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ABSTRACT

The scale and structure of the spatial variation in degradation of

isoproturon, chlorpyrifos and chlorothalonil were quantified. Degradation

rates of the three pesticides all showed similar structures in their spatial

variation and their persistence was shown to be strongly correlated with

both pH and microbial activity estimated by dehydrogenaseactivity.

INTRODUCTION

It is well known that soil properties vary in space and this variation appears to be random but

spatially dependent. Flury (1996) commented that in terms of pesticide fate modelling,
aspects of spatial variation in pesticide-soil interactions have generally been ignored, and that

there is little information concerning the structure and scale of variation in pesticide fate.

Recent work has shown that significant spatial variation occurs in isoproturon (IPU)

degradation rates (Walker ef al., 2001; Wood ef a/., 2001) and sorption (Lennartz, 1999)

within a single field. There is a need to evaluate the significance of this spatial variation in

degradation and sorption in terms of pesticide performance at the field scale and the

assessment of environmental fate. Novak et al., (1997) investigated the variation in sorption

of atrazine within a field, and used geostatistical techniques to quantify the scale and structure

of the variation observed. Richter ef al., (1996) reviewed the role of geostatistics in the

modelling ofpesticide fate.

The method of geostatistical estimation is known as kriging. The main aim of the present

work was to use kriging to identify the spatial patterns in pesticide degradation rate and

sorption across a specific study area. A secondary objective was to define an approach for

soil sampling that would be suitable to estimate the behaviour of pesticides within a single

field.

METHODSAND MATERIALS

Field site and sampling strategy

The study area was Deep Slade field at Horticulture Research International, Wellesbourne

(grid ref: 426820,255600). The soil was classified as a sandy loam ofthe Wick Series. 



In January 2000, a 240 m x 240 m grid waslocated in Deep Slade field with nine main grid
nodes at 120 m intersections, which were located using an electronic distance measurement

machine (Geodimeter 400). The grid covered most ofthe studysite with a boundary of 30 m

around the edge ofthe field. The sampling scheme was an unbalanced nested design, and a
hierarchical analysis was used to estimate the components of variance associated with
different scales and minimise the numberof samples required (see Webster & Oliver, 2001).

The scheme covered a range of distances in a single analysis with a minimal number of
samples. A samplinginterval of 1 m was chosenfor the lowest stage as this was expected to
encompass most of the small scale variation. The other intervals followed an approximate

three-fold geometric progression with further samples at 3, 9 and 27 m, with two further

stages at 60 and 120 m. Although the position of the nine main nodes was predetermined
(120 m spacing), the positions of all other sampling points were located on random

orientations. In total 108 soil samples were collected with 12 samples from each node

(Figure 1).

In January 2001, a 180 m x 180 m grid was relocated in Deep Slade field to cover an area

within that sampled in the previous year. A soil sample was taken every 20 m along the

horizontal and vertical lines of the grid to give a total of 100 soil samples from the study
area.

Soil analyses

Individual soil samples of about 1 kg were collected from each sampling position in both

years. Precautions were taken to minimise cross contamination between samples (Walker er

al.,2001). The soil samples wereleft to air-dry overnight before being sieved to 2 mm. The

sieves were cleaned with ethanol and dried in an oven at 110°C between successive samples

to further minimise microbial cross-contamination. Soil pH was measured using a glass

electrode in a 1:2.5 suspension of soil/distilled water and organic matter content was

estimated byloss on ignition at 450°C (Rowell, 1994). Soil dehydrogenase activity was

measured as outlined by Tabatabai (1994) and microbial biomass was estimated by the

fumigation-extraction method (Mele & Carter, 1996).

Soil incubations and pesticide residue analysis

Soil samples taken in January 2000 from the nine main grid nodes were used to measure the

average maximum water holding capacity (MWHC)and the average moisture content at

40% MWHCwasthen derived. Four sub-samples (25 g) from each of the 108 samples were

weighed into glass jars (125 ml). All sub-samples were treated with an aqueous suspension

of a commercial formulation of isoproturon (Arelon SC) to give an initial concentration of

15 mg IPU/kgsoil. Soil moisture contents were adjusted to 40% ofthe average MWHC. A

treatment check wascarried out after every 50 samples dosed to ensure constant application

rates. All soil samples were incubated at 15°C and moisture contents were maintained by

addition of sterile distilled water when required (usually once a week). Samples were

extracted at 7, 14, 21 and 35 days after application, and four extractions immediatelyafter

application were made with soil from each of the nine main grid nodes. After the first day of

incubation, all samples were shaken gently to thoroughly mix the IPU throughoutthe soil.

Isoproturon residues were extracted by shaking the soil samples with 30 ml of

acetonitrile/water (90/10 v/v) in the 125 mlglass jars on a wrist shaker for 60 minutes.
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The average MWHCfor the soil samples collected in January 2001 was determined as
above. Three sub-samples (25 g) from each of the 100 soil samples were weighedinto glass
jars (125 ml). The soils were dosed individually to obtain 15 mg/kg of IPU, chlorpyrifos or
chlorothalonil. They were incubated as before and the pesticide residues were extracted as
above at 21, 35 and 69 d for chlorothalonil, IPU and chlorpyrifos, respectively.

Pesticide concentrations were measured by high performance liquid chromatography (hplc)
using Kontron Series 300 equipment. The column used was a Lichrosorb RP-18 (25 cmx 4
mm i.d., Merck). The solvent system used for isoproturon and chlorothalonil was
acetonitrile:water:orthophosphoric acid (75:25:0.25 by volume) at a flow rate of | ml/min.

Detection of these two pesticides was by UV absorbance at 240 nm and 235 nm,

respectively. Chlorpyrifos was analysed at 240 nm using a mobile phase of 85:15
acetonitrile:water.

RESULTS & DISCUSSION

The relationship between soil pH and IPU remaining after 21 days was non-linear (Figure 2).

Soil samples with pH less than 6.7 generally contained high residues of IPU and those with

pH greater than 7.0 had considerably lower IPU residues. Similar relationships were

observed between IPU residues and total microbial biomass, with high IPU residuesin soil

samples with less than 100 mg microbial C/kg.
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Figure 2. The relationship between

: : . . IPU residues and soil pH
Figure 1. Spatial configuration of sampling points (nested sampling)

for one of nine main grid nodes

The accumulated components of variance for the soil properties and IPU residues were

plotted against distance on a logarithmic scale as a first approximation to the variograms.

Generally the results indicated that the components of variance for the five lower stages

accounted for at least 60% of the total variance i.e. a large proportion of the variation

occurred at less than 60 m (e.g. IPU residues; Figure 3a). An exception was soil pH (Figure

3b) where stage 1 (120 m) accounted for 55% of the total variation. The sampling scheme

generally accounted for much ofthe variation observed. A larger interval (>120m), however,
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would begin to explain the unresolved variation observed above 60 m. Walkerefal, (2001)

measured the variation of IPU degradation at samplingintervals of 50 m. The data in Figure

3a show that 50% of the variation observed in degradation occurred at less than 27 m,

indicating that a smaller sampling interval would be optimal for the measurement of IPU

degradation. However, sampling for soil pH at a spacing of less than 60 m would be a waste

of resources and time as only 27.6% ofthe variation is accounted forat less than 27 m.
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Figure 3. Accumulated components of variance plotted against distance on

logarithmic scale: for: (a) IPU residues and (b) soil pH first approximation

to variogram (nested sampling)

A 20 m interval was chosen for sampling in the second experiment to ensure that mostof the

variation in IPU persistence observed in the field would be accounted for. Most of the

variates had near-normal distributions. Natural log-transformations were used to reduce

skewness on data sets that were not normally distributed. Experimental variograms were

computed from the data as described by Webster & Oliver (2001). Variogram models were

fitted to the experimental values by weighted least squares approximation. The models that

minimised the sums of squares were chosen. All the variables measured showed some

evidence of spatial dependence. The nugget variances, i.e. the positive intercept on the

ordinate were small suggesting that the sampling had resolved the variation well (with the

exception of that for chlorothalonil). This embraces measurementerror, but mainly variation

associated to distances less than the sampling interval used. All of the variograms were

bounded and had ranges varying between 60 m and90 m,e.g. chlorpyrifos residues (Figure

4a) and dehydrogenaseactivity (Figure 4b). Using the appropriate variogram model and data

for each variable, the kriging equations were solved to obtain estimates at 10 m intervals and

the associated estimation errors for a blocksize of 10 m.
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Figure 4. Variogramsfor: (a) chlorpyrifos residues and (b) dehydrogenase activity

(grid sample) 



The kriged estimates of the soil properties and pesticide persistence were contoured and
mappedsothattheir patterns ofvariation could be examined (Figure Sa-5d). The mapsofall
of the variables showa distinctly patchy distribution in the values. The maps of

dehydrogenase, soil pH (data not shown) and residuesofthe three pesticides all show similar
distribution patterns. The variogram models for the pesticides and the soil properties were
also similar with ranges of approximately 70 m. The northern part of Deep Sladefield
showed high values for dehydrogenase activity and soil pH and these correspond well with

small values of pesticide residues. The extremes of this relationship are shown well in the
contoured maps, Figure 5.
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Figure 5 Mapofkriged estimates for: (a) soil dehydrogenaseactivity, (b) IPU residues

(35 days), (c) chlorpyrifos residues (69 days), (d) chlorothalonil residues (21

days). Based on laboratory measurements on samples from Deep Slade field

(2001). The quantities of pesticide are expressed as residues remaining from

an initial concentration of 15 mg/kg.

For the modelling of the environmental fate of pesticides, geostatistics has the potential to

describe the variation accurately. It has been shownto provide an insight into the scale at

which variation in pesticide degradation rate (and sorption) occurs within the studysite. It
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has enabled conclusions to be drawn concerning the effect of soil properties on pesticide

degradation even when conventional correlation analysis does not suggest significant

relationships. The data can be usedto indicate areas at high risk with respect to pesticide

leaching. After running the LEACHP model for 208 sub-sites within a single field Oliver et

al, (1999) concluded that significant leaching losses of atrazine would occur from only 10%

of the 9 ha site, and the contribution through leaching to groundwater from the other 90%

would be negligible. The data presented here indicate that small areas of Deep Slade field

(where persistence is greater) would contribute more to possible leaching losses and that

there is large within-field variationin the variables controlling pesticide availability.
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ABSTRACT

Current risk assessment procedures for estimating the possible environmental

impact of crop protection products do not explicitly account for uncertainty in

exposure estimates and ecotoxicological endpoints. The level of protection

provided by the use of safety factors in the risk quotient approach is unknown.

Probabilistic risk assessment is considered as a possible refinement to procedures

in place and Monte Carlo approaches have been proposed to obtain morerealistic

assessments of exposure. A numberofscientific challenges need to be metfor the

approachto be robust and useful with regard to risk assessment. These include:i)

attributing probability density functions to input parameters and choosing how

much uncertainty to include in the analysis; ii) addressing correlation between

parameters; iii) dealing with sources of uncertainty which are not covered by

Monte Carlo simulations; and, iv) making decisions on the basis of probabilistic

information. Effective risk communication is essential for probabilistic risk

assessmentto be accepted byall stakeholders.

INTRODUCTION

Current environmental risk assessment procedures for pesticide registration in the EU rely on

the comparison between exposure and ecotoxicological endpoints (surface waters) or a legal

threshold concentration (groundwater). A tiered approach is implemented to focus on those

compounds which might be harmful to the environment and not penalise those which pose

little threat. Relevant ecotoxicological endpoints are typically derived by laboratory tests

using a range of representative organisms although a range of relationships between

ecotoxicity and compound properties may also be used in the early stages of the risk

assessment. In contrast to the derivation of effect concentrations, the estimation of predicted

environmental concentrations for exposure (PEC's) relies heavily on the use of predictive

models, especially at highertiers.

For surface waters, the ratio between PEC's and ecotoxicological endpoints is calculated

(termed TER for Toxicity:Exposure Ratio) and compared to threshold values which are

dependenton the target organism considered (typically 10 or 100). A compoundis considered

to pose little threat to surface water organisms if TERs exceed the relevant threshold. For

groundwater, PEC's for the parent are compared to a limit concentration of 0.1 pg a.i./l,

irrespective of the toxicity and ecotoxicity of the compound.

Current risk assessment procedures are likely to be subject to significant uncertainty

originating from both the exposure and the effects side. Uncertainty is indirectly taken into

account in the process through the use of TER threshold values which act as safety factors.

The level of protection provided by these safety factors is unknown and a number of
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initiatives are currently underway to try to quantify associated safety margins. Uncertainty in

the derivation of ecotoxicological endpoints may arise, for instance, from not knowing the

most sensitive species or from the use of constant concentration in laboratory tests. A range of

initiatives have been proposed to make ecotoxicological endpoints morerealistic, including

the establishmentof species sensitivity distribution, the refinement of experimental conditions

and the use of microcosm/mesocosm studies. Uncertainty on the exposure side may be

addressed using probabilistic modelling.

Thepresent paperpresents the different sources ofuncertainty in the assessment of PEC's and

discusses the appropriateness of methods proposed to deal with uncertainty in exposure.

SOURCES OF UNCERTAINTYIN PESTICIDE FATE MODELLING

"Uncertainty" is a capaciousterm used to encompass a multiplicity of concepts (Morgan and

Henrion, 1990). According to these authors, uncertainty in empirical quantities may be

classified according to the different sources from which it can arise: random error and

statistical variation, systematic error and subjective judgement, linguistic imprecision,

variability, randomness and unpredictability, disagreement, and approximations. Uncertainty

mayalso originate for other reasons, for instance from the fact that environmental models

only provide an incomplete description of reality. For the purpose of clarity, we use a

classification of sourcesofuncertainty based on their occurrence in relation to the modelling.

Uncertaintyarising prior to any modelling activity

Although a numberofinput parameters in pesticide leaching models have no physical basis

and cannotbe determined experimentally, values for most inputs can be estimated onthe basis

of field or laboratory measurements. Examples include model input related to soil and that

related to pesticide sorption and degradation properties. The field environmentis inherently

variable in space and timeand this variability will introduce uncertainty into the modelling.

Wood et al., (1987) reported Koc values varying from 66 to 1445 I/kg in a 4-ha field

(coefficients of variations 17-47%) while Elabd et al., (1986) reported a CV of 38% forthe

Koc of napropamidein a 0.6-ha plot. Walkeret a/.,(2001) found large variation of isoproturon

degradation in 30 samples taken from a 5-ha field (DT50 6.5 to 30 days). Apart from natural

variations at the field scale, variability arising prior to modelling may originate from the use

of different sampling techniques in the field, differences in sample storage and preparation

(e.g. frozen vs. refrigerated soil samples; air dried vs. moist soil samples), the use of different

procedures for analytical measurements or different environmental conditions in the

laboratory.

Uncertaintyarising from model parameterisation

One of the most important stages in modelling is the attribution of a value to each input

parameter of the model. Although experimental data can be directly fed into the model in

someinstances(e.g. rainfall and temperature data, molecular weight of the compound), model

parameterisation traditionally requires manipulation of field or laboratory measurements.

Uncertainty may arise becauseof the variety of procedures in deriving an input value from

experimental data. The derivation of a DTS0value from a set of laboratory degradationdata is

a typical example. Leake et al., (1995) used a degradation dataset (decrease in pesticide
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concentrations over time) and calculated DTSO values using a range of equationsandfitting

packages. Resulting DTSO values ranged between 4 and 93 days (mean 27.9 days; median

21.0 days). Uncertainty in the selection of a DTS0 value maythenarise from theselection of a

representative value (typically mean or median) from a range of values derived for different

soils or different environmental conditions. Where data are missing or cannot fully support

the selection of input values, the model is parameterised using established numerical

relationships (e.g. pedotransfer functions) or expert judgement. These estimation methods

whichare likely to introduce uncertainty into the modelling are also used for attributing

values to parameters which do not have a physical basis and cannot be determined
experimentally.

Othertypes of uncertainty

Other significant sources of uncertainty which are less well documentedare: i) the influence

of model selection on risk assessment results; ii) the influence of the modeller on modelling

results (user subjectivity); ili) the fact that models only provide an inaccurate description of

field behaviour (modelinaccuracy); and, iv) the individual subjectivity in decision making on

the basis of probabilistic results. All these sources of uncertainty related to non-empirical
quantities are typically ignored in probabilistic modelling.

METHODS TO INCORPORATE UNCERTAINTY INTO THE MODELLING

Methodsavailable

A number of methods are available for taking into account the uncertainty associated with

empirical quantities. These include stochastic modelling where model input and output are

expressed probabilistically, interval analysis which is applicable where few assumptions on

the form of the parameter variation can be made, Monte Carlo simulations where a number of

input parameterSare attributed a statistical distribution reflecting their uncertainty and a large

number of model runs are carried out, first-order uncertainty analysis where Taylor series

expansion for key model equations is used, and fuzzy logic which describes imprecision in a

non-probabilistic framework.

The Monte Carlo approachto integrating uncertainty into the modelling

The Monte Carlo approach to dealing with uncertainty has been used for numerous years in

different fields of science and has been proposed as an adequate method for a probabilistic

framework for pesticide exposure (ECOFRAM,1999). This versatile approach is based on

numerousruns of a model. Once parameters to be included in the analysis have beenselected,

a probability density function is attributed to each of them. This reflects the fact that these

parameters are considered uncertain and can take a range of values. Correlations between

input variables may be introduced into the analysis. A large numberof input values for each

parameter (say, 1000 values) are sampled randomly from the probability density functions

using an adequate sampling procedures and these are used to generate 1000 modelinputfiles.

The model is run for all these input files and model outputs are aggregated to enable a

presentation of the results in probabilistic terms. An example of output of a probabilistic

assessment of PEC's for groundwater is provided in Figure 1. The chart can be used to

estimate the probability of simulating a concentration above or below a particular threshold.
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In Figure 1, concentrations below 0.07 ug/l are predicted in 75% of the cases and the

probability of the pesticide concentration exceeding the threshold of 0.1 g/l is ca. 12%.
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Figure 1. Example of probabilistic modelling results.

DISCUSSION

The transfer of knowledge fromfields of science where uncertainty has historically played an

important role (nuclear safety in particular) to environmental risk assessment for chemicals

has been extremely fast. Monte Carlo simulations are particularly used since they are easy to

implement and understand byall stakeholders. Monte Carlo simulations have thus been

considered the panacea for dealing with uncertainty and the challenges associated with the

technique are frequently overlooked. These includei) attributing probability density functions

to input parameters and choosing how muchuncertainty to include in the analysis; ii) dealing

with correlations; iii) integrating uncertainty other than that associated with empirical

quantities (i.e. that not covered by Monte Carlo simulations); iv) making decisions on the

basis of probabilistic information; and, v) communicatingrisk.

Attribution of probabilistic distributions to input parameters

The determining step in a Monte Carlo exercise is the description of the variation of selected

input parameters using probability density functions. The attribution of these probability

distributions shouldideally be based on the examination of a large amountof data (say >100

datapoints). Generating so manydata on the variation of input parameters of pesticide fate

models for a particular situation is impractical and alternative methods have to be considered.

These include the use of literature information on the likely pattern and magnitude of

variations of model inputs and the use of expert judgement. These methods are likely to

introduce subjectivity and uncertainty into the probabilistic approach and research is needed

to estimate the influence of using different estimation methods and data sources on

probabilistic results. Also, it is not clear how much uncertainty should be reflected by these

probabilistic distributions. In the case of DTSO values or degradationrates, should probability

density functionsreflect the variation in values between different soils? the spatial variability

in the field? the uncertainty introduced by differences in experimental and analytical

conditions in the laboratory? that associated with the treatmentof outliers? that arising with

the derivation of values from a set of degradation data? that introduced by the choice of

representative statistics to be used in the modelling? It is essential that the extent to which 



uncertainty has been considered in the analysis is specified so that regulators can assess the

confidence that should be assigned torisk estimations.

Correlations

If a positive correlation exists between variables, then ignoring these correlations in a

probabilistic risk assessment will result in an underestimate of the extremes in environmental

impact. Conversely, if correlations between variables are negative, the result will be overly

conservative (Millstein, 1995). Although correlations can be handled through Monte Carlo

simulations, specifying adequate correlations between parameters remains a challenge

because of the lack of associated experimental data. For instance, one would expect somesort

of correlation between sorption and degradation in the modelling of the fate of pesticides

since increased sorption leads to a decrease of the compound in the liquid phase and hence

smaller degradation (it is assumed that degradation mainly occurs in the liquid phase).

Translating this intuitive relationship into correlation coefficients is not straightforward
althoughit is felt that this might need integrating into the modelling in some way.

Uncertainty not covered by the Monte Carlo approach

The Monte Carlo approach, in common with most other methods for probabilistic modelling,

concentrates on accounting for uncertainty in the values attributed to input parameters.

Sources of uncertainty other than that related to empirical quantities are numerous and are

likely to be significant (a few examples of these uncertainties are provided earlier in the text).

These will be ignored in Monte Carlo analyses and will affect the confidence that should be

assignedto results from probabilistic assessments.

Decision making on the basis of probabilistic information

Regulators currently make decisions with regard to the placement of crop protection products

on the basis of a large amount of data which are brought together in a deterministic risk

assessment. Although the approach is considered to be conservative, the lack of knowledge on

the level of protection involved has prompted the application of probabilistic methods to

environmental risk assessment for pesticides and a numberofresearch projects on the subject

have been initiated. Probabilistic outputs will quantify the likelihood of an adverse impact

occurring. As such, there will need to be a revised definition of the regulatory endpoints as

absolute protection is defacto impossible within a probabilistic framework.

Risk communication

It is likely that the scientific community will address remaining issues in probabilistic risk

assessmentin the years to come. Still, the scientific challenge in this instance is surpassed by

the critical importance of risk communication. With regard to uncertainty, no matter how

scientifically robust the answer, it is of limited use unless it can be explained clearly to a lay

audience (Hoffman et al., 1999). Recent health scares demonstrate that the lay person can

depict strong emotional responses to risk information. The current TER approachcarries the

message that there is no risk of impact even though this cannot be truly established. In

contrast, the acknowledgement and quantification of risk (however small) is inherent in the

probabilistic approach. The challenge is hence to communicate effectively the benefits of

understanding uncertainty and the rationale for considering low levels of risk acceptable. 



CONCLUSIONS

Taking uncertainty into account is being seen as a natural ‘next step’ for environmentalrisk

assessment. However, a number of key issues need to be addressed before probabilistic
techniquescan be used with confidence in risk assessmentfor pesticides.
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