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ABSTRACT

Becauseofits probabilistic capabilities some form of probability modeling may

very well become the primary tool for assessment of ecological risk. It has

becomeindispensable to DowElancoas a powerful propagator of environmental

variability, and continues to undergo development. Currently it makes use of

digitized soils databases, weather generators, Geographical Information Systems

tools, and parallel computing software. But experience to date indicates serious

modeling limitations emanate from present environmental chemistry

experimentation that has no focus on natural variability. In anticipation of the

future needs of ecologicalrisk assessment, it is suggested that the environmental

research community must perhaps begin to think in terms of statistical

distribution rather than in terms of single number.

At DowElanco modeling has becomeindispensable for the conduct of ecological risk

assessment. The modeling is of a special nature in that it attempts to report exposure

estimates from model output in terms of frequency distribution. This approach is termed

“probability modeling” since the modeling results describe the probability that a certain

environmental concentration might be encounteredin the real world.

First attempts to perform this type of estimation recognized the need to propagate

variability of model input to the output. So geographical regions were selected, ranges of

values for soil properties and weather patterns were developed to represent the regions,
and the ranges were then input into the modeling to generate output frequency

distributions. Unfortunately, this created an issue with “nonsense combinations” of

input - - - combinations of soil properties and weather that have little chance of co-

existing in the real world. The probabilistic modeling approach was subsequently

modified to one that made much moresensein reality.

The approach became morespecific. A digitized databaseofall soils in the U.S. was

obtained, along with the capability to generate weather patterns for any US. location.

Both were placed under the umbrella of Arc/Info, a geographical information system

(GIS) that allows one to combine layers of data and then express modeling results

probabilistically in the form of graphic maps. To minimize the issue of “nonsense

combinations”, soil series property descriptions from the soils database are kept intact

and used directly for model input, along with historical weather associated with an actual

soil series location. In this way variability within the modeling has become more

controlled. It is restricted to variation in properties within a soil series, and to variation in 



weather. If the data are available, variation in pesticide properties can also be included.
For runoff assessment the assumption is made that an organism’s habitat is at the edge of
a treated field comprised ofthe soil series under evaluation. The outputis translated into
frequency-of-return GIS soil maps that classify the soils in real geography for their

likelihood of producing variouslevels of exposure. Frequency of return with regard to

level of risk is defined in the following manner:

Typical Case lin2

Typical Worst Case lin 10

Extreme Worst Case 1 in 100

This modeling procedure requires adequate computational powersince large numbers
of modeling runs are necessary to develop the probabilistic assessment. This was
resolved by taking advantage of fairly recent public domain software that allows many

computers to be hooked together over a network to form a parallel processing system.

Each modeling scenario of weatherandsoil is portioned out to any computer that is ready

to undertake the next run.

Webelieve that some form of probability modeling will become the dominant

mechanism for developing estimates of exposure for purposes of ecological risk

assessment. Since risk assessmentis essentially a probability-based process, modeling

that returns probabilistic information provides exactly the type of information needed to

perform an assessment.

Thus critical questions that are asked at this symposium are: Is the environmental

chemistry scientific community ready for probabilistic modeling? Is it thinking about

whether current experimentation will be relevant to a probabilistic use of its data? What
kind of experimental information will be needed to propagate the variability that exists

naturally in pesticide properties, soil properties, and weatherpatternsin order to arriveat

probabilistic assessment? Is the information available and, if not, how is it to be

generated? Is it time for the environmental community to be thinking in terms of

statistical distribution rather than single number?

Preferential flow is a topic that captures considerable attention these days. It isa

key topic of this symposium and weare looking forward to finding out the latest in

attempts to model the process. But is the community thinking in terms of probability

with regard to preferential flow? How will the models deal with variability? Is there

some wayof expressing current findings in a probabilistic way? Does there appear to be

certain fractions of applied material that tend to be associated with preferential flow? For

example it would be extremely useful to know that 90 % of the time 5 % orless of
applied material participates in preferential flow.

Similar issues apply to soil sorption/desorption phenomena. Ample evidenceexists

to indicate these processes are kinetic in nature and cannot be captured with a single

sorption or desorption number. Therefore, what sorts of experiments are most

appropriate to develop the data needed to capture and express this variability in a 



probabilistic fashion? Is the conduct of soil column leaching experiments or batch

equilibrium studies the most appropriate way of obtaining the necessary information? Is

there some other waythat develops the probabilistic information moreeffectively?

Wethink thetimeis at hand for environmental chemistry to do a paradigm shift with

regard to focus of purpose for environmental experimentation. As the use of data from

the environmental arena continues to focus directly on the risk assessment process,the

awarenessof need for experimental support of the tools used to perform this assessment

will continue to intensify. We believe these tools will be probabilistic in nature, and

future experimentation must be focused to support them.

What mightyour thoughts be onthis matter?
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ABSTRACT

The movement of water and pesticides in the unsaturated zone has been investigated

numerically. Instead of solving the underlying partial differential equations with con-

ventional methods, we developed a discrete, statistical approach. In a microscopic

picture the soil is represented bya lattice of cavities which are connected by channels.

Water particles hop between the cavities in discrete time steps, where the statistical

weights of the hopping directions depend on the local potential and the permeability

of the channels. Averaging over several time steps and mesoscopic spatial areas gives

a smooth picture of the water flow. The water dynamicsare used as a basis for simula-

tions of pesticide movement. We demonstrate how diffusion, adsorption, degradation,

etc. can be described. The modelis particularly well suited for the simulation of flow

in heterogeneous media. We discuss several applications.

INTRODUCTION

Since the pioneering work of Darcy (1856) it is known that subsoil water flow can adequately
be described by partial differential equations. Today these are solved numerically for many

different problems. Simulations usually calculate the changes of quantities like density, flux

and concentrations, which are represented by real numbers. These methods, called conventional

below, have been developed to a high degree of sophistication. (See Bear and Verruijt, 1987,

for an overview). Here we approach Darcyflow with a large number of water particles hopping

between the sites of a lattice. The particles do not represent molecules but small amounts of

water as compared to the permeability autocorrelation length. Similar lattice gas methods have

been found to beefficient for free fluid flow (Frisch et al., 1986 and 1987). The collision rules

of free fluid lattice gases have been modified by Balasubramanianet al. (1987) and Papatzacos

(1988), so as to include friction terms. Our approach (Vollmayr, 1994) is different in that it

sets up new rules, which do not conserve momentum. The velocities (directions of motion) of

particles leaving a site do not depend ontheir velocities before the collision.

The movement of chemicals in soil has been simulated with discrete methods by Uffink

(1983), Semra et al. (1993) and others. We adopt the technique for our purpose, because it

allows simple treatment of various transport phenomena and transformation processes.

WATER MOVEMENT

The algorithm

Weuse a two-dimensional example for describing the algorithm, which is readily generalized

to three dimensions. The soil is represented by a squarelattice (see Fig.1). A lattice site can

141 



hold up to four water particles. In each timestep the particles hop to nearest neighbours of
their current host site. The neighboursreceiving particles are selected in a statistical procedure,
which we now specify. Assumethat site x holds one particle at time t. One out of four possible
directions is preselected at random, i.e. with probability 1/4. Say we chose direction i. Next
the probability P = c!)k(x)d; is calculated from the potential d; at the preselected target site
(x + E;) and the permeability k(x). c) js a constant. The potential is due to gravity and
capillarity (matrix potential). We accept the preselected direction i with probability 1 — P and
reject it with probability P. In the latter case a new random selection (probability 1/4 for each
direction) is performed. This time the result is accepted in any case. When site x holds two
particles, there are six possible pairs of directions (i,j). So 1/4 is replaced by 1/6 in the above
procedure and P is calculated with (0; + @;)/2 and the constant c'?), Finally, when we have
three particles, the direction where no particle is sent is selected in the same way as for one
particle but with P and 1 — P interchanged. Clearly, for zero or four particles at a node thereis
no choice of target directions.

 

 

   

   

   

 

      
 FIG. 1: Microscopic hopping of water particles

Weaveragetheparticle motion overcells with 8 x 8 sites and over 64 timesteps. The water
movement on this mesoscopic scale is described by the partial differential equation

j= —-Vp—-«Vo, (1)

where j denotes the flux (density times velocity), p is the density (measuredin particles per site
over four in order to ensure 0 < p < 1) and

kK = k,(p)k(x),

kelp) = 2cp(1—p)> +o)p21 — p)? +c)p%1 - p)) : 



Discussion of the equation of motion 

If —Vpis disregarded for a moment, eq.(1) represents the Darcy-equation, describing fluid

transport in a porous medium. The permeability « depends on p in a way that can be controlled
by the constants c!”), One might wish to define k,(p) without anyconstraints(e.g. k,(p) = 1),

however, this turns out to be impossible on theoretical grounds because of the continuity equation.

The particle-hopping dynamics defined above take care of mass conservation per definitionem,

which is reflected in the form of k,(p).

Thefirst term in eq.(1) is due to particle diffusion. It is independent of the permeability

« and the potential @. In particular, the diffusion constant is not controlled by an external

parameter. This problem can partly be solved by adding a term to the potential ¢(x) which
depends on the particle occupation number n(x). If large occupation number correspondsto low

potential, e.g. ¢(x) — o(x) — n(x)/4, the particles move preferably to sites which are already

holding manyparticles, thereby moving “uphill” in a statistical sense and reducing diffusion.

Instead of adding —n(x)/4 to the potential, it can be added to the probability P. Then the

suppression of diffusion is not affected by the permeability. One has to be careful to keep

0 < P <1 (rememberthat P denotes a probability). This is why we have written —n(x)/4. The

probability constraint limits the suppression of the diffusion term. It is strongest for p= 1/2,

where the diffusion constant can be reduced to 5/8 ofits original value.

Ideally the diffusion term should be proportional to the permeability: —KVp. Let us try to

generate this behaviour byassociating the permeability « with channels rather than sites. The

underlying idea is that particles should moveto neighbouring sites with low potential preferably

through channels with high permeability. In the above algorithm k(x) must be replaced by the

permeability of the channel connecting site x to the preselected site x + E;. It can be shownthat

this procedure does not have the desired effect. Instead it leads to eq.(1) plus (1/2)6Vx«, which

generates flow to the areas with high permeability, not exactly what we want to have.

Other methods to manipulate the diffusion process are conceivable. Here we just note

that diffusion can be reduced within limits (density-dependency, minimumdiffusion) where the

original microscopic algorithmis basically unaltered. The simulation method is mainly intended

for problems with small density fluctuations, for which diffusion processes play a minorrole.

Discussion of the simulation method

Whatare the advantages of a lattice gas over conventional simulations(like finite elements)?

Firstly, the lattice gas algorithmis extremely simple on a microscopiclevel. The simplicity

makesit more easily accessible for theoretical investigations. Note that our particles suffer from

complete amnesia, i.e. after arriving at a site they do not remember from which neighbour

they came. In particular momentumcannot be conserved in contrast to lattice gases for the

simulation of free fluids, leading to the Navier-Stokes equations. Physically, momentumis taken

up bythe soil matrix at any moment, so it can be disregarded in the algorithm. This tells us that

Darcyflow is just a caricature of a flow equation, althoughit originates from Navier-Stokes flow

in a tremendously complicated heterogeneous pore-network. It might be comparedto the fall of

an object in a viscous medium. which has been described correctly by Aristotle (who actually

tried to characterize free fall), while it took almost 2000 years until Galilei correctly described

free fall (which is less complicated from a microscopic viewpoint but leads to a moredifficult

equation). 



Secondly, the model is very flexible. The basic algorithm can be changed or extended

without loosingits feature of being exactly interpretable in termsof a partial differential equation

on a macroscopic level. Two examples have been discussed above. In addition, heterogeneous

distributions of « or @ do not complicate the model nor slow down the performance of an
implementation.

From an information processing point of viewlattice gases exhibit very elementarystruc-

ture. Accordingly they are amenable to direct hardware implementation on highly parallel com-

puter architectures.

The modelis certainly not intended to outrun all other simulation methods for Darcy flow.

Weregard it as an approach from an unconventional starting point, the possible applications of
whkh are worthwhile to be investigated.

PESTICIDE MOVEMENT

The movement of a chemical in soil, which does not affect the dynamics of the water,

can again be modelled by continuous or discrete methods. We prefer the discrete, statistical

approach, which is knownas particle tracking.

The pesticide is represented by a cloud of many particles, which do not correspond to single

molecules but rather to drops small enough that their individual spreading needs not be taken

into account. The concentration of the pesticide is given by the number density of particles, so

the smallest volume for which a sensible concentration can be given should be large as compared
to the typical interparticle distance.

At each timestep all particles follow the water movement at their current position. This

models advection. Diffusion of the chemical and dispersion is included by letting the particles

perform a random walk, i.e. after an advection jump, the particle performs another jumpover a

given (small) length to a randomdirection. In the case of dispersion the probability distribution

for the directions is generally anisotropic. For the sake of simplicity and for demonstration

purposes we neglect this complication (and others, see Semraet al., 1993).

The consideration of several transformation processes is straight forward in the particle

picture. We give two examples. Pesticide is adsorbed at the solid matrix, which is modelled by

giving a particle one of two states — adsorbed or free. The adsorbed particles do not change

their positions and the actual state changes with a certain rate, e.g. with probability 1/500

per timestep. If we introduce a third state, which is taken with a certain rate, but neverleft
again, we have a model for biodegradation. Further processes like chemical decomposition can
be included in the same manner.

NUMERICAL EXAMPLES

The following results of a simulation are intended to illustrate what has been discussed

above. At this stage the involved parameters (permeability field, transformation rates, etc.) are

not supposed to represent anyrealistic system, but have been chosen so as to depict the basic

behaviour of the model.

Fig.2a shows the permeability 4(x) of a soil profile with 16 x 16 cells. Dark areas have high 
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FIG.2: Pesticide movement through a beterogeneous soil profile 



permeability. Gravity points downwards and thetop is kept at a fixed humidity. The water flow

(averaged over 8 x 8 sites = 1 cell and 64 time steps, see Fig.2b) is steady apart from statistical

fluctuations, which are caused by the random elements of the algorithm. Figs.2c-f depict the
evolution of a chemical applied to the top layer. Time is measured in microscopic timesteps,

ie. the time intervals during which water particles hop to a neighbouring site. Each pesticide
particle moves every 64 timesteps: first it follows the local waterflow, next it makes a small step

in a random direction (step length = (1/6) x cell length). With probability (1/256) it becomes

immobile. If the particle is immobile, it becomes mobile again with probability (1/256). Note

that the pesticide roughly follows the main flow through areas with high permeability but slowly

enters dense regions after some time.

QUESTIONS

Our aim is to model spatio-temporal distributions of pesticides. The model mustbecali-

brated to represent realistic soil types and chemicals. One-dimensional cascade-models are suit-

able to determine parameters like the total amount of pesticide reaching a certain depth, e.g. an
aquifer. Some of these aspects might be improvable by two- or three-dimensional modelling (hor-

izontal heterogeneities, crop on ridges, etc.). In order to simulate the dynamics of populations

of microorganisms, it is sometimes necessary to understand the typical spatio-temporal pattern

of chemical exposure. Our work in the near future will be orientated along these lines.
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ABSTRACT

We report on the current status of a European project dealing with the

identification of critical parameters governing the fate and mobility of pesticides

in soil-aquifer systems. Emphasis is on a coherent interpretation of transport

parameters and physical-chemical characteristics measured at multiple scales,

using both experiments and modelling activities on each of the scales examined.

Thefirst objective is to quantify the effect of important parameters on the vertical

andlateral flux of selected pesticides and tracer substances in the vadose zone and

the underlying aquifer. The second objective is to model the effect of these

parameters at laboratory, lysimeter and field scale. The aims ofthe project are the

establishment of a comprehensive, detailed and high quality experimental data set

of an integrated soil/aquifer system, offering relevant information on the value and

the spatial variability of important model parameters. This should result in an

improved understanding of the mechanisms controlling the sorption,

transformation andtransport of selected pesticides in a soil/aquifer system.

INTRODUCTION

Mathematical models are increasingly being used to describe the fate and mobility of

pesticides in soil and groundwater and to perform risk assessments ofpesticide use. The

quality of these models in describing important processes such as transport. degradation and

sorption are usually tested by comparing calculated values with measured ones obtained 



from laboratory measurements (e.g. breakthrough curves), lysimeter studies (e.g. leachate) or

field measurements (e.g. pesticide concentrationsin soil and groundwater).

Although a numberoffield data sets exist, practically no informationis available on
the variability of important model parameters. Spatial variation of soil and aquifer properties
is known from literature to cause considerable fluctuations in solute concentrations and
leachate amounts (Dagan, 1989; Russo, 1991). Prediction of the field behaviour ofpesticides
both in the saturated and unsaturated zone therefore requires a characterisation of spatial

variability and the quantification of its influence. Neglecting the effect of spatial variability
makesit difficult to compare model calculations with measured values obtained from the

field. When discrepancies occur between measured and calculated values, no distinction can

be made between a bad parameter description (e.g. by neglecting variability or incorrect

measurement) and an incorrect process description. When a unique parameterset is used to

describe the behaviour of a pesticide at the field scale, over- or under estimation of e.g.

leachate fluxes might occur. One way of solving the problem is to make a clear distinction

between process scale and system scale.

Muchofthe present information on pesticide behaviouris constrained either to the top

soil layer or aquifers. Application of mathematical models for the purpose of predicting net

fluxes to the groundwater requires the characterisation of the complete vadose zone and often

also from the saturated zone in the case of a shallow groundwater table. There exists
therefore a need to have complete datasets of soil-aquifer systems in order to obtain a full

picture of the behaviourofa pesticide. This requires an interdisciplinary approach.

Increasing evidence is found both in literature and in reports of national and

international authorities that pesticides are found in groundwater at various locations

throughout Europe. A higher risk of groundwater pollution may exist in areas with shallow

groundwater table. These shallow groundwaters are still an important source of drinking

water supply. Protection and management of these water resources is one of the future

chailenges. This can only be done when processes both in soil (unsaturated zone) and

aquifers (saturated zone) are understood. This requires an approach in which both systems

are integrated.

Within the framework of an European project, an attempt is made to describe and

understand such an integrated soil-aquifer system by studying at various scales the fate and

mobility of pesticides, reactive and non-reactive tracer substances. The major objective is to

identify and quantify parameters governing the vertical and lateral fluxes of selected

agrochemicals in the vadose zone and the aquifer system, and to model the effect of these

parameters on the transport of these compoundsat different scales (laboratory, lysimeter,

field and regionalscale).

To meetthis objective both experimental research and modelling activities are needed

at the process and system level. The process level encompasses laboratory scale (often

coined the Darcy scale) and the lysimeter scale, focusing on the identification of mechanism

and processes involved in describing the behaviour of pesticides. This scale is assumed to be

of the order of magnitude of 0.1 to 1 m and is usually assumed to be uniform in its 



properties. The system level includes both the field and regional scale and will provide

information on the validity of the processes identified at the process level, the spatial

structure of important properties and allow for the identification of effective parameters. This

implies that all experimental studies are performed at one experimentalfieldsite.

THE FIELD SITE KRAUTHAUSEN

A one hectare field site has been chosen near Jiilich at the village of Krauthausen.

Thesoil is classified as gleyic planosol with five distinct horizons: an Ap horizon (0-33 cm),

an eluvial horizon Eg (30-40 cm) a textural B horizon with gleyic properties (60-100 cm)

and a C2 horizon ( > 100 cm). The soil texture is loamy with clay percentages ranging

between 20-30%. The aquifer consists of fluvial sands and gravel deposited during the

quaternary period.It has a thickness of 10-12 meter; and is underlain by thin clay layers and

several metres ofsilty fine sands. While the layer between 1 and 5 meteris built by a rather

coarse gravel, the lower 5 to 7 meter consist of a medium to fine gravel with someinterlayers

of sands and coarse gravel. The water table fluctuates between 0.8 m below the soil surface

during the winter and 3 m in the late summer. Within the test site the hydraulic gradient

varies between 0.0024 and 0.0016, but remainsrelatively constant throughout the year. The

average permeability of 3.10° m/s was determined by a large scale pumpingtest, the average

flow velocity during the first tracer test (eosine) was about Im/d.

During 1993 and 1994 62 wells were drilled within the plot each equipped with 24

Multi-level-samplers. 189 metre of soil cores were drilled for characterisation ofthe field site

and to determinethe spatial variability of basic soil and aquifer properties. 90 meter of core

was obtained on a depth between 6 and 8 meter. 9 drillings of 11 m length were fully cored.

In total, 500 samples will be analysed for texture, organic carbon content, CEC, and

specific surface. Sampling is done in such a way that a 3D picture of soil-aquifer

heterogeneity can be realised. 28 wells are fully screened in order to determine the hydraulic

conductivity using flow meter measurements. The primary objective of the 62 wells is to

follow the plume developmentof eosine, uranine and LiCl in space and time andto relateit

to the heterogeneity of basic aquifer properties. Unfortunately permission to inject pesticides

was not given. It was therefore decided to compare the behaviour of two pesticides and the

above mentioned tracersat the process level; and to scale-up this information.

In addition to the installation of wells, two undisturbed lysimeters were taken to

examine the behaviour of atrazine and benazoline-ethyl with special emphasis on

determining the mass balance of water and the two compounds.

To determine the influence of spatially variable soil properties on solute transport

(CaCl,) a small scale tracer experiment was conducted using 140 time domainreflectometry

(TDR) probes to determine the transport of Cl on a 12 meter long transect up to a depth of

one meter. 



STUDIES AT THE PROCESS LEVEL

Laboratory studies were done on the transport and sorptive behaviour of atrazine,

benazolin-ethyl and chlorobenzene. For atrazine, breakthrough curves are measured at each

soil layer (to 1 meter depth) at three different locations in such a way that a spatially nested

variance analysis may be used to obtain information at what scale variation occurs. Break

through curves (BTC) give information both on transport as well as on the reactivity of a

compound(sorption - decay). Using inverse optimisation techniques estimates of important

parameters such asdispersion, Kdor rate constants for decay may be derived.

Two larger soil columns were sampled and used for determination of BTC of CaCl).

Fig(1) shows the BTC in resident concentrations obtained on one of the columnsusing a

pulse application (duration 1 day, initial concentration 82.8 g/l) under a flux of 2.5 cm/day.

One day after application, substantial concentrations were found at a depth of 90 cm

indicating that preferential flow or macropore flow played an important role in the

downward movementofsolute.

Biodegradation studies with the herbicides [benzene-U-!4C]benazoline-ethyl and

[triazine-U-!4C]atrazine were carried out in Erlenmeyer flasks under different soil moisture

(20. 40, 60 % WHC) and temperatures (6, 15, 25 °C). The laboratory study was conducted to

describe metabolism of benazolin-ethyl and atrazine in the plough layer of two different soil

types. The applied concentration of benazolin-ethyl was 1 mg/kg soil and for atrazine

4.8 mg/kg. Soil sampling at day 0, 2, 6, 11, 25, 39 and 91 allows model calculations to

determinehalf life time of each compound under different environmental conditions. Results

of the laboratory study will be compared to degradation processes taking place occuring

outdoors.

 

Time (Day)

Fig. 1 Breakthrough curves ofCaCl, in resident concentrations obtained at various depth

using aflux type boundarycondition. 



Batch experiments were performed to obtain information on the spatial distribution of

sorption parameters both in soil and aquifer material. To compare the behaviour of the three

compounds,analyses were done on the same samples from three drillings (five samples up to

one meter, five samples between 6-8 meter) . First results indicate that atrazine is hardly

sorbed in the aquifer because ofthe low levels of clay minerals and organic matter. Amounts

sorbed are usually less than 3% of the applied dose.

For the top (0-33m) and bottom layer (80-100) sorption of atrazine was found using

concentrations between 1 and 1000 pg/l (Fig.2). Adsorption could be described by a

Freundlich isotherm with the n value ranging between 0.95 and 1 (linear isotherm).
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Fig. 2 Adsorption isothermsfor atrazine in the plough layer (0-33 cm)

andthe C horizon (90-105 cm)

In February 1994 an outdoor lysimeter study with !4C-benazolin-ethyl and atrazine was

started. In total four undisturbed lysimeters (1 m2 , 1.1 m height) received both !4C-
benazolin at an average rate of 0.945 kg a.i./ha and atrazine at 4.8 kg a.i/ha. To monitor

water flow in the lysimeters, deuterated water, potassium bromide and methyl blue were

applied as tracers. Two lysimeters contained an orthic luvisol from a nearbysidt, the other

two a gleyic planosol from the Krauthausen experimental site. From March 1994 to August

1994 the plough layer was sampled in two lysimeters to elucidate the degradation of

benazolin and atrazine outdoors. Soil samples were taken at 0-2.5, 2.5-5, 5-7.5, 7.5-10, 10-

15, 15-20 and 20-30 cm depth and analysed separately for herbicide residues and tracers. The

other two lysimeters were equipped with suction candles at depths of 20, 40 and 80 cm to

collect soil solution, an access tube for neutron probe measurements; and

time domain reflectrometry probes (depths of 15, 30, 45, 65, 80, 105 cm). Soil temperature

sensors were installed at depths of 5, 10, 20, 30 and 60cm. About 18% of the total

precipitation of 561 mm from February until September 1994 could be recovered as drainage

water. The contents ofradioactivity in the drainage water was determined to be less than 1 %

of the applied radioactivity of benazoline-ethyl. The experimental data will be used for

modelcalculations in the vadose zone. 



STUDIES AT THE SYSTEM LEVEL

The researchactivities at the system level focus on the effect of heterogeneity of soil-
aquifer properties on solute transport at the field scale. To study the governing solute

transport mechanism andthe effect of heterogeneity on solute transport, a small scale tracer
experiment was performed in a plot of 4.5 by 12 m. TDR probes (120) were installed

horizontally at 24 locations and at 5 different depth in the middle of the plot (1.25 x 8 m).

A greenhouse wasinstalled to prevent the contribution ofrainfall. A steady state flux
was achieved after the application of water at 1.5 cm/day for 3 weeks. A pulse of solute

(CaCl,.H,0, 80 g/l) was applied for a duration of 8 hours. The movementofthe solute front

was monitored from bulk electrical conductivity automatically for 2 months. The mean
resident concentrations obtained for different depths are given in Figure3.
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Fig.3 The mean resident concentrations ofCaCl, versus time at various

depth in the soil column
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To study the effect of heterogeneity on solute transport, eosine, uranine and lithium

chloride (LiCl) were directly injected in the underlying aquifer. Eosine was used as a pre-

tracer to determine the flow velocity and flow direction of the groundwater in order to

optimise the layout of the drilling locations. On August 30 1994, uranine and LiCl were

injected in three wells to a depth between 7 and 8 m.

At various wells, breakthrough curves were monitored at 24 depths. First results are

shown in Fig.(4) for well B52. Although uranine is known to be a conservative tracerit

seems to retarded somewhat stronger than Li. This tendency increases with depth. In the

deeper part of the well (9-10 meter) there is a substantial loss of uranine which presently

cannot be explained. Batch sorption experiments are on their way combined with a

characterisation of the aquifer material to clarify this behaviour. 
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Fig. 4. Breakthrough curveoflithium and uraninefor

the upper part ( 4-5 m belowsoil surface) ofwell B52

The estimated dispersivity is in the order of about of 0.5 m andincreases with distance. This

is known asthescale effect in literature. At monthly intervals, all multi-level-samplers were

sampled in order to calculate the spatial moments of the two plumes. This allows

quantification of the time dependent behaviour of macrodispersion andits relation to the

heterogeneity of aquifer properties (e.g. hydraulic conductivity, sorption)

MODELLING

The WAVE model (Vancloosteret al., 1995) isused to study the behaviour of atrazine

and benazolin-ethyl in tie soil. This model is an extended and revised version of the

SWATNIT(Vereeckenet al., 1991) model originally developed to describe the behaviour of

nitrogen in soils. This model wastested against data obtained from the two lysimeters and to

six lysimeters treated with radioactivity labelled methabenzthiazuron (MBT). Figure 5 shows

the results obtained for one of the lysimeters with MBT application.The simulation of

drainage is in good agreementwith the data but the model was not able to predict the loss of

MBTbyleaching. This might be caused by the presence of macropores. A description of

macroporeflow will be incorporatedin future versions of the model.

TRACE(Vereecken et al., 1994) was developed within the project to describe the

behaviour ofpesticides in heterogeneous soil-aquifer systems. TRACE is a 3D model for

water flow and solute transport in saturated-unsaturated systems. Finite elements and finite

difference methodsare used to solve the generalised Richards’ equation and the convective-

dispersive equation. Heterogeneity of soil and aquifer parameters at the experimentalsite

mayresult in numerical grids with more than one million unknowns. This faces the limits of

sequential solution algorithms even for powerful computer systems. A domain

decomposition method (Vereecken et al., 1994) was therefore implemented to allowthe use

of parallel based computer systems such as a massively parallel computersystem or a

workstation cluster. Objectives of these activities are to understand the impact of the

heterogeneityofbasic soil and aquifer properties on solute transport. 
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Fig.5 Time course of measured and simulated accumulated drainage flux

at the lower boundary of the lysimeter (a.)) and the accumulated

amount ofMBTin the leachate [applied MBT = 100 %] (b.)).
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ABSTRACT

Results of simulation models for the prediction of pesticide leaching (VARLEACH 2.0,

PELMO 1.5, PESTLA 2.3, LEACHP 3.1, MACRO 3.1) were compared with

experimentalresults of a lysimeter study with the herbicide quinmerac.

The models differ widely in their basic concepts of water and pesticide dynamics. The

model parameters were determined a priori from available data and with pedotransfer

functions. None of the models described pesticide behaviour (transformation, vertical

distribution) and water percolation to a completely satisfying degree. The models differed

considerably in the simulation of the herbicide amount in soil profile (1.5 - 32.9 % of
initial simulated vs. 1.4 % measured) and vertical distribution in the lysimeter (most in 0-

10 cm vs. evenly distributed in 0-30 cm). With the exception of MACRO herbicide

amount wasconsiderably overestimated by the models. Good agreement of the relative

vertical distribution of residues (i.e. most in top 0-10cm) was simulated only by

VARLEACH and PELMO which consider increasing Kg-values with time. MACRO,

PELMOand PESTLAcould simulate the developmentof percolate to a sufficient degree.

INTRODUCTION

Lysimeters are useful tools to study the behaviour of pesticides in agroecosystems under
natural conditions. They provide the opportunity to describe exactly the boundaries of soil
compartments and to monitor fluxes in and out of the soil system. Therefore lysimeters are

prerequisites to calibrate and validate simulation models.

The objectives of the study were the comparison and the predictive use of widely applied

simulation models with different conceptual bases to describe the leaching behaviour of the

herbicide quinmerac. The experimentalresults of a lysimeter study (Mittelstaedt ef a/., 1994)

with a gleyic cambisol and of laboratory studies from literature (Nortersheuser, 1993) as well

as pedotransfer functions (PTFs) were used to provide parameter values for quinmerac and to

validate the simulation models. In addition to graphs,statistical criteria according to Loague &

Green (1990) are given.

MATERIAL AND METHODS

The experimental results of a lysimeter study (Mittelstaedt et a/., 1994) with a gleyic

cambisol(plow layer(0-35 cm): organic carbon, = 0.95 [%], sand/silt/clay = 73.0 / 22.1 / 4.9
[%]; pH(caciz) = 6.55) and of laboratory studies from different soils (Nortersheuser, 1993)

were used to provide parameter values for quinmerac.

The simulation models VARLEACH 2.0 (Walker, 1987), PELMO 1.5 (Klein, 1993),

PESTLA 2.3 (Boesten, 1993), LEACHP 3.1 (Hutson & Wagenet, 1992) and MACRO3.1
(Jarvis, 1994) were used. These models differ substantially in their basic concepts for

calculating water flow (capacity concept vs. Richard’s-Equation), solute transport
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(displacement vs. convection dispersion) and the degradation and sorption behaviour of

pesticides (linear distribution coefficients (Ka) vs. Freundlich-isotherm; constant Kq vs.

variable Kg) (Table 1). The model parameters were determined a priori independently. The
simulation models were not calibrated with the data of the lysimeter study, a necessary
procedure if the models are to be used as assessmenttools.

To characterise the sorption behaviour of quinmerac in the lysimeter soil a sorption

coefficient (Koc-value) of 44 was estimated using an empirical formula (1) proposed by
Nortersheuser (1993).

yd
a*Com , C+ 7 pH

Kd (Com PH) = bic
ony PHrit }

\

with a = 28.84; b = 3.36; c = 0.06; d = 3.92; PHen = 4.41

The Freundlich-exponent (n) of quinmerac determined in sorption studies by Nértersheuser

(1993) with a similar soil (low organic carbon) was n = 0.85. The data of Nortersheuser
(1993) show anincrease of sorption of quinmerac with time and an assumedlinear rate of 9.9

(year') was calculated. Parameters for the degradation behaviour of quinmerac were estimated

from laboratory studies of Nortersheuser (1993) (sandy loam soil ‘Bruch-West’) at different

moisture and temperature regimes, assumingfirst-order kinetics. Only data from an incubation

period of < 100 days were used because of the danger of microbial exhaustion in the

laboratory studies. At reference temperature conditions (Tref) of 20 (°C) and a reference

volumetric soil moisture (ret) of 0 30 (em* cm”, = 50 % of maximum water holding capacity)

a reference half-life of 50 (days) was calculated. Parameters for temperature and moisture

dependance ofthe degradation rate as described by Walker (1987) were E, = 29.4 (kJ Mol’),

A = 859, b = 0.847 (days ©"). From the data of Nértersheuser (1993) a Q-value (linear

increase rate of degradation with increase of temperature of 10 °C) of 3.3 for the

characterisation of the temperature dependance of degradation in PELMO 1.5 and LEACHP
3.1 wascalculated.

The soil physical parameters of the K@)-relation (hydraulic conductivity- soil moisture) and

©;y)-relation (soil moisture - hydraulic head) according to Van Genuchten (1980) for the

models solving the common equation for soil water flow (Richard’s-equation) were estimated

using pedotransfer functions (PTFs) from Vereecken ef al. (1989) for PESTLA and MACRO

and for LEACHP with the internal implemented PTFs of Rawls & Brakensiek (1985). For the

top soil the estimated Mualem-Van Genuchten-parameter (residual soil moisture [,],

saturated soil moisture [O,], saturated hydraulic conductvity Ks) with the PTFs of Vereecken

etal. (1989) were @;=0.00 (cm? cm™), @,=0.37 (cm* cm™), Ks = 15.2 (cm d"), a= 0.480E-2,
n= 0.571. m= 1.14, L= 0.120 and combined with the PTFs of Rawls & Brakensiek (1985) the

parameters for Campbell’s-water retention equation were O,=0.379 (cm* cm”),

K, = 15.2 (cm d"), a = -0.455 (kPa), b = 4.67, p = 1.0. 



The formulae for the description of degradation by the different models and the parameter

values were

Ea
for VARLEACH 2.0 K,j(T,0)=eRTAO@*f,

Eq = 29 [kJ mol”], A = 859, b = 0.847; fz = 1, Kat = 0.44 + 0,04 * Vdays,

=b T=
oO ) ” Tref

Qo io f
Over ,

@rer= 0.3 [cm® cm], Tret = 20 [°C], b = 0.847; fz = 1, Qio = 3.3 [10 °C],
Kat = 0.44+ 9.9/365:1/n = 0.85,

for PELMO 1.5 Ka(T, 9) =Kea (Tree Oret) |

b

for PESTLA2.3 Ka(T,0)=e¥(-Trer)] * oil(2 ) fv

ref

y = 0.004, Tree = 20 [°C], @rer= 0.3 [om? cm™], b = 0.847; fz = 1, Kom = 26; 1/n= 0.85,

max(@, Oup)— Owp . I-Tyref
TT |Qi0 10

Omin-Owp

min = 0.05 [cm® cm™], Op = 0.02 [em® cm™], Quo = 3.3 [10 °C" ], Koc = 44; I1/n = 0.85,

for LEACHP3.1 Kel (T, 0) = Kea (Oret 5 Tor) ws

b

for MACRO 1.3 Kel (T, 0) = aly (T-Tyep)] * oa(2) fn

ref

y fixed at 0.008, Trer = 20 [°C], @rer = 0.3 [em® em™] b = 0.847, fz = 1, Koc = 44; 1/n = 0.85,

with Orc = field capacity, @wc = water content; ©wp = wilting point; Ea= Arrhenius’

activation energy, Kei = elimination rate; Oref = reference moisture content; Tref = reference

temperature; y, b, fz = correction factor for temperature, moisture and depth dependence of

transformation; Kat = Ka-value at day t; Qio = line’ ar increase of degradation rate with a rise

of temperature of 10°C

On May, 16th 1990 ['“C]quinmerac was applied onto sugarbeet in the lysimeter. Soil from

the plough layer was sampled 155 days after application and residues were analysed. The

percolate wascollected and analysed for residues. No significant residues of quinmerac could

be detectedin the leachate (Mittelstaedt ef al. 1994) which agree with modelresults (data not

presented). Pesticide residues in undisturbed soil samples and amount and time course of

percolate were chosen for the comparison ofsimulated and experimental results.The study was

simulated until end of 1991.

RESULTS AND DISCUSSION

Low residues of quinmerac (1.4 % of applied amount) were detected in the 0-20 cm layer

after 155 days (Figure 1a) which contrasts to simulation results (Figure 1b-1le). The models

differed considerably in the simulation of the herbicide amount(1.5 - 34.0 % ofinitial) and

vertical distribution in the lysimeter (most in 0-20 cm vs. distributed in 0- >30 cm). With the

exception of MACROthe herbicide amount wasconsiderably overestimated by the models.
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This overestimation of residues is due to the reference half life of 50 (days) and the
degradation parameters determined by Nortersheuser (1993). The preliminary version of
MACRO 3.1, that was used, did not allow to vary the internal fixation of temperature

dependancy which wasset at y = 0.008 (= 50 kJ Mol").
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Good agreement ofthe relative vertical distribution of residues (i.e. most in top 0-20 cm)

was simulated only by VARLEACH and PELMO. These models consider variable

(= increasing) Kg-values with time. But their simulation of pesticide amount and by

VARLEACHalso water percolation (Figure 2) was insufficient. Statistical terms show that
MACROproduced the lowest root mean square error and had ‘the best model efficiency

(nearest to 0) (Table 1) thus supporting the differences between the model results shown

graphically 



Table 1: Simulated residues of quinmerac 155 days after application andstatistical criteria

for the comparison with measured values (measured =1.41 %) (Loague & Green 1990)

 

VARLEACH PELMO_ PESTLA_ LEACHP _MACRO
Residues [% of applied] 24.6 17.9 10.4 34.0 1.5

1 2,100
RMSE= 1¥(P;-0)) e 129.59 96.26 55.50 141.13 11.81

-220.42 -121.16 -39.61 -261.58 -0.84

-16.49 -11.71 -6.38 -23.14 
 

O = observed values, P = predicted values; EF = Modelefficiency;

RMSE= Rootmean square error; CRM = Coefficient of residual mass

Figure 2 show that PELMO could simulate the development of percolate to a sufficient

degree. MACRO and PESTLA calculated the accumulated percolate at the end of the

simulation period.
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Figure 2: Comparison of measured and simulated percolation of water from the

lysimeter

None of the models described pesticide behaviour (transformation, vertical distribution) and

water percolation to a completely satisfying degree. Comparing the different models PELMO
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and MACROshowedthe best description of the percolation of water during the lysimeter
study. MACROwasthe only oneyielding the correct total residues. However even in this case

the depth profile was wrongly described. Therelatively good results of PELMOillustrate that
the implementation of an important chemical process(i. e. increase of sorption with time as
confirmed by e. g. Walker, 1987, Gottesbiiren ef al., 1994) could override the disadvantage of

a very simplified concept of water flow. Unfortunately the complete climatic water balance of
the models could not be compared to experimental data as those shownby Printz ef al. (1994)

because the soil moisture in different horizons of the lysimeter soit core was not recorded.
Parameter values taken from the literature should be used carefully if used for different
scenarios.
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ABSTRACT

This paper assesses the predictive accuracy of the dual-porosity model MACRO.

Model simulations are compared with the observed behaviour of alachlor in
lysimeter and field experiments in two sandy loamsand oneclay loam. Theresults

suggest that preferential flow occurred at all three sites. Discrepancies between

model predictions and measurements wereattributed to inappropriate estimates of

parameters describing the macropore domain, and in the sandysoils, to an inability

of the model to account for by-pass flow in the soil matrix (‘fingering’). The

development of improved estimation procedures for macropore flow parameters

will lead to a more robust and accurate model suitable for managementpurposes.

INTRODUCTION

Pesticide leaching models are now being used as potentially effective and inexpensive

managementand decision-support tools. With this increasing use of simulation models,it

is vital that confidence can be placed in model outputs. This implies the need for rigorous

model validation and quantitative assessments of model predictive accuracy. It is important

that models incorporate treatments of all processes that are knownto significantly affect

pesticide fate and mobility. Preferential flow is perhaps one of the more importantprocesses

which, until recently, has largely been neglected. Preferential flow is a generic term used

to describe a range of physical non-equilibrium flow processes. In fine-textured soils,

macropores (e.g. shrinkage cracks, earthworm channels, root holes) dominate the soil

hydrology, operating as high-conductivity flow pathways by-passing the denser soil matrix

(Beven & Germann, 1982). Preferential flow has also been observed in unstructured coarse

sandy soils (Hillel, 1987), caused by large-scale profile heterogeneities such as horizon

interfaces, textural variations, or by water repellency. Preferential flow is critical for

pesticide leaching, since the biologically and chemically active topsoil may be by-passed.

Preferential movementof pesticides has been demonstrated by, among others, Kladivko et

al. (1991), Ghodrati & Jury (1992) and Harris et al. (1994). Preferential flow may be the

rule rather than the exception. From dye tracing experiments conducted at fourteen sites,

Flury et al. (1994) concluded that preferential flow was to be expected in most Swiss

agricultural soils. 



The dual-porosity MACRO model(Jarvis, 1994) is a physically-based model accounting

for macropore flow. The soil porosity is divided into macropore and micropore domains,

each characterized by a flow rate and solute concentration. Richards’ equation and the
convection-dispersion equation are used to modelsoil water flow andsolute transport in the

micropores, while a simplified capacity-type approach is used to calculate fluxes in the

macropores. Mass exchange betweenthe flow domainsis calculated using approximate, but

physically-based, expressions based on aneffective aggregate half-width. Additional model

assumptionsincludefirst-order kinetics for degradation in each of four ‘pools’ of pesticide

in the soil (micro- and macropores, solid/liquid phases), together with an instantaneous

sorption equilibrium and linear sorption isotherm in each pore domain. This paper assesses

the performance of the dual-porosity model MACRO(v.3.1, Jarvis, 1994), run predictively

without calibration of model parameters. This assessment is based on comparisons of model

predictions with measurements of concentrations of the herbicide alachlorin three soils (one

clay loam and two sandy loams).

EXPERIMENTAL MEASUREMENTS

Full details of the experimental methods and measurementtechniques can be found in

Moon & Walker (1991) and Williamson & Carter (1991). Therefore, only brief details are

presented here. In the lysimeter experiment, seven replicate PVC columns, 11.5 cm in

diameter and 30 cm in height, containing undisturbed sandy loam soil, were collected in July

1990. Alachlor was applied on 5 November 1990at 8 kg ha’. The soil was bare throughout

the experiment. At c. 28 day intervals, individual columns were removedanddissected into

successive 2 cm segments, and soil extracts analysed for alachlor. Leachate was also

collected following significant rainfall events. Sampling continued until 22 April 1991.

The field experiments were located at Temple Balsall (near Birmingham). Alachlor was

applied at a rate of 1.92 kg ha! on twofields representing contrasting soils (Brockhurst

series clay loam, Hall series sandy loam), three days after drilling fodder maize in May

1993. Alachlor residues were measured by sequential core sampling at approximately 10 day

intervals from the soil surface to 10 cm depth. Alachlor concentrations in soil water were

measuredin suction cup samplers located at 3 depths (25, 40 and 80 cm depth in Brockhurst

clay loam; 25, 50 and 150 cm depth in Hall sandy loam). The suction cups were installed

vertically in auger holes backfilled with bentonite to the base of the topsoil. Water was

extracted under a tension of 700 cm H,O for a minimum of2 h, allowing samples of c. |

| to be collected. Sampling wastriggered by significant rainfall events and continued until

August 1993,

MODEL APPLICATION

Soil profile

Simulations were performed forsoil profiles 1.3 and 1.65 m deep in the Brockhurst and

Hall soils respectively. Drain tiles at 0.7 m depth and 5 m spacing were specified for the
Brockurst series clay loam, based on field observations. 



Hydraulic properties

Soil water retention curve parameters were estimated using pedo-transfer functions

developed on a subset (c. 180 soil horizons) of the SSLRC soil water retention database.

These functions predict Brooks-Corey parameters (Brooks & Corey, 1964) from soil particle

size distribution, organic carbon content and bulk density. The derived parameter values are

shown in Table 1. The residual water content was set ‘a priori’ to zero. The saturated

hydraulic conductivity values shown in Table 1 were estimated from the predicted soil-air

capacity or effective porosity (defined as the soil porosity minus the water content at a

pressure head of -50 cm H,O) using the functions described by Hollis & Woods (1989).

Saturated micropore hydraulic conductivity (K,, Table 1) was calculated from the estimated

water retention curve parameters using the approach outlined by Jarvis (1995). All remaining

soil hydraulic parameters in MACROwereset to the default values supplied with the model.

Thus, the effective aggregate half-width was fixed at 20 mm.

Pesticide properties

Degradationrate constants for alachlor were directly measured on soil samples taken from

the lysimeter sandy loam (Moon & Walker, 1991) and from eachidentified horizon in both

the Brockhurst clay loam and Hall sandy loam (A. Walker, pers. comm.). These data are

shown in Table 2. Sorption constants (K, values, Table 2) were also measured in batch

experimentsin the laboratory on soil samples from the lysimeter sandy loam and Brockhurst

clay loam. Sorption was not measured for Hall series sandy loam. Thus, the K, values for

Hall series soil shown in Table 2 were calculated assuming an organic carbon partition

coefficient K,. of 95 cm* g", derived from the measurements on the lysimeter sandy loam.

The exponentin the degradation soil water content response function (Jarvis, 1994) was

set to 0.6, based on laboratory measurements madeacross a range of soil water contents

using the sandy loam soil (Moon & Walker, 1991). Similarly, the exponent in the modified

Arrhenius equation accounting for temperature effects on degradation wasset to 0.1, based

on the results of laboratory experiments described by Moon & Walker (1991). The fraction

of sorption sites in the macropores was set to the default value in the model (= 0.1).

Degradation was assumed to occur at the same rate in solution and sorbed phases and in

macropores and micropores. Herbicide uptake by maize was assumedto be zero.

Crop parameters

Parameters related to root-water uptake in the field experiments on Hall and Brockhurst

series soils were set to default values supplied with the model. Dates of emergence,

maximum crop development and harvest were set according to field observations of the

fodder maize crops at the twosites.

Driving variables

Driving variables for the simulations consisted of daily potential evapotranspiration,

rainfall, and maximum and minimumair temperatures. Rainfall duration wascalculated from

measured daily rainfall totals assuming a constant rain intensity of 2 mm h". 



TABLE| Parameter input values : soil hydraulic properties.

 

Soil Depth Parameter
interval

(cm) K.s 8,

(mm h'') (m? m”°)

 

 

0-24 50.0 0.43

24-48 8.0 0.39

Brockhurst 48-89 4.0 0.36

89-130 §=4.0 0.06 0.31

Lysimeter 0-30 49.0 0.85 0.49
 

0-33 47.0 0.12 0.45

33-51 47.0 1.06 0.44

51-80 68.0 2.50 0.43

80-165 1080.0 3.67 0.56
 

total saturated hydraulic conductivity.

saturated micropore hydraulic conductivity.

boundary pressure head between macropores and micropores.

saturated water content.

water content corresponding to Wy.

wilting point water content.
pore size distribution index.

TABLE2 Parameter input values : pesticide properties.

 

Soil Depth Property

interval
(cm) Sorption constant Reference half-life

(K, cm’ g') (typ, d)

0-24 2.60 21

24-48 0.33 138

Brockhurst 48-89 0.27 230

89-130 0.53 493

Lysimeter 0-30 1.07 29

0-33 3.04 23

33-51 0.57 56

51-80 0.19

80-165 0.10

 

 

 

 

  



Initial and boundary conditions

The simulations were started assuming drainage equilibrium in the soil profile. A unit

hydraulic gradient was assumedas the bottom boundary condition in the Hall series sandy

loam. No flow was assumedat the base ofthe profile in Brockhurst clay loam. A boundary

condition suitable for gravity-drained soil columns was used in the lysimeter experiment.

RESULTS AND DISCUSSION

Field experiments

Figure 1 shows a comparison of model predictions and the measurements of alachlor

residues and soil water concentrations in Hall series sandy loam. The model performance
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Figure 2 Modelpredictions and measurementsof alachlor soil residues and soil water

concentrations (Brockhurst series clay loam)(note different scales on y-axes).

must be considered satisfactory, given that no modelcalibration wascarried out. The actual

amountof alachlor applied to the plot appeared somewhatlarger than that assumed (192 mg

m”), perhaps due to non-uniformity and variability in the application rate across thefield.

Despite this, the course of soil dissipation of alachlor is reasonably well predicted by the

modelusing the half-lives measured in the laboratory. At 25 cm depth, MACROpredicted

maximum concentrationsof c. 1.7 1g I', while a maximum concentration of c. 0.6 pg I’!

was observed(see Fig. 1). The timing of the peak concentration at 25 cm depth, observed

27 days after spraying, was well matched by the model, although an early breakthrough(c.

0.3 wg I', 3 days after spraying) wasslightly delayed in MACRO.This rapid transport to

the base of the plough layer was presumably caused by 14 mm ofrain which fell only two

days after application. With the exception of the initial breakthrough, the model accurately

matched the observed concentrationsof 0.1 to 0.3 ug I! at SO cm depth, during the summer

following application (Figure 1). The suction cup samplers detected a mean concentration
of 2.1 ug I! at SO cm depth, 10 days after application. The model could not match such an
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early breakthrough, which was presumably caused by 47 mm ofrain which fell during the

three days immediately prior to sampling. This heavy rain also resulted in breakthrough to

150 cm depth, with concentrationsof c. 0.4 ug I! detected 10 days after application (see

Fig. 1). This rapid response, which can only be explained by preferential flow, was not

predicted by MACRO.This is because the subsoil micropore conductivities (Table 1) were

sufficiently large to prevent generation of macropore flow. The preferential flow in Hall

series sandy loam may haveresulted from ‘finger’ flow, which MACROcannotsimulate.

Fingering may occur when conductivities increase with depth in the soil. This is likely to

be the case in Hall series (Table 1), where the subsoil is coarser-textured than the topsoil.

Figure 2 compares predicted and measured alachlor concentrations at the Brockhurst clay

loam site. Dissipation of alachlor was reasonably well predicted by the model using the half-

lives measured in the laboratory, together with the corrections for water and temperature

response. The model predicted a maximum concentration of c. 10 ug I! at 25 cm depth,

compared to the observed peak concentration of c. 16 ug I'. The model overestimated

concentrations for the remainder of the summer at 25 cm depth, and also for the entire

experimental period at 40 cm depth, where observed cocnentrations were always smaller

than 0.1 pg I'' (Fig. 2). In contrast, at 80 cm depth, concentrationsof up to 0.4 ug I'' were

detected, while those predicted by the model remained below 0.05 ug I'. Taken together,

these discrepancies suggest that the strength of interaction between the two pore domains

was overestimated in the model using the default value for aggregate half-width (20 mm),

and that a larger value for this parameter would be appropriate for Brockhurst clay loam.

It should be remembered, however,that the suction cup techniqueitself may notbe reliable

in structured clayey soils, yielding unrepresentative and/or highly variable results. It is

possible that the suction cups at 40 cm depth did not contact active flow pathways andthat

this may explain why only small concentrations of alachlor were detected at this depth.

Lysimeter experiment

Figure 3 compares model predictions and measurements of water outflow from the

lysimeters. The model overestimated outflow by c. 25 mm during the 160 day experiment.
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Figure 5 Model predictions and measurementsofthe distribution of alachlor in lysimeters.

This appears largely due to theinitial condition assumed (drainage equilibrium), rather than

to modelerrors in predicting either soil evaporation or soil water flow. Figure 4 compares

measurements andpredictions of total alachlor residues in the columns. It demonstrates that

the model closely reproduced the dissipation observed in the lysimeters, with c. 25% of the

applied amount remaining in the soil at the end of the experiment.

Figure 5 compares model predictions of concentration-depth profiles with measurements

made in four of the seven lysimeters. The model overestimated downward displacement by

c. 2 to 3 cm during the course of the experiment.It is possible that the K, value measured

in laboratory experiments on slurried soil was not representative of undisturbed soil in the

lysimeters, perhaps dueto sorption hysteresis. Assuming a K, value of 1.5 cm? g” improved

model performance (Fig. 5). However, an underestimate of sorption is not the only possible

reason for the results presented in Figure 5. Anotherlikely explanation is the occurrence of

preferential flow, not in soil macropores,but in the soil matrix as ‘finger flow’. If significant

amounts of water move throughthe soil matrix in preferred flow paths, withoutinteracting
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Figure 6 Model predictions and measurements of Alachlor

concentrations in lysimeter leachate

with the bulk of the pesticide stored in relatively immobile water, then the downward

movementof the peak will be overpredicted.

Figure 6 shows model predictions and measurements of concentrations in the lysimeter

leachate. The data indicate preferential transport of Alachlor, with maximum concentrations

of c. 50 wg I'' foundin thefirst significant outflow event. MACROdid notpredict this early

breakthrough using default parameters to describe the macropore domain (Fig. 6). Instead,

maximum concentrations approaching 40 ug I! were only predicted to occur at the end of

the experiment. Figure 6 shows that an early breakthrough of alachlor can be simulated

following model calibration, in this case by reducing the fraction of sorption sites in the

macropores from 0.1 to 0.02 and by increasing the aggregate half-width from 20 to 60 mm.

CONCLUDING REMARKS

Theresults of this model validation excercise must be considered encouraging, given the

extensive use of simple parameter estimation methods (pedotransfer functions) to derive soil

hydraulic properties and model default values. Soil dissipation of alachlor was adequately

predicted from laboratory measurements in all three experiments. In the field experiments,

concentrations measuredin suction cups at 25 and 50 cm depth in the sandy loam soil, and

at 25 cm depth in the clay loam soil, were reasonably well matched by the model.

Preferential flow apparently occurred in both sandy loam soils. The model did not

adequately predict this phenomena,either because default parameter values describing the

macropore system were inappropriate, or because soil macropores were not the underlying

cause. The model may need some modification before it can be used to predict rapid

transport processes(‘fingering’) in sandy soils. A three-domain model, including immobile

water in the micropores, may be a promising approach. 



In the clay loam soil, discrepancies between model predictions and measurements were

partly attributed to inappropriate estimation of parameters describing the macropore domain,

especially the effective aggregate size and the fraction of sorption sites in the macropores.

More research effort is required to establish improved estimation methodsfor these critical
model parameters.
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ABSTRACT

Manydifferent processes influence chemical leaching patterns, including

chemical kinetics, diffusion, matrix geometry and flow heterogeneity.

TRANSMIT,a multi-region model which reflects many of these

features, is described. Simulations of chloride and atrazine breakthrough

from soil columns which have immobile and mobile matrix regions as

well as a preferential flow region, and leaching ofatrazine in a similar

field soil, are demonstrated. TRANSMIT can describe a wide range of

multi-region and two-dimensional geometries, and is applicable to

transient and steady-state flow typical of both laboratory experiments and

field situations. Sorption and degradation parameters can be varied, and

non-uniform surface boundary conditions, resulting from irrigation

methods and banded chemical placement, can be described.

INTRODUCTION

Many modelsused to simulate chemical movementin soil use a one-dimensional

form of the Darcy-Richards equation for water flow and the convection-dispersion equation

(CDE)for solute transport, for example, LEACHM (Hutson & Wagenet, 1992). This,

and other simplifying assumptions such as uniform distribution of both infiltration and

chemicalfluxes across the soil surface, are not always valid (Brusseau et al., 1989;

Pignatello, 1989). In field applications, spatial variation in soil properties is common

(Nielsen et al., 1986). There is a need for a model which canreflect the influences of non-

equilibrium flow andsorption processes, and spatial variability in both soil properties and

surface boundary conditions. This paper describes such a model.

Various two-region models, incorporating a transfer process between mobile and

immobile regions, have been used to characterize physical non-equilibrium ( Passioura,

1971: Addiscott, 1977; Rao et al., 1980a,b; van Genuchten & Dalton, 1986; van

Genuchten & Wagenet, 1989; ). Analytical solutions for steady-state, CDE-based, single-

and two-region models are available (Parker & van Genuchten, 1984; van Genuchten &

Dalton, 1986; van Genuchten & Wagenet, 1989).

Alternatives to the two-region approach are based upon water flow in a mobile

region composed of fractures, macropores, fissures, and other non-capillary preferential

pathways not necessarily described by the Darcy-Richards equation (Germann & Beven,

1985; Wagenet & Germann, 1989; Germann, 1990 ). In other studies the stagnant region

wasreplaced with a slowly-permeable porous system, resulting in a dual-porosity model in
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which both regions are mobile and can be described by the Richards equation, but with
different coefficients (Gerke & van Genuchten, 1993). For field conditions where water

flow is transient, siow, and unsaturated, models considering a wider range of sorptionsite

and physical heterogeneity become necessary. This need has promoted the development of

multi-region models intended to more closely represent the high heterogeneity of field soils

(van der Zee & Riemsdijk, 1987; Steenhuis & Parlange, 1991).

Solute transfer under natural conditions is complicated further by variable soil

properties and geometry, leading to a wide rangeof diffusion distances and variable access
to sorption sites. In addition, surface relief, irrigation method, banded chemical
placement, row cropping, and non-uniform root distribution influence water and chemical

distribution, while chemical degradation and transformation rates may vary over short

distances.

The TRANSMIT (TRansport And Non-equilibrium Soil Multi-region Interpretive

Tool) model (Hutson & Wagenet, 1995) was developed in an attempt to reflect many of

the sources of variability which influence solute transport in heterogeneoussoils. It is an

extension of the LEACHM model (Hutson & Wagenet, 1992), in which a heterogeneous

soil hydraulic regime is subdivided into multiple hydraulically-interacting regions.

MODELING APPROACH

The theoretical basis of the model is described in detail in Hutson & Wagenet, 1995.

The soil profile is divided into horizontal segments of thickness Az (mm), further

subdivided into m regions (Figure 1). Water and solute can movevertically within a regicn

and horizontally between regions. All transport of water and solute is based upon Darcy's

law and the convection-dispersion equation. Two parameters define the geometry cf the

regions: relative cross-sectional area and an effective distance (d, mm) used for calculating

concentration and potential gradients. Each region occupiesa fractional area a; Mean

water and solute contents for each depth segmentare calculated from the values for each

region, weighted according to a,.
Rain/Irrigation
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Mobile
Contact
plane ,
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v Drainage
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Figure 1. Division of the soil profile into Figure 2. Areas of contact and direction of water
segments and regions, showing infiltration flow acrossa contactplane for a three-regionsoil,
and overflow pathwaysat the soil surface. assuming lowest matric potential in region 2 and

highestin region 3. 



Vertical fluxes are calculated for each region in turn, in order of increasing surface

permeability, for a time period f,,,,, usually set between 0.005 and 0.1 day. Vertical water

flow within each region is described by Richards' equation and vertical solute flux is

calculated from the convection-dispersion equation (CDE). The subdivisionsoff,,,, used in

the simulations within each region depend upon waterflux densities in the region, but sum

tO tna If the water application during a time step exceeds the infiltration capacity of a

region, then the excess wateris allocated to regions of higher permeability. Thus

infiltration is weighted to the more permeable regions as the water application rate

increases.

After simulating vertical flow in each region for a timeperiodf,,,,, horizontal

equilibration between segmentsis simulated for an equivalent period of time. Again,time

steps within f,,., are determined by water flux densities. Horizontal flow canreflect either
multi-region or two-dimensionalsoil geometry.

The multi-region conceptual model considers simultaneouslateral transport between

all possible pairs of segments at the same depth. Although 'vertical flow’ is simulated asif

the regions were simply vertical columns, they are conceived as having a complex,linked

geometry whichallowsfor the lateral interactions described in the model. All regions are

assumed to have some contact with each other, the area of contact being proportional to

their relative area or volumefraction. Conceptually, if the soil volume is broken at a

cross-sectional plane, and rejoined randomly then the most probable area of contact

between anypair of regions i and k acrossthe contactplane,as a fraction of total contact

area, is 2a,a, (for i #k).

In the three-region example (Figure 2) there are nine possible combinations of

regions across the contact plane. The effective diffusion distance is largest for region 1 and

smallest for region 3. If the current matric potential is lowest in region 2, intermediate in

region 1 and highest in region 3, then water will flow from region 1 to region 2, and from

region 3 to both regions 1 and 2. No flow occurs betweenpairs of similar regions because

no matric potential gradient exists. Thus the change in water content in region 2, for

example, is the sum of the flux between regions 1 and 2, and between 3 and 2. For m

regions, the change in water content in region i is the sum of the area-weighted fluxes

between i andall other regions, which can be written as a difference equation,

yr - Fyay Fy
i _ Pree ae Ws vi Vy vy [1]

——_——C -) 3 ———_
At m4 “Ax d

ik

where w is matric potential, At is the time step (j toj+1), C,, is the mean differential water

capacity during the time step, K;, is the mean hydraulic conductivity between regions / and

k, d,, is the distance over which the hydraulic gradient is calculated and Axis a size

parameter, discussed below. Eq. 1, written for each region, forms a matrix which can be

solved for the m unknown values of w/*?.

Solute transport between regionsis calculated in the same way. The mass flux

density (J,,) between two regions i and k across their contact plane, is 



+ Boa,¢ [2]b)

2° ik &

where C, and C, are meansolute concentrations in regionsi and k during the time step At,

Dj, is the effective dispersion coefficient (the sum of molecular diffusion and hydrodynamic
dispersion) and q,, is water flux density between regions i and k. The direction of water

flow determines the values of B, and B,; when q is negative (from i to k) then B, = 1 and

B, = 0, when is positive (from k to i) B, = 0 and B, = 1.

Assuming a linear sorption isotherm having partition coefficient K,, the total solute

concentration is the sum of sorbed and solution concentrations (C(@ + pK,)). The change

of concentration during At in region i is

, +1 j+1 j ; j1

(O7°CP - B1C7) + PyKas(CZ - c?) em [3]
At kl Ax
 

Writing Eq. [3] for each region, substituting Eq. [2] for J, and using 0 and q values arising

from the solution of Eq. [1], creates a matrix which can be solved for the m unknown

values of C*!.

TABLE1. Spatial scaling and weighting options in the TRANSMIT model(extract from

input data file).

 

[Numberof soil columns: 1 or greater ]

[Geometry: 2-dimensional (1), multi-region (2)]

[Overflow at the surface: yes (1}, no (0)]

{Lateral equilibration during infiltration: yes(1), no(0)]

[Vertical transport: yes (1), no (2)]

[Geometric scaling factor for hydraulic properties]

[Bulk density adjustment]

[Relative area]

[Depth of scaling, mm]

[Irrigation weighting, does not applyto rain]

[Chemical application weighting]

[Partition coefficient adjustment]

[Diffusion geometry parameter d' (= dAx), mm7?]

[Surface seal limit mm d"', not used for steady-state]

[Degradation rate constant adjustment]

[Distance for root:soil gradient, mm]

[Fraction of equilibrium sites, for two-site sorption]

[Phase transfer coefficient d™] 



The three parameters (a, Ax, and d) which define the geometry of the regions do

have some physical significance: a is the fractional area occupied by each region, Ax is a

'size' parameter, the width of a slice of soil encompassing all of the structural

heterogeneity (a first estimate, for example, may be based on the diameter of the largest

peds), and d (different between regions) is an effective diffusion distance or ‘shape’

parameter. In practice, Ax and d are combinedinto a single parameter(d') reflecting soil

diffusion geometry.

TRANSMITcanalso be configured as a two-dimensional model. Linear, radial and

spherical geometries can be represented, enabling simulation ofthe effects of furrow and

drip irrigation, row crops and banded chemical placement.

Table 1 lists a section of the input data file showing soil chemical and physical

properties which can be varied across regions. The data are those used in the example

described below.

APPLICATIONS

TRANSMITis demonstrated by simulating solute breakthrough curvesandfield

leaching behaviour for hypothetical single- and three-region soils. TRANSMITcan use

more than three regions if desired. Examples in Wagenet and Hutson (1995), for example,

show the consequencesofdistributing water retention and hydraulic parameterslog-

normally across five regions.

il hydraulic parameters

For a single-region soil (which can be simulated with LEACHM or TRANSMIT),

mean K(y) and @(w) curves are defined for the entire soil volume. The soil was assumed

to have a bulk density of 1.27 Mg m®, a porosity of 0.5208 m? m*, and 6(y) and K(y)
curves shown in Figures 3 and 4. More complex spatial variation of hydraulic properties,

structural units, and preferential flow paths can be represented in TRANSMIT, in which

each region may have different K(p) and 6(p) functions. A three-region soil was created

by dividing the soil into an immobile matrix (25% by volume), a mobile matrix (73%) and

a non-sorbing, preferential flow region (2%). The immobile region was defined as only

accessible by lateral diffusion and convection, and by prohibiting vertical water flow

through it. The preferential region had a lower water retention and much higher saturated

conductivity than the mobile matrix, but because it occupied only 2% of the soil volume, it

had a small influence on overall water retention (Figure 3) and unsaturated hydraulic

conductivity (Figure 4).

MeanK,values for the single- and three-region soils were 433 mm d‘at a matric

potential of -3 kPa, to allow comparative simulations of steady-state water flow at this

potential.

The simulations are sensitive to the value of d’, the diffusion geometry parameter for

each region. In these simulations the value of d, was fixed at 100 mm for immobile

regions, 10 mm for mobile matrix and 1 mm for the preferential flow region. Aqueous
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diffusion coefficients were assumed to be 160 mm? d", while dispersivity was set at 15

mim.
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Figure 3. Water retention curves for single- Figure 4. Vertical hydraulic conductivity
and three-region soils. for single- and three-regionsoils.

Solute breakthrough curves

Solute breakthrough curves were simulated for steady-state water flow at saturation

and at -3 kPa. Values for column length (210 mm),initial soil solution concentration (C,

= 0 at rt = #,), and influx concentration (C, = 1 for the initial 91 mm infiltration, C, = 0

thereafter) were used for all simulations. A non-interacting solute (CI) and a sorbing

solute (atrazine, K, = 3) were compared at two water flow rates and matric potentials:

1176 mm d"at 0 kPa, and 443 mm d"at -3 kPa. Prior sensitivity studies showed that 10

depth nodes (Az = 21 mm) and a timestep f,,,, which allowed 1 mm ofinflux provided

adequate numerical accuracy.

Field leaching simulations

Soil properties, chemical applications and boundary conditions represent those of a

herbicide leaching experiment conducted at Cornell University during the period July to

October, 1992. Soil properties were varied to represent the A and B horizonsofthesoil,

but the three-region representation extended throughoutthe profile.

RESULTS AND DISCUSSION

Solute breakthrough curves

For the three-region soil, differences in hydraulic conductivity between regions are

largest at saturation (Figure 4), leading to large differences in pore water and solute

velocities between the regions. Flow throughthe preferential flow region, occupying only
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2% of the soil volume,leads to early solute breakthrough (Figure 5) and thereislittle
opportunity for equilibration between regions. However, someof the solute diffused into

the matrix; the chloride peak is lower than that of atrazine because the diffusion coefficient

of chloride is about four times higher. Following the pulse, solute diffused from the matrix

into the preferential region, creating an elongated low-concentrationtail.
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Figure 5. Breakthrough of atrazine and chloride from single-region and three-regionsoils at two matric
potentials and flow velocities [1176 mm d', 0 kPa: ——=—=—=<(1-region), -=== (3-region);

443 mm d’, -3 kPa: (1-region), ---- (3-region)].

Whenthe water content was reduced to a matric potential of -3 kPa the preferential

flow region no longer conducted most of the flow, and the breakthrough curve wastypical
of a two-region, mobile-immobile system. These curves matched those predicted by

analytical solutions to the two-region CDE (the CXTFIT and CXT4 models of Parker and

van Genuchten, 1984).

In a multi-region soil, under steady-state flow, breakthrough curves depart from the

classic single-region pattern because pore water and solute velocities differ across the

regions. Differences in the vertical distribution of solute create lateral concentration

gradients which cause molecular diffusion between the regions. During steady-state flow

there are no matric potential gradients to drive lateral convective flux between regions.

Depending upon equilibrium matric potential and hence relative conductivities across the

regions, vertical convective flux densities may range from zero in immobile regionsto

several thousand times the application flux density in preferential flow regions.

Field leaching of atrazine

Chemical application and field sampling dates in relation to rainfall are shown in

Figure 6. Cumulative soil water flux at four depths, simulated by LEACHM (Figure 7)

suggest that water movementin a single-region soil diminishes with depth. Variability of

the measured chemical data wastoo high to allow firm conclusions as to which model was

most applicable. 



4

S
u
r
f
a
c
e
wa
te
r
f
l
u
x
,
m
m

C
u
m
u
l
a
t
i
v
e
wa
te
r
f
l
u
x
,
m
m

40 Sampling dates t oF Do

200 220 240 260 280 300 200 220 240 260 280 300 320

Day number, 1992 Day number, 1992

 

Figure 6. Chemical application and sampling Figure 7. Cumulative water fluxes simulated for four

in relation to rainfall, Ithaca, 1992. depths in the profile: =—_ surface; -=== 100 mm

= =
£ £
= s
a Qa
aa a

  
200 225 250 275 300 200 225 250 275

Julian day, 1992 Julian day, 1992

Figure 8. TRANSMITsimulationsof atrazine Figure 9. LEACHMsimulationsof atrazine

concentrations in a three-region soil. leaching in a single-regionsoil.

Concentrations are in units of relative mass

per volumeofsoil.

Simulations using TRANSMIT(Figure 8) were not very different to those using the

single-region CDE model (Figure 9). Unlike the steady-state column leaching simulations,

water flux through the regions wascontrolled largely by rainfall flux, and did not differ

across regions to the same extent. If rainfall flux densities were to increase (or surface

sealing increase), then overflow from less permeable to more permeable regions would be

accentuated. However some chemical, present in the preferential region after the initial

infiltration, was leached to the B horizon (Figure 8). A major difference between transient

and steady-state simulationsis that undertransient flow, matric potential differences can

lead to convective flux between regions. If water is removed from all regions by

transpiration, infiltrating water will move from more- to less-mobile regions, suppressing

chemical leaching.

Mostof the parameters used in the model are identical to those used in one-

dimensional models. The difficulty of quantitatively measuring input data values for the
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different regions means that the model should presently be considered primarily as an

educational and demonstration tool, aiding our understanding of how variousinteracting

factors can impact solute fate in heterogeneous soils. Characterization of the regions are

inevitably somewhat subjective at this point, based on conceptual models ofsoil structure

and variability. However, the model provides a research opportunity to relate such

phenomenaas aggregatesize distributions, spatial water retention and hydraulic

conductivity relationships, pedological profile descriptions (whichindicate soil structure),

root distribution, and presence of cracks and wormholesto transport of water and

chemicals.

The TRANSMIT modelhas several advantages over simpler two-region models. A

wider range of soil geometries can be described, and the modelis applicable to steady-state

and transient flow in both laboratory andfield situations. Although only someofthesoil

physical options were described in this paper, analogous simulations could examine the

effects of variability in soil chemical properties, degradation rates, and boundary

conditions. Two-dimensional options enable the effects of row cropping, irrigation method

and banded chemical placementto be reflected. Because the model makes provision for a

wide range of both physical and chemical variation in the profile, it could be useful for

predicting the relative effects of water content at the time of application, explaining the
slow release of chemical over long periodsof time, and predicting the effects of microbial

distributions on chemical degradation, to name but a few applications.
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ABSTRACT

Detailed mechanistic modelling of pesticide movement in cracking clay soils
requires the explicit consideration of water movement in macropores. The use of

the CRACK-P model to predict the movement of isoproturon on the Brimstone

Farm experiment is described. Issues of model verification are discussed, and

independent verification of hydrological components of leaching models is

suggested.

INTRODUCTION

Prediction of pesticide leaching presents a particular challenge to the modeller, requiring
considerations of hydrology and plant behaviour as well as of pesticide behaviour. The need

to evaluate new pesticides and to inform policy decisions and pesticide managementstrategies

has led to the development of a number of models. Leaching models can be created for

various purposes, which in turn define the approach to the modelling. Distributed models

aimed at the catchmentscale need to be simple, and are thus often empirically derived. These

need not understand the processes, but offer usable predictions from simple inputs. At the

other end of the modelling scale are detailed mechanistic models, which attempt to use the

basic principles of physics and chemistry to predict the behaviour of pesticides. These models

frequently require large parameter sets to describe the processes operating within them, and

are computationally expensive. The workreported in this paperis of the detailed mechanistic

type. Its aim is to understand and predict the movementofpesticides in cracking clay soils.

When it is complete and validated, it may be possible to use it to derive a simplified

intermediate level model, but that stageis still some wayoff. 



FIELD CONTEXT

The modelling reported in this paper usedresults from the Brimstone Farm Experiment, in

particular the pesticide leaching results described by Harris ef al., 1994. This site has been
used for many experimental investigations into the movement of water andsolutes in cracking

soils (e.g. Cannell ef a/., 1984; Harris et al., 1993a). The soil of the site is Denchworthseries,

whichtypically has 55-60% clay and extensive macropores. Effective drainage is required for

the utilisation of this soil for arable agriculture and is achieved by the use of mole drainage

which both introduces close-spaced drainage channels and increases the macroporosity. The

soil is typical of many cereal growing areas of central England. The Brimstone Farm site has

been intensively monitored since its establishment in 1978, and offers a uniquefacility of 20
field-scale plot lysimeters. The combination of detailed soil physical information, a complete

description ofthe site hydrology and detailed cropping information makesthis an ideal context

for modelling studies. The modelling effort concentrated on the fate of the herbicide,
isoproturon, through the winter of 1990/91. The herbicide was applied on 8 October 1990,

and its subsequent fate and appearance in drainage water were reported by Harris efal.

(1994).

PESTICIDE LEACHING MODELLING

The choice of a model suitable for predicting the leaching of pesticides from cracking clay
soils is not easy. Application of standard models, such as PRZM (Carsel ef al., 1984) or

CALF (Walker, 1987) which do not include any allowance for macroporosity, fail to

reproduce the hydrology ofthe site, and so fail to reproduce the leaching patterns (Harris ef

al., 1993b). Although the PRZM model mayrepresent a reasonable approximation to water

flow in a sandy soil, it is inappropriate forusein fine textured soils (Wagenet & Rao, 1990).

Two models wereidentified for application to this site: CRACK (Jarvis & Leeds-Harrison,

1987), and MACRO(Jarvis, 1991). Both were developed explicitly for macroporoussoils,

but differ in the way they conceptualise the water movementin the soil matrix. In both models,

soil porosity is divided into two components, macro- and micro-pores. Both models assume

that water flow into the macroporesis generated at the surface by aninfiltration excess and

that, once in the macropores, water moves rapidly downwards. Both models allow for

drainage of water from the macropores, and so give the opportunity to model the mole-

drainage system that is installed at Brimstone Farm. In CRACK, the macropores are

identified with the inter-ped boundaries, and the movement of water and solute into the

microporesis described by infiltration theory, water moves into the peds by sorption only and

out of them by crop extraction. The problem ofestimating the sorptivity of peds unmodified

by macropore flow, required by this model, has been resolved by the technique of Leeds-

Harrison et al. (1994). By contrast, MACRO describes water movement in the micropores

using unsaturated soil physical theory by solving the Richards' equation for movement of

water to depth under gravity drainage. In practice, the major difference between the two

models is that CRACK conceptualises the soil as layers of aggregates, into which water and

solute moves, whereas MACROconceptualises the soil as twolinked and interacting columns,

We chose to work with CRACK becauseits description of soil water movement is more

appropriate to the Brimstone Farm soil, and also because the important term describing the

rate of interaction between the macropores and the peds is derived from observable physical
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data in CRACK, whereas in MACROthis wasoriginally replaced by an empirical calibration

coefficient (though this has now beencorrected in the most recent release of MACRO,Jarvis

1994).

The CRACK modelincludes a description of the movement of a conserved solute (Jarvis,

1989), which has already been showntooffer a good description of both the hydrology and

the short term behaviour ofnitrate at the Brimstone Farm site (Armstrong ef a/., 1995). A

pesticide module was added to the CRACK model, based on the descriptions containedin the

CALF model ofNicholls ef a/. (1982), as modified by Walker (1987). The combined modelis

now called CRACK-P. Degradation is modelled as an exponential function, with coefficients

dependent on temperature and moisture content, so requiring the estimation of soil

temperatures from air temperatures using the techniques of Walker & Barnes (1981).

RESULTS

The CRACK-P model wasapplied to data from the Brimstone Farm site for two periods:

the whole of the winter period of 1990-91, and a six-day period in January 1991 for which

detailed data were available. The model wasthus evaluated for its ability to predict both the

behaviourof pesticides over the whole winter, and over short periods of time. Thefirst test

indicates whether the overall fate of the pesticide is modelled correctly, the secondindicates

whether the detailed mechanisms of pesticide movementare correctly predicted. The model

attempted to predict the fate of a single dose of isoproturon applied to the soil on 8 October,

and concentrated on the data from Plot 6 (Harris ef al., 1994, Figures 3 and 6), which was

considered to be the most representative of the drainage treatments. The over-winterfate is

shownin Figure 1, and the detailed behaviour of the model in Figure 2.

For the whole winter (Figure 1) the CRACK-P model reproduced well the general pattern

of behaviour of the site. It showed the site returning to field capacity in the beginning of

December, with the watertable remaining close to mole drainage depth for the rest of the

winter. The model, however,failed to reproduce the drying out ofthe site in the following

summer, and thus over-predicted drain flowsin the late spring. This reflects the lack of a

deep-drainage routine in the model. The pesticide behaviour was predicted well, with most of

the pesticide lost being moved at high concentrations in the first few major flows. The

predicted soil concentrationsindicate that most ofthe pesticide wasrestricted to the top layers

of the soil, in agreement with the data reported by Harris ef al. (1994, Figure 7). These data

indicate that higher concentrationsof pesticides in drainage water originate close to the soil

surface, and that they are transported without any major re-sorption through the macropore

system to the drains. Figure 2 showsthe short-term behaviour of the model for the period

when frequent measurementsofpesticide concentration in drainage water allowed comparison

with model results. The agreement is remarkably good, in both representing the

concentrations and in reproducingthe dilution effect of large flows.

Theresults demonstrate that models designed specifically for cracking clay soils are capable

of predicting the behaviour of pesticides in those soils, whereas standard models such as

PRZM perform poorly in this respect (Harris ef a/., 1993b). A similar result for nitrate

leaching at the samesite was observed by Armstrongefal. (1995). Movementin cracking clay

soils cannot be modelled using conventional soil models, but need models that explicitly
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Figure 1. Results of CRACK-Pfor the winter 1990-91
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Figure 2. Results of Crack-P for a 10 day period in January 1991
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consider the macropores. This identifies a potential difficulty for any regulatory use of

models: for either screening or registration purposes, evaluation of a potential product for a

rangeofsoils scenarios will require the use ofdifferent models.

DISCUSSION: MODEL VALIDATION

Detailed mechanistic models of the complexity of CRACK require many parameters. Only

sites of the complexity of Brimstone Farm allow manyofthese to be collected, and even for

this exercise some parameters are less securely based onfield observation than is ideal. An

alternative approach (adopted bythe earlier versions of the MACRO model)is to calibrate

empirical parameters from observation, but this procedure is impossible to apply to a newsite.

CRACK-P offers, in principle, the opportunity to measure all the relevant parameters

independently. The most important parameter, the size ofthe structural units, which gives the

frequency of macropores in each soil layer, can be established by field inspection.

Nevertheless, the use of detailed mechanistic models does raise the issue of the spatial

variability of input parameters. Sensitivity analyses, such as that carried out by Jarvis and
Leeds-Harrison (1987) for the CRACK model, may indicate those parameters which are most
likely to lead to problems, butthere are few data to indicate the likely magnitudeofthe spatial
variability.

Validation of such models presents a particular set of problems. Because these models

predict many output variables, there is a need to validate the model for several of the output

series. Loague & Green (1991) identify some statistics that can be used to describe the

goodness of fit, using differences between the observed values and model predictions.

Pesticide models generally have the added problem that the number of observationsvaries

dramatically between variables. At Brimstone Farm drain flows are recorded every half hour,

but pesticide concentrations are available for no more than 20 to 30 samples per plot-year.

Although the pesticide data may be the most sparse, they are also the most important, and any

model validation must take note ofthe relative importance of these sparse data points.

A more robust validation procedure might then be to evaluate each model component

separately. A successful pesticide leaching model would then be expectedto predict the water

balance, water discharge from theprofile, and water table depth, all verified independently of

the solute performance. Equally, it would be expected that the model should then make

acceptable predictions of the overall degradation of the pesticide throughout the year. The

combined model mustalso betested for its predictions of short term behaviour. We suggest

that the ability to mimic short term behaviour within a longer term simulation is probably an

"acid test" for most models.
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ABSTRACT

Models that assume equilibration of sorption should only be usedto assess risk of

leaching ofpesticides in soils that exhibit chromatographic flow. A macropore modelis

required for the majority of soils. The macropore model PLMis able to mimic accurately

the trace concentrations of compoundsfoundin leachates. The ability of macropore
models to makepredictive simulationsisstill uncertain because simulated concentrations

are extremely sensitive to the parameters that describe macropores. The PLM modelis

easy to use and is probably mostuseful for simulating lysimeter experiments for which

difficult-to-obtain soil physical data are not readily available.

SIMULATIONS AND MACROPOROUSSOILS

The models CALF (VARLEACH), LEACHM-P, PESTLA and PRZM (PELMO)

(Nicholls et al 1982; Wagenet & Hutson 1992; Boesten ef al 1991; Carsel et al 1985) are

used to simulate leaching and degradationof pesticidesin soils. The models do not

simulate preferential or bypass flow of trace concentrations of pesticides through soils

because they assumethat sorptionis alwaysat equilibrium during leaching. The models

are therefore usefulto predict the distribution of the predominant proportion ofthe

applied compoundin the cultivated layer but should only be used to predict leaching to

drains and surface waters for soils that are known to exhibit chromatographic flow. Of 14

soils investigated by Flury et al (1994)using a dye tracer, only one soil exhibited

chromatographic flow with all others showing preferential or bypassflow. After

simulating concentrationsof herbicidesin leachate from lysimeters containing Swedish

soils, Hall (1994a) and Jarvis et al (1994) concludedthatpreferential flow occurredin all

five soil types tested, including two sandysoils as well as three structured soils.

In lysimeters, preferential flow is indicated whenpesticide is observedin thefirst

leachate collected after application of the compound. In the Swedish study (Hall 1994a),

dichlorprop, which was completely degraded within 11 days in laboratory incubations of

topsoil, was found in leachate more than 300 days after application. The presence of

dichlorprop in leachate wasonly simulated by moving the compoundbypreferential flow

1 Present address:Institute of Resource Assessment, University of Dar es Salaam, Tanzania. 



down to a depth where rates of degradation were assumedto beslow.It is concludedthat
a macropore modelis required to predictrisks of leaching for the majority ofsoils.

HYDRODYNAMIC DISPERSION

In tracer experiments, a band of chemical spreads as it moves through a porous bed. A
small degree of spreading results from simple thermaldiffusion because this continues
after elution has stopped. In soils, most spreading is due to hydrodynamic dispersion
caused by different solute moleculesbeing carried along different pathways through the

porous matrix. In a well packed bed of small particles, the band shape of the chemical
subject to dispersion is similar to that which results from diffusion but the band is much
broader. In structuredsoils, there is a variety of pore sizes, and so spreading bandsare

even broader and also skewed because a small proportion of chemical movesclose to the

water front whilst some chemical is immobilised in pores remote from the main channels

of downward flow. It is important to understand and simulate dispersion because a

quantitative knowledge of the small proportion of chemical movingin the channels of

fast flow is a sine qua nonfor the predictionofthe risk of the chemical reaching ground

and surface waters. Dispersion increases with the velocity in soil pores the greatest

spreading occurring at high flow rates. However, hydraulic conductivity, used in some

models, is only an average value of waterflux and does notdirectly give rates of flow in

the largest pores in whichfluxes are greatest. It was thus important to checkthe ability of

PLM to simulate dispersion by comparing simulations with measurements of non-sorbed

tracers such as bromide and chloride ions (Hall, 1993; Hall & Webster, 1993).

Non-adsorbedtracers applied to the surface of a soil can occur in leachate in a pulse of

relatively high concentration because of preferential flow in macropores. Concentrations

of tracers that are spread evenly down thesoil profile, such as nitrate, sharply decrease in

concentration in leachate during a drainage event due to bypass-flow of water from the

surface. At Brimstone Farm,the decrease in nitrate concentration starts with the onset of

the drainage event and levels out when flow (the hydrograph) reaches its maximum

(Armstrong & Burt, 1993).

Models such as PLM and CALF (VARLEACH)usethe idea of mobile and immobile

water categories to simulate dispersion by allowing chemical to move in mobile water but

not in immobile water. This approach reduces the requirementfor difficult-to-obtain soil

physical data such asdispersion, soil-water pressure and hydraulic conductivity functions.

The simulation of dispersion in field soils will probably always be rather inaccurate

because movementof trace amounts of chemicals to great depths is quantitatively very

sensitive to the size, variability and continuity of the largest pores and fissures. Such

precise data may never become widely available and so accurate prediction of trace

concentrations of organic compoundsreaching ground and surface waters may never be

achieved using readily available input data. 



NON-EQUILIBRIUM SORPTION

In liquid chromatography, a band of sorbing chemical spreads as it moves through a

porousbed partly due to hydrodynamic dispersion and partly due to adsorption.

Adsorption retains some molecules whilst others move.It is observed that, for a column

of givenlength, eluted bands of the more strongly retained compoundsare broaderthan

those of the more mobile compounds.If sorption is at equilibrium during elution bands
are relatively narrow and symmetrical. In soils, when flow in macroporesis too rapid for

equilibration of sorption to be maintained, trace amounts of a compound can spread
rapidly down the soil profile. Therefore a leaching model must simulate both the broad

and skeweddispersion, described above, and non-equilibrium sorption for solute

associated with water in the macropores.

DESCRIPTION OF THE PLM MODEL
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Figure 1. Diagram of the PLM model

PLMis fully described and documented by Hall (1993,1994a,1994b). PLMis a layer

model with the layer thickness set at 5 cm, and calculations are donefor intervals of one

day. Within each layer (Figure 1), soil solution is divided into mobile and immobile

categories, with the divisionset at -5 kPa (field capacity) and with only mobile water

being displaced during drainage. The broad dispersion and non-equilibrium sorption that

occurs in macroporoussoils is modelled by subdividing the mobile waterinto 'slow' and 



‘fast’ categories. Solute in the top layer equilibrates with any 'slow’, 'fast' and immobile
water present and withthe soil-solid phase for sorption. In lower layers, lateral

equilibration of solute is only among 'slow' mobile and immobile water and with soil-

solid phase for sorption. Belowthe top layer, solute in the 'fast' mobile water only

interacts with othercategoriesif lateral flow of water occurs. Thus solute can penetrate

deeply into the soil profile by moving with the 'fast' mobile water. Lateral flow occurs

whenwaterreaches lowerlayers in which immobile or'slow' mobile water categories are

unfilled. Then, water moves into immobile pores before mobile andinto 'slow' before

‘fast’ pores. Preferential flow will only occur whenrainfall intensity is sufficient to allow

waterinto 'fast’ mobile pores.

Processes such as evaporation of water and transpiration by crops are described by Hall

(1994a). Sorption is calculated from linear isothermsas a function of soil depth and time.
Degradation of parent compoundis calculated as a function of soil depth, temperature and

soil-water content. A numberofsoil parameters, viz « (fraction of mobile water moving

from one layer to the next during flow), B (hold-backfactorrestricting equalization of

solute concentrations during diffusion), ng and ng (numberof layers passed through

during 'slow' and'fast' drainage), can be given default values (a = 0.9, = 0.1, ng = 7, nf=
15). Thus the model can often be calibrated by adjusting only one sensitive soil parameter

viz P¢ (% of ‘fast’ pores in the mobile phase). However,it is necessary to ensure that the

rate of degradation of the pesticide in the lower layers ofthe soil profile has a realistic

value.

SIMULATION RESULTS

Results for a weakly sorbed pesticide applied in spring to a fallow lysimeter (0.8 m

diameter; 1 m depth) at Rothamsted are given in Figure 2. The soil was a sandy loam

containing up to 29% clay in the lowest layer. The lysimeter was exposed to natural

rainfall up to day 260, after which some irrigation was applied to maintain average
rainfall. The PLM simulation was made using measured data wherepossible but the

output was optimised by adjusting the Pr parameter (%of'fast' pores in the mobile phase)

and rate of degradationin soil layers where data from laboratory incubations was not

available. The observed early appearance ofpesticide in leachate indicates that macropore

flow occurredin this soil. Optimisation allowsclosefitting of simulated to measured

data. In later work the model wascalibrated using a mobile compound inthree different

soil types and simulations were subsequently made of leaching of a less mobile

compound without changing soil parameters in the model. Again, simulations showed

useful agreement with measured concentrations in leachate, albeit not as close as that in

Figure 2.
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Figure 2. Measured and simulated concentrationsof a pesticide in lysimeter leachate.

CONCLUSIONS

Models that assumeequilibration of sorption should only be usedto assess risk of

leaching ofpesticides in soils that exhibit chromatographic flow. Models incorporating

macroporeleaching are able to mimicaccurately the trace concentrations of compounds

found in leachates. The ability of macropore models to makepredictive simulationsis

still uncertain because simulated concentrations are extremely sensitive to the parameters

that describe macropores. The PLM modelis easy to use and hence is probably most

useful for simulating lysimeter experiments for whichdifficult-to-obtain soil physical

data, such as solute dispersion coefficients and hydraulic conductivity functions,are not

readily available.
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