £2.50
- 96. Studies of the flora in Arable Field Margins. E.J.P. Marshall. October 1986. Price £3.50.
- 97. The post-emergence selectivity in warm climate species of some recently developed herbicides: SMY 1500, PPG 884, PPG 1259 and DPX-M6316.

 A.K. Wilson and C. Parker. February 1987. Price £3.75.
- 98. The activity, pre-emergence selectivity and persistence of some recently developed herbicides: SMY 1500, PPG 884, PPG 1259, DPX-M 6316 and FMC 57020. T.M. West and W.G. Richardson. November, 1987. Price £6.00.
- 99. The pre-emergence selectivity in warm-climate species of some recently developed herbicides: SMY 1500, PPG 884, PPG 1259, DPX M6316 and FMC 57020. A.K. Wilson and C. Parker. December, 1987. Price £5.00.