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ABSTRACT

Environmental properties vary across the surface of the earth and often at many
different spatial scales. Over the last thirty years, geostatistics has been used

successfully to analyse spatial data throughout the earth sciences. This paper

gives a brief introduction to geostatistics. It describes the variogram, a model of
the spatial variation, and kriging, a method of prediction. A case study shows

how the spatial variation of soil organic matter can be explored geostatistically

within a single field. The importance of sampling intensity is examined by sub-
sampling a dense grid ofdata.

SPATIAL VARIATION

Soil plays an important role in determining the fate of pesticides in the environment. Soil
chemical, physical and biological properties influence the adsorption and degradation of

pesticides. Soil properties, however, like many environmental properties vary more orless
continuously across the earth’s surface. The variation of these properties is complex because

of the interaction of many different processes that operate at different spatial scales.
Burrough (1983) suggested that the variation in soil properties occurs at all levels of

resolution from millimetres to hundreds of kilometres. Figure 1 shows three possible levels
of spatial variation superimposed on one another: one over hundreds of metres defined by

two classes separated by a boundary (the steep slope), an intermediate scale of variation over

tens of metres, and short scale variation over distances of less than a few metres. Thelatter

appears to be unstructured and locally erratic, a feature often referred to as noise. It is

important to remember, however, that what is observed as noise at one resolution can appear

as structure at another and vice versa; it depends on the scale at which the variation is
resolved (Oliver, 1999).

SAMPLING AND ESTIMATION

Information on environmental properties is often restricted to observations on small areas or

volumes of the survey area, i.e. a sample. To provide an overall view of the variation there is

a need to predict values at unsampled sites. The two main methods that have been used for
prediction areclassification and interpolation.

Classification is the traditional approach to prediction where the mean value of a property is

used as the predictor at all places within the class. Conventional farm management tends to

use this approach and eachfield is treated as a distinct class for fertiliser applications, for

example. Classification assumes that the classes account for all of the spatially correlated

variation and that any remaining variation is random. In other words,it is assumed that there
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is no statistical relation between values a given distance apart within the soil class. If this is
the case thenclassification is a reasonable approach. The number of sample locations needed
to estimate the mean values ofthe soil properties reliably for each class can be determined

by conventionalstatistics for a given level of confidence (Webster and Oliver, 1990). If, as is

usually so, there is spatially correlated variation remaining within the classes this represents

variation that could be resolved but has not been.

Interpolation is an alternative to classification that expresses the continuity in the variation.

This approach to prediction can provide the local detail that is often required for

environmental management. All methods of interpolation assume implicitly that there is a

statistical relation between values a given distance apart. Conventional methods of

interpolation, such as inverse squared distance and nearest neighbour interpolation, provide

no means of assessing this and there is a risk of predicting from data that are spatially

uncorrelated. Geostatistics overcomes many of the weaknessesof traditional interpolation

and has been used successfully to analyse spatial data throughout the earth sciences.
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Figure 1. Different scales and typesofspatial variation.

GEOSTATISTICS

Geostatistics has been well documented in several texts (e.g. Goovaerts, 1997; Isaaks &

Srivastava, 1989; Webster & Oliver, 2001) and only a brief introductionis given here.

The variogram is the central tool of geostatistics. It describes the spatial structure of the

variation by measuring the degree of correlation between sampling points a given distance

apart. This measure is based on the notion that samples are moresimilar at nearby locations

than at distant ones. The standard formula for computing the variogram is:

s(n) -— —Sfo(u,)— 2a, +h)P (1)
2M(h) “7

where y(h) is the estimated semivariance, z(x,) and z(x;+ h) are the measured values of Z at

any two places x; and x;+ h separated by h, a vector having both distance and direction

known as the lag, and M(h)is the number of paired comparisons at that lag. By changing h,
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an ordered set of values is obtained and this is the experimental variogram. The semivariance

is computed for discrete values of h, but the experimental variogram represents the regional

variogram, which is continuous. The latter is represented by authorized mathematical

functions fitted to the experimental values.

Figure 2 illustrates some of the main features of variograms.In the first example, Figure 2a,
the semivariances increase initially and then reach an upperlimit, or bound. This maximum

is known as the si// variance and it estimates the a priori variance of the process. The

distance at which thesill is reached is the range, denoting the limit of spatial correlation (or

spatial dependence); sampling locations separated by distances greater than this are spatially

uncorrelated. The variogram in Figure 2b appears to increase indefinitely; it is unbounded.It

suggests that the full extent of the spatial variation has not been encompassedat the scale of

investigation. Both variograms meet the ordinate at a positive value, known as the nugget

variance. This is common when the experimental semivariances are extrapolated to the

origin. For continuous properties the nugget variance encompasses any measurement error

and spatial variation occurring within the shortest sampling interval, i.e. the unresolved
spatial variation. The latter is usually the larger of these (Oliver & Frogbrook, 1998).

Sometimes the variogram appears to be flat, it is pure nugget, Figure 2c. For continuous

properties this usually means that the sampling has failed to resolve the spatial variation

present and that all of the spatial structure is contained within the smallest sampling interval.

The spatial structure can only be identified by more intensive sampling.
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Figure 2. Forms ofvariogram (a) bounded (b) unbounded(c) pure nugget.

The method ofprediction embodied in geostatistics is known as kriging, whichis a general

term that embraces several types of prediction. The most commonly used form is ordinary

kriging. Kriging is a method oflocal weighted moving averaging of the sample data within

the neighbourhood ofthe point to be predicted. The weights depend on the variogram and

the configuration of the sampling points, and are allocated in such a way as to minimize the

kriging variance and to ensure that the estimates are unbiased. Kriging is optimal in this
sense (Webster & Oliver, 2001). Kriged estimates can be made for points (punctual kriging)

or over areas (block kriging). Punctual kriging is an exact interpolator and the kriged

prediction at a sampling site is the observed value there and the kriging variance is zero.

Block kriging results in smoother estimates and smaller kriging variancesoverall.

2(B) =. A,21%,). (2)
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where n usually represents the data points within the local neighbourhood, 4, andis usually

much less than the total number in the sample, and i, are the weights. The weights are

chosen to sum to 1 to avoid bias and to minimise the kriging variance:

Yael,
(3)

The kriging variance of Z(B) is:

o?(B) = #{{2(8) -2(8)} |

=2).a7(«,.8)-Y VAadr(x.x,)- 718.8)
i=1 t=1) j=l

(4)

where x, X,) is the semivariance between points x; and x, y(x,,B) is the average

semivariance between data point x; and the block B, and 7(B,B) is the within block

variance.

Someproperties are sampled sparsely because they are expensive ordifficult to measure and

the predictions obtained from them arelikely to be unreliable. In this situation, the predicted

value might be improved by using the spatial relation, or coregionalization, between other

better sampled properties that are cheaper or easier to measure. This procedure is known as

cokriging. McBratney & Webster (1983) took this approach to improve the prediction of

topsoil silt using the better sampled subsoil silt and sand. Frogbrook and Oliver (2001) used

this to improvethe predictions of soil organic matter content.

In agriculture many managementdecisions, such as the application of lime, are made using

critical thresholds. For example, a farmer might decide that lime is needed only in areas of

the field where the soil pH is 5.5 or less. One approach would be to map the kriged

predictions of soil pH and from this map identify regions where an application of lime is

required. However, the kriged values are estimates only and as such they are subject to error.

In areas where the predictions are much less than or much greater than this threshold the

decision as to whether to act is easy but when predictions are close to the threshold this

decision is harder to make. To aid this decision an estimate is required of the probability that

the threshold is, or is not, exceeded (Oliver ef al.,1996). This can be determined by indicator

kriging or disjunctive kriging. The former is a non-parametric approachto kriging where the

data are transformed to a binary variable (indicator). Disjunctive kriging is also based on an

indicator approach but allowsall of the information of the original variable to be retained.

Webster & Oliver (1989) used disjunctive kriging to determine areas where phosphate was

required on Broom’s Barn Experimental Station, England.

SAMPLE DESIGN

To describe reliably the variation within a field, the sampling intensity should relate to the

scale at which most of the spatial variation occurs. Otherwise the sampling might be more
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intensive than necessary or, moreseriously, too sparse to provide spatially correlated data for

any method ofinterpolation. The sampling intensity might need to be different for different
properties or for different regions. For example, Figure 3 showsthat soil A varies over

shorter distances than soil B; the peaks and troughs are closer together. To resolve the
variation in soil A a smaller sampling interval would be required than that for soil B. If the
sampling interval for B were used for A, asillustrated in Figure 3, the variation would appear
as noise. However, for soil B the sampling intensity used for A would result in wastedeffort.
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Figure 3. Location of sampling points for two soil types.

If there is no information on the likely scale of variation a nested survey may be a sensible

starting point. This allows several magnitudes of spatial scale to be investigated in a single
analysis. Price et al.,(2001) gives an example of a nested sampling design. If there is some

prior knowledgeofthe scale ofvariation, transects or grid surveys can be used.

Case Study

The study site is an arable crop field at the Centre for Dairy Research (CEDAR), Berkshire,

south central England. The soil in the field is predominately a clay loam. Soil samples were

taken at the nodes of a 20-m square grid, giving a total of 160 sample points. The samples

were analysed for soil organic matter content (OM).

The variogram is based on variances and, therefore, the statistical distribution of the data can

affect the reliability of the semivariances. Geostatistics also assumes some degree of

stationarity. Whenlocaltrend or drift, or large scale variation exists in the study area the data

may not be stationary. This violates the assumptions of geostatistics. An exploratory data

analysis showed that the OM data were normally distributed with no evidence oftrend.

The experimental variogram was computed and an exponential modelfitted (Figure 4). The

variogram showsa clear structure with a small nugget variance, which suggests that the

sample design was adequate to identify the variation within the field. To examine thespatial
variation of OM, predictions were made at 5 m intervals on a square grid by ordinary block

kriging using blocks of 20 m by 20 m, which relate to management units. These values were

mapped (Figure 4). The map showsthat the variation is patchy, some areas have large values

and other areas small values. Such patchy distributions are the transition feature that give

rise to bounded variograms; the average extent of the patches generally relates to the range

ofthe variogram. 
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Figure 4. Variogram and mapofkriged estimates for organic matter at CEDAR.

Sampling on a 20-m grid is likely to be too costly for most routine surveys. To explore the

effect of the sampling interval, the original data on the 20-m grid were sub-sampled to

produce data on 40-m (40 points), 60-m (24 points) and 100-m (8 points) grids. These

subsets contain fewer than 100 data points, which is generally considered the minimum for

producing a reliable variogram (Webster & Oliver, 1992). Variograms were computed to

illustrate the effects of few data, and where possible models were fitted (Figure 5). These

variograms show how the sampling intensity affects the form ofthe variogram. Even when a

40 m sampling interval is used there is a change in the structure of the variogram. For the

100-m subset the variogram has only one point andit is not possible to determine whether

the data are spatially dependent.

The variogram and data for eaci subset were used for prediction by ordinary kriging. This

could not be done for the 100-m subset and predictions were made using inverse squared

distance. The maps ofthe predictions for OM are shown in Figure 5. They show how the

detail in the variation is lost as sampling becomesincreasingly sparse. This loss occurs even

for data on the 40-m grid, although the main areas of small and large valuesarestill evident.

The map for predictions from data on the 60-m grid loses more detail and identifies only the

patch oflarge values in the centre of the survey area. The map of predictions using data on

the 100-m grid showsthat the OM content is over- and under-estimated in many regions of

the field and the original pattern is lost. The maps of kriging variance from data on the 20-m,

40-m and 60-m grids show tha‘ the values increase as the sampling interval increases; the

predictions becomelessreliable (Figure 6).

Soil sampling and analysis are costly and time consuming, but unless they provide

information that is reliable for the purpose then anyeffort is wasted. The results from this

field illustrate the effect of increasingly sparse sample information onthereliability of the

experimental variogram and accuracy of the predicted values. They show that maps made

from such predictions can be an unreliable representation of the variation. Depending on the

level of detail required, a 40-m or 60-m grid might be adequate for this field. For a different

field, however, a different sampling intensity might be required to reflect the spatial scale of

variation. Careful planning is required at the outset to ensure that the sample design is

suitable for the study site. Some guidance on the spatial variation of soil properties can be

gained from ancillary data, data that are cheaper to obtain but which are related to the soil in

some way. This may include aerial photographs, electro-magnetic inductance (EMI) surveys

or yield maps. 
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Variograms and mapsfor organic matter at CEDAR for the sub-sampled data.
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Figure 6. Mapsofthe kriging variancefor data on a 20-m, 40-m and 60-m grid. 



CONCLUSION

Environmental properties, such as soil properties, vary in a complex way. Geostatistics

provides a suite of methods that are suitable for analysing the spatial variation of these
properties. The variogram describes the structure and spatial scale of the variation and

kriging uses this model to predict the values of a property at unsampled places. An important
part of any survey is the sample design. To describe the variation reliably the sampling
intensity should relate to the scale of spatial variation that needs to be resolved. This might
be different for different soil types or different landscapes. The case study illustrates the use
of geostatistics and the effect on the predictions when sampling is too sparse.

Oncethe spatial variation within a study area in known it is possible that this information
can be incorporated into pesticide models. This would allow the fate of pesticides to be

predicted at unsampled locations across the field. In areas where properties vary

considerably this would be a more accurate approach than using a single value for

prediction.

REFERENCES

Burrough P A (1983). Multiscale sources of spatial variation in soil. I. The application of

fractal concepts to nested levels of soil variation. Journal ofSoil Science, 34: 577-597.
Frogbrook Z L; Oliver M A (2001). Comparing the spatial predictions of soil organic matter

determined by two laboratory methods. Soil Use and Management. In press.

Goovaerts P (1997). Geostatisticsfor natural resources evaluation. Oxford University Press,

New York.

Isaaks E H; Srivastava R M (1989). An introduction to Applied Geostatistics. Oxford

University Press, Oxford.

McBratney A B; Webster R (1983). Optimal interpolation and isarithmic mapping of soil

properties. V. Co-regionalization and multiple sampling strategy. Journal of Soil

Science, 34: 137-162.

Oliver M A (1999). Exploring soil spatial variation geostatistically. In: Precision Agriculture

99, Proceedings of the 2"4 European Conference on Precision Agriculture, ed J.V.

Stafford, pp. 3-17. Sheffield AcademicPress, Sheffield.

Oliver M A; Frogbrook Z L (1998). Sampling to estimate soil nutrients for precision

agriculture. The International Fertiliser Society. Proceedings No 417.
Oliver M A; Webster R; McGrath S P (1996). Disjunctive kriging for environmental

management. Environmetrics. 7: 333-358.

Price O R; Walker A; Wood M; Oliver M A (2001). Using geostatistics to evaluate the

spatial patterns in pesticide/soil interactions at the field scale (These proceedings).
Webster R; Oliver M A (1989). Optimal interpolation and isarithmic mapping of soil

properties. VI. Disjunctive kriging and mapping the conditional probability. Journal of

Soil Science, 40: 497-512.
Webster R; Oliver M A (1990). Statistical Methods in Soil and Land Resource Survey,

Oxford University Press, Oxford.
Webster R; Oliver M A (1992). Sample adequately to estimate variograms ofsoil properties.

JournalofSoil Science, 43: 177-192.

Webster R; Oliver M A (2001). Geostatistics for Environmental Scientists. J. Wiley & Sons

Chichester. 




