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ABSTRACT
We describe developments of regression-based methods for estimating the

relationship between gene flow anddistance using allelic variation at markerloci.

These new methodsallow the correct testing of the difference between regression

slopes, and the assignment of confidence intervals to estimates from the

regression equation, when the regression is between matrices of pairwise data,

rather than between independent values. We show that there are significant

differences in gene flow estimates from RFLPs and isozymes in sea beet.

Estimates of the distance at which populations exchange one migrant per

generation are lower for wild cabbage than for sea beet.

INTRODUCTION

A full assessment of the environmental impact of GM crops will consider the movement of

transgenes into and among natural populations of crop relatives. Regardless of variation in

sexual compatibility and selection, variation in gene flow amongcroprelative populations

might cause some transgenes to spread and become commonvery quickly, whereas others

might remain rare and be confinedto areas very close to the source crop. Because transgenes

are inherited in a mendelian way, gene flow among non-transgenic natural populationsis an

‘appropriate biological model’ (Gliddon, 1994) for predicting the movement of transgenes

within and among populationsofcroprelatives.

Gene flow is the movementof genetic information amongindividuals, populations or taxa. In

plants, “potential” gene flow is the movementofseed andpollen as a function of distance(i.e.

dispersal). “Actual” gene flow is the amount offertilisation (in the case of pollen) and

establishment of reproductive individuals (in the case of seeds) as a function of distance from

a source (Levin & Kerster, 1974). Clearly, not all pollen will effect fertilisation, and notall

seeds will establish reproductive plants, therefore actual gene flow can be much lower than

potential gene flow. Also, the shapes ofthe pollen and seed dispersal curves may notpredict

the rate of change of gene flow with distance because the probability of

fertilisation/establishment by a pollen grain/seed may vary with distance (e.g. Levin, 1981).

Gene flow is measured in two ways: by ‘direct and’ ‘indirect’ methods. The most common

direct method for plants is the observation of seed and pollen movement, which gives an

estimate of potential gene flow (dispersal). Other direct methods use genetic markers to

estimate actual gene flow. A simple method is to introduce oridentify a plant in a population

with a unique genetic marker (e.g. an isozymeallele) and to follow the appearance ofthe

marker in the next generation (e.g. Latta e¢ al., 1998). A more sophisticated approach uses

markersto identify the fathers of half-sib families. If the markers are highly variable (e.g.

microsatellites) and the numberofpotential fathers is relatively small, the father of each seed

can beidentified unambiguously (e.g. Dow & Ashley, 1998). 



Indirect methodsuse the distribution of genetic variation to infer actual amounts ofgeneflow.
The most powerful type ofdatais allele frequencies at one or more discrete loci. These data

can be treated in a numberof ways, but essentially high variation in allele frequency between
populations or patches of plants indicates that gene flow between the populationsis low,
whereassimilar allele frequencies across populations imply high gene flow.

Direct methods, whether estimating potential or actual gene flow, only measure gene flowat

the time of the observations. Indirect genetic methods, on the other hand, measure average

amounts ofactual geneflow,by reflecting the cumulative effects of temporal variation in the
spatial distribution of dispersal and establishment over preceding years, including rare,
unpredictable events (e.g. Slatkin, 1985). If rare long-distance dispersal events (1.e. founder

effects) have shaped the genetic structure of a species, direct methods may give lower
estimates of gene flow than indirect methods(e.g. Campbell & Dooley, 1992). On the other
hand, direct estimates can be higher than indirect estimates, for example where genetic drift
has removed immigrant alleles from populations (e.g. Rasmussen & Bredsgaard, 1992). If

possible, it is desirable to use both types of method.

In this paper, we describe indirect methods for estimating gene flow in twocroprelatives:

Beta vulgaris ssp. maritima(sea beet, the wild relative of sugar beet) and Brassica oleracea

ssp. oleracea (wild cabbage, a wild relative of cultivated cabbage and oilseed rape). Our aims

are to derive robust estimates of gene flow for these species, and to draw attention to the

assumptionsthat underlie these estimates.

ESTIMATION OF GENE FLOW FROM ALLELE FREQUENCY DATA

The starting point for indirect estimates is data on the distribution of a genetic polymorphism.

Neutral, co-dominant allelic variation at discrete loci gives the most powerful type of

information. Dominant markers can be used, but very large sample sizes are needed to

achieve the samestatistical power (Lynch & Milligan, 1994). Since the mid-1960s, isozymes

have provided plant population geneticists with a ready source of co-dominant markers.

Microsatellites are now becoming the markers of choice because the number of polymorphic

loci and the numberofalleles per locus tend to be higher than isozymes. However, the

mutation mechanismsat microsatellite loci are poorly understood, which presents problemsin

deciding the most appropriate estimator of genetic structure (and hence gene flow) at these

loci.

The most common methodofinferring gene flow from allele frequency data uses the ‘Infinite

Island’ model of Wright (1931), in which an infinite numberoffinite populations (‘islands’)

produce and receive migrants. The importance of an infinite numberofislandsis that allele

frequencies in the system as a whole do not change. In each generation; islands have an

effective population size of N, of which a proportion, m, are migrants. Wright showed that
the product Nm is related to a parameter F's7 (see below), such that

Fp = 1/(4Nm +1)

Nm is the amount of gene flow - the number of migrants per population per generation

averaged overall islands. 



The parameter Fsr has been variously formulated. Perhaps the most widely adopted is the

analysis of variance approach of Weir & Cockerham (1984). Consider a single locus with

twoalleles A and a with overall frequencies p and (1-p) respectively. Arbitrarily assign values

of X=1 for A and X=0 for a. If Xj denotes the value (0 or 1) for the ith allele in the jth

individual in the Ath population, then the total variance of X can bepartitioned as follows:

Xin = pt ag t be + wi

where a, representsthe difference (from overall p) in the frequency of A in population k (with

variance of the set of a, equal to o?), the by denote differences between individuals within

populations (varianceo; ), and the wi. represent differences between alleles within

individuals (varianceo?). The total variance of X = p(1-p) =o7 =o? +0; +0%,. Fsr is the

proportion of the variance that is due to differences in the mean allele frequency among

populations. In other words

Fy, =02/0;7

There are different ways of treating loci with more than twoalleles and for combining data

from several loci. Weir & Cockerham’s (1984) suggested approach, which is widely used, is

to estimate the overall F'sas
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a(rs)whichis effectively an average of the individual /sr values (F's57(,,) = /O7¢s)) for each

allele s of each locusr, weighted by respective total variances (Fri)

It is relatively straightforward to estimate Fsr for a group of populations, and so derive the

average amount of gene flow among them. However, one may be moreinterested in whether
gene flow declines with increasing geographic distance between populations, a phenomenon

termed “isolation by distance” (Wright, 1943). Using computer simulations, Slatkin (1993)
showedthat under a variety of demographic models, isolation by distance was represented by

a linear relationship between log Nm and log distance (D) estimated between all pairs of

populations. Normaltests of significance ofa correlation or regression of log Nm and log D

are not valid because the numberofpoints (pairs) is higher than the number of independent

pieces of information (populations). If there is no isolation by distance present in the study

(null hypothesis), then each of the n populations ofplants could have come from anyof the n

geographicpositions. Therefore the significance is obtained from a Mantel randomisationtest

(Mantel, 1967), which effectively repeatedly randomises the positions of the n populations.

The test significance is the proportion of correlations between Log Nm and Log D from say

10000 randomised data sets that are equal to or less than the observed correlation (Nm and

distance are negatively correlated whenthereis isolation by distance).

A regressionrelationship between log Nm and log D allowsusto derive an indirect estimate

of the actual gene flow between pair of populationsa given distance apart. It also enables us

to estimate the distance (which weterm ‘isolation distance’) at which gene flow is reduced to

somecritical level. However, in both cases, without confidence intervals such estimates are 



of little value. The pairwise nature of the data meansthat valid confidence intervals cannot be

derived from the formula for standard errors of parameter estimates and predictions available

for normal linear regression of independent observations. We are developing a more

appropriate regression model that incorporates terms for the variability between populations

in their levels of gene flow for a given distance. Maximum likelihood estimates of model

parameters and their standard errors are used to derive confidence limits for the regression

line and for the ‘isolation distance’. We call this approach the ‘Maximum likelihood

population-effects’ (MLPE) method.

GENE FLOW AMONGSEA BEET POPULATIONS

Weestimated gene flow among ten sea beet populations in Dorset (see Raybould et al.,

1996b; 1997). Fifty plants per population were analysed for variation at 7 isozyme and 6

restriction fragment length polymorphism (RFLP) marker loci. The data were used to

estimate all pairwise Fsr values separately for the isozyme and RFLP data. F'sr estimates

were converted to log Nm values and regressed on log D. Theresults are displayed in Figure

1 and Table1.

Table 1. Details of regressions (log Nm = a + b log distance) among 10 populations of

sea beet in Dorset. P = Mantel one-sided test probability (b < 0).

 

Marker Type b p R’

RFLP -0.479 0.0007 33.2%

Isozyme -0.068 0.4910 1.0%

e RFLPs

o Isozymes
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Figure 1. Regressions between log Nm and log distance among 10 populations of sea

beet in Dorset. Nm estimated separately from isozymes and RFLPs.

The RFLP data suggest a strongisolation by distance effect (significant negative slope and

high R’), whereas the isozyme data show norelationship between gene flow and distance

(non-significant negative slope and low R’). Because of the non-independence ofthe points in 



the regression analyses, a formaltest of the significance ofthe difference between the RFLP

and isozyme slopes cannot be made using a conventional t-test. However, if there is no

significant difference between the slopes, there will be no correlation (and regression

relationship) between the difference in log Nm values for the two types of marker(i.e. log

Nmertps — log Nm(isozymes)) and log distance. The regression slope is significantly different

from zero (Mantel two-sided test P = 0.0064), showing that thereis a statistically significant

difference between the isozyme and RFLPregression slopes (Figure 2).

Manteltest (2-sided) probability = 0.0064
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Figure 2. Regression between (log Nmeetps) — log Nm(sozymes)) and log distance among
10 populations of sea beet in Dorset.

The reason for the difference is uncertain at present. However,it is possible that the difference
is due to the effects of a small subset of loci. If each RFLP locus is excluded in turn from the

analysis, the correlation between log Nm and log distance for the 5 remaining loci becomes
slightly less negative in each case, apart from R/ which makesthe correlation slightly more

negative (Table 2). In all cases the correlation is significant. The results suggest a consistent

pattern ofisolation by distance at each RFLPlocus.

In general, when an isozymelocusis excluded, the remaining 6 loci give a slightly more

positive correlation compared with the full data set (Table 2). However, when either locus
got-3 or pgi is excluded, the correlation becomes negative, though non-significant. When

both loci are excluded, the correlation becomes negative and significant (P = 0.0077) and the

regression slope for log Nm based onthe remaining five isozyme markersis notsignificantly

different from that using the six RFLPs (Mantel two-sided test P = 0.1085).

Theanalysisis preliminary and needs to be confirmed byothertests. For example we need to

obtain correlations for single loci. Single locus correlations are a problem at present because

often a numberofpairwise Fsr values are undefined because the two populationsare fixed for

the same allele and our current procedures for Mantel tests do not handle missing data.

Nevertheless, we can speculate that the differences between the RFLP and isozyme data are

mainly due to the effects of two loci, got-3 and pgi. The case ofpgiis particularly interesting 



because a large numberofstudies have suggested that variation in PGI enzymesis adaptive

(Riddoch, 1993).

Table 2. Changesin the correlation between log Nm andlog distance whensingle loci

are excluded from the analysis.

 

Isozymes RFLPs

Locus excluded r P(l-sided) Locus excluded r P (1-sided)

None 0.003 0.4913 None -0.631 0.0007

Acph 0.085 0.7410 L3 -0.614 0.0006

Est 0.030 0.5674 L9 -0.564 0.0013

Got-3 -0.080 0.2398 RI -0.658 0.0004

Got-4 0.030 0.5758 R4 -0.611 0.0004

Per 0.009 0.5049 R7 -0.598 0.0009

6-pgdh 0.013 0.5324 R13 -0.567 0.0007

Pgi -0.168 0.0927

Got-3 & pgi -0.318 0.0077

For risk assessmentpurposes,it is useful to know theprecision ofourgene flow estimates. In

conservation genetics, one migrant per generation (i.e. Nm = 1) is a useful rule of thumb for

the minimum amount of gene flow necessary to prevent populations becoming fixed for

differentalleles throughthe effects of genetic drift (e.g. Mills & Allendorf, 1996). Therefore

the distance at which Nm = 1 might be a useful way to compare the pattern of gene flow

among species, and serve as a very rough measure of‘isolation distance’ among natural
populations. Again, because of the pairwise nature of the data, confidence intervals for

estimates of the ‘isolation distance’ cannot be obtained by ordinary least-squares (OLS)

regression techniques. We use our ‘maximum likelihood population-effects’ (MLPE) method

to overcome this problem. For the beet RFLP data, an ordinary regression assuming

independentpoints, gives Nm = | at 13.9 km with under-estimated 95% confidenceintervals

of 10.3-24.4 km. The MLPE method gives Nm = 1 at 14.5 km with wider, but in this case

more accurate 95% confidenceintervals of 6.7-39.3 km.

Wehavealso carried out a study of seven Brassica oleracea (wild cabbage) populations using

microsatellites (Raybould ef al., 1999), for which the estimated distance at which Nm = | was

6.1 km with best-estimate 95% confidence limits of 1.5-10.4 km. The lower ‘isolation

distance’ was perhaps expected as wild cabbage pollen is insect dispersed, whereas beet

pollen is dispersed by wind. In addition, beet seed may be dispersed by tides from some

populations.

ASSUMPTIONSINVOLVEDIN THE Fs7-BASED APPROACH

The F'sr based approachto estimating gene flow outlined above is very simple, but has many

potential problems with both the interpretation of indirect estimates and with the population
genetic models used to make these estimates (Bossart & Prowell, 1998). An essential

assumption of the approachis that the observed distribution of genetic variation is the result

of equilibrium between gene flow and genetic drift. This assumption can be violated for

many reasons, such as recent colonisation, selection acting on markers (e.g. through

46 



environmental effects) and high mutation rates. To some extent these problems can be

overcome by using a wide variety of markers. A perhaps more serious problem is that the
infinite island modelis probably a gross oversimplification in most natural populations. Some

models consider a finite number of islands, whereas others assume migration between

neighbouring populations only (stepping stone models). A ‘general’ model would consider a

matrix of migration rates betweenall populations (considered together, rather than as separate

2-population systems), however analysis based on such a model would be too complex to

provide useful estimates of gene flow (e.g. see Nagel, 1997).

It is now possible to analyse data on population gene frequencies using migration models that
are morerealistic than the island model. For example, Tufto ef al. (1998) present an analysis

of data on 21 sub-populations of sea beet spread over two transects along the shore of Furzey

Island in Poole Harbour, on the South Coast of England (Raybould ef a/., 1996a). In the

models of Tufto ef al. (1996, 1998), explicit distance distribution functions are specified for

pollen dispersal (assumed to be two-dimensional) and seed dispersal (assumed to be one-

dimensional along the shore) based on perceived underlying physical movement processes.

These functions are used with the assumed, knownorestimated effective population sizes to

derive a matrix of equations for the migration transition probabilities between each pair of
populations. This matrix can be used to repeatedly calculate the probability distribution (i.e.
multivariate normal variance-covariance matrix) for the observed population gene frequencies
using a range of parameter values for the dispersal functions until the likelihood is
maximised. This maximum likelihood approach can also be used to distinguish between

alternative models and dispersal functions. Tufto ef al. (1998) found that the Furzey Island sea

beet data was best fitted by a model assuming the sub-populations formed an isolated meta-
population with the standard deviation for both pollen and seed dispersal distances equal to

75m. This type of method therefore provides estimates of potential gene flow.

CONCLUSIONS

New markers and statistical approaches to the indirect estimation of gene flow are being

developed continuously. The traditional approach based on F’sr estimates and the infinite
island model may eventually be replaced by methods that are morerealistic and as easy to

use. However, we agree with Bohonak ef al. (1998) who ‘believe that the limitations of

traditional approaches are generally understood and that they still provide a valuable first

approximation in many cases’. Comparisons of gene flow among species have previously

been based on differences in mean Fsr or Nm values regardless of the spatial scale of the

study (e.g. Hamrick & Godt, 1996). Comparisons based on the above regression and
modelling approaches are more informative, especially for GMO risk assessment, in that they

incorporate the effects of scale and inter-population distances.
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Geneflow andrisk assessment
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ABSTRACT

The primary aim in assessing the amount of gene flow from higherplants, in the

context of risk assessment of the release of GMO’s, is to obtain an estimate of the

distribution of the dispersal stages (e.g. pollen and seeds). A knowledge ofthis

distribution will then permit estimation of the probability of the dispersal stage

travelling further than a specified distance from its source. Such cumulative

dispersal probabilities can then be used to design both any appropriate

confinement measures for a release and monitoring procedures to ensure the

efficacy of the confinement.

A standard statistical method for analysing gene-flow data is described and

applied to data obtained fromcropplants ortheir relatives, previously published in

the scientific literature. The concept of relative risk is developed and applied to

this data. Attention is drawn to the inherent variability of both gene flow andits

estimates in these experiments and to the consequent problems in attempting to

quantify risk to the environment.

INTRODUCTION

In Europe, we are approaching a possible transition between the confined use in the

environment of genetically modified organisms (GMO’s), primarily in small-scale field trials

for the purpose of research and development, anda scaling-up of releases (farm-scale trials),

prior to moving on to their unconfined commercial release. While there is still no

harmonisation of regulations relating to the release of GMO's on a globalscale, there is a large

degree of conformity in the aims of the regulations, namely prevention or minimisation of

environmental damage. To this end, the assessment of risk associated with the release of

GMO's into the environment is required during the research and development stage with the

intention that salient information obtained from monitoring those small and mediumscale

releases will be used to improve the assessment of risk associated with commercial

(unconfined) releases.

The spread of genes due to spatial dispersal of pollen has been of great interest to

agronomists, population geneticists and environmentalists. Contamination of seed crops by an

undesirable sourceof pollen - such as a different cultivar, wild or weedyrelative - led to many

field studies in order to evaluate isolation distances required to maintain a satisfactory level of

genetic purity of seeds. Results of such trials have often been used in order to establish,

modify or contest isolation requirements for Certified Seed production (e.g. Stringam, 1978).

Agronomists have also been looking for the best strategies to minimise isolation distances:

barren zones, removalof borderlinesor pollinators. 



Morerecent concernsrelating to pollen flow have arisen from the development of GM crops.
The nature of these concerns often varies, depending on the stage of development of the GM

variety. At early stages of developmentthere is often a perceived need to prevent, orat least

minimise, the escape of ‘novel’ genes from fieldtrial into wild orferal relatives (Ellstrand &

Hoffman, 1990; Dale, 1992; Raybould & Gray, 1993). This need represents, in essence, the

converse of the problems faced in traditional seed multiplication, in that contamination of

other plants is to be prevented rather than contaminationof the trial by them. Atlater stages

of development, it must be realised that escape of genes from the GM crop in mediumtolarge

scale trial is inevitable when sexually compatible relatives exist in the same environment.

Nevertheless, it would be useful to be able to quantify likely rates of spread into the

environment to enable the design of appropriate monitoring protocols and/or mitigation

procedures should the risk assessmentnecessitate them. A further need for quantification of

levels of gene flow arises in late stages of development where a single crop species has been

modified for a variety of end-uses. For example,if oil seed rape varieties are being developed

for use as human food, in industrial processes and for production of pharmaceuticals, it is

clearly desirable to have a knowledge of the magnitude of gene flow which may occur, to

permitthe appropriate segregation in agriculture of the different forms of the crop.

RISK ASSESSMENT

Mackenzie & Henry (1990) described the present paradigm in evaluating risk as follows:

risk = exposure x hazard

In the application of this conceptual relationship to GMO's released into the environment,

exposure is a measureof the organism's(insert's) ability to escape from its place of deliberate

introduction. The subsequent fate of any escaped organisms (inserts) then needs to be

quantified in terms of the likelihood of persistence, increase and spread in the environment.

The third term in the equation, hazard, refers to the impact of the escaped organism on the

existing ecosystem.

In order for information to be useful in addressing the problem of quantification of exposure

for use in risk assessment,it is necessary that it produce data allowing the estimation of the

probability of escape as a function of distance from the intentional introduction, together with

some estimate of the effect of size of the introduction and some measure ofthe likelihood of

persistence.

The quantification of hazard or impact of the escaped organism on the existing ecosystem has

rarely been addressed by monitoring of field trials, not least because field trials have been

designed primarily to preclude the possibility of escape and, hence, of any hazard occurring.

Furthermore, the quantification of hazard should involve both biological and socio-economic

criteria since, for example, the local extinction of a species certainly has an impact on the

local ecosystem but the question of whether this extinction constitutes damage rather than

benign change requires a value judgementfor its answer. 



EXISTING ANALYSES

Virtually all of the sampling methods and monitoring protocols described in the literature fail

to describe the minimum levels of detection which could be achieved using their particular

protocol. This problem is exacerbated by the designs of the experiments - in the vast majority

of cases using higher plants, the marked organisms are in a small minority of total organisms

in the design. This results in the experimental design makingit difficult to detect the spread

of the markerin relation to the probability of recovering the non-marked gene. For example,

if a markeris represented by 1% of the total organisms, even if its spread is uniform across the

entire experimental area, it will only be recovered in 1% of samples. This fault of

experimental design could well account for the very small distances that have been reported

for the spread of GMO’s (e.g. Scheffler et al., 1993).

The vast majority of reported monitoring results fail to try to fit a distribution to the data. The

results are usually presented as a simple histogram of raw data with either no attempt at

further analysis or a simplistic analysis consisting of calculation of a mean dispersal distance

(occasionally with errors which have been erroneously calculated assuming an underlying

normal distribution). Furthermore, results are usually presented for marker genes at a given

distance as a percentage of total genes sampled. This is inappropriate as it is scale dependent,

the correct form being of marker genes at a given distance as a percentage of the total number

of marker genes recovered. This method removes the dependence on size of the source of

marker genes and correctly emphasises the rate of decrease of marker genes recovered with

distance (see Kareivaet al., 1994).

While undoubtedly there has been useful information collected from monitoring of the release

of GMO’, the absence of appropriate analysis of the data makesit virtually useless, in its

present form, for the purpose of risk assessment.

ALTERNATIVE APPROACHES

Gene flow maybestudied by both indirect and direct methods. Indirect methods involve the

use of techniques developed in population genetics theory to estimate rates of gene-flow in

natural populations (Goudetet al., 1994; Raybould er al., 1996; Raybouldet al., 1997). Such

indirect methods are problematic in that they need natural populations. However, in cases

where the perceived risk involves spread of escaped genes through populations of crop

relatives, these methods are ideal since they combine the effects on rate of spread of both

gene-flow and population structure (i.e. connectivity). Direct methods involve the estimation

of the parameters of dispersal distributions from actual field experiments. Traditionally,

dispersal was assumed to follow a bivariate normal distribution (Wright, 1943; Haldane,

1948). However, dispersal distributions from plants have, in the main, been found to be

strongly leptokurtic (e.g. Levin & Kerster, 1974) and this led to the suggested use of an

exponential power function of the form ew (Bateman, 1947; Kareiva et al., 1994). Rather

than use this essentially descriptive distribution, Lavigne et al. (1996) and Tufto et al. (1997)

have proposed using methods based on a consideration of Brownian Motion in three

dimensionsto describe pollen deposition. It is clear that under some conditions, for example

wind strength varying in direction during an experiment, this mechanistic method gives a

superior fit compared to the descriptive exponential power function (Tufto et al., 1997).

S| 



Nevertheless, this paper will apply the exponential power function to a range of published

data on dispersal in crop plants.

The methodology used follows and extends that suggested by Kareiva et al. (1994), using a

dispersal reliability function, R(x), associated with an exponential power function for the

density of exposure:

R(x)=e™ (1),

where a and b are constants which are estimated from the data, defining the rate of decay

(shape) of the distribution. R(x) then gives the relative density of genes as a function of

distance, x, from the source. Kareiva et al. (1994) suggest using a maximum likelihood

approach in which the data can be realised as a binomial sampling process in which the

binomial probabilities of obtaining a seed carrying a marker gene are proportional to R(x). In

order to estimate a and b using this method, a prior estimate of the contamination, c, at

distance 0 from the source is required. In situations where the published data was not

sufficient to allow the use of this maximumlikelihood approach, the function c.R(x) wasfitted

using the methodofleast squares. The parameter c defines the level of contamination within

the source of pollen (zero distance), b affects the convexity of the curve relative to simple

exponential decay (the lowerb, the greater the convexity) and a affects the rate of exponential

decay. It should be noted that a, b and c are highly correlated, exacerbating problems of

estimation.

Foruse in assessing risk, an expression describing the probability of a gene travelling further

than a specified distance, x, is required. This is a cumulative density function (c.d.f.) with

shape (rate of decay) described by the parameters aand b estimated above.

The appropriate c.d.f., derived from equation (1), is as follows:

T(a,B) /1(B)

ais a.x’,

B is 2/b for dispersal in two dimensions(all directions),

T(e,e) is the incomplete Gamma function and [(¢) is the complete Gamma

function

The c.d.f. above describes the decrease in exposure as a function of distance from the source,

relative to the exposure with no isolation. Since, in any given release, the hazard is

independentof isolation distance, the c.d.f. is also a measure ofrelative risk. That is, the

probabilities obtained estimate the magnitude of risk, relative to the risk measured at a

distance of zero from thereleasesite.

RE-ANALYSIS OF EXISTING DATA

Data was obtained from the scientific literature by computer-searching bibliographies. From

several hundred publications, those papers which providedsuitable raw data on effective gene

flow as a function of distance were selected and the data analysed in a consistent manner. 



Source references for these papers andbrief details of the experiments are given in Gliddonet
al. (1999).

The estimates of parameters a and b, together with their 95% confidence intervals for a

selected set of crops are given in Table 1. For completeness, the ‘contamination rate’

describing the percentage of marked genes recovered at distance zero is also given although,

as described above, it plays no further part in the subsequent analysis. It can be seen from

Table 1 that less than half of the experiments have estimates of a and b that do not include

zero in their confidence interval (bold italics in the Table). This indicates that the

experimental data for these experiments alone shows a SIGNIFICANTdecreasein recovery of

marked pollen as a function of distance. In the main, this failure to describe a decay in

contamination with distance for many crops is regarded as an indication of the lack of

appropriate data collected in the experimentsrather than as a biologicalattribute of the crop.

Table 1: Estimates of a and b
 

Crop a amin a max b  bmin b max Contamination Range (metres)

ALFALFA 0.099 -0.330 0.528 0.501 -0.272 L294 0.620 50 1610

ALFALFA 0.007 —-0.036 0.049 1.191 -0.367 2.748 0.201 5 105
 

MAIZE 0.522 0.337 0.707 0.958 0.624 1.291 0.838 0.5 24

MAIZE 1.413 1.058 1.768 0.974 0.160 1.788 0.046 1 34

POTATO 0.523 -2.514 3.560 0.942 -1.619 3.504 0.031 0.75 215

POTATO 0.577 -15.549 16.703 0.647 -22.105 23.398 0.001 0.75 95

 

 

RADISH 1.643 0.703 2.583 0.761 0.215 1.306 0.855 0.2 14

RADISH 0.274 -0.064 0.612 0.613 0.294 0.932 1.000 6

RADISH 0.214 -0.074 0.501 0.555 0.221 0.889 0.522 2.5)
 

RAPE 0.835 -2.400 4.071 0.773 -1.856 3.401 0.028 1

RAPE 0.750 0.554 0.946 0.206 0.102 0.156 0.019

RAPE 0.832 0.693 0.971 0.304 0.236 0.374 0.035

RAPE 1.332 1.053 1.611 0.535 0.451 0.619 0.051

RAPE 0.752 0.526 0.978 0.652 0.541 0.763 0.026
 

RYEGRASS 0.018 -0.021 0.057 0.816 0.262 1.371 0.060

RYEGRASS 0.133 0.073 0.194 0.774 0.593 0.955 0.348

RYEGRASS 0.003 -0.001 0.007 1.555 1.191 1.919 0.454

RYEGRASS 0.031 -0.104 0.165 1.169 -0.023 2.361 0.454
 

SUGAR BEET 1.310 0.330 2.290 0.524 0.097 0.952 0.141
 

WHEAT 0.483 0.385 0.581 0.872 0.684 1.060 0.254

WHEAT 0.038 -0.020 0.096 0.870 0.411 1.329 0.107
 

amin, b min: lower 95% confidence limit of a and b respectively

a max, b max: upper 95% confidence limit of a and b respectively

Range: The distances from the souce over which the experiment wascarried out

DISCUSSION

Variability within crops

A cursory glance at Table 1 showsthat there can be immense variability in rates of decay

estimated from different experiments for particular crops. The relative risk for the five

experiments carried out with oil seed rape is shown graphically in Figure |. In part, this 



variability may be ascribedto the lack of good data and, therefore, the lackof statistical power

in the estimates. However, an alternative explanation is that this variability is an inherent

feature of the pollination biology of certain crop species.
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Figure |. Relative risk in five different experiments using oil seed rape

Unfortunately, the existing data is not sufficient to discriminate between these two

alternatives. The large bodyofliterature on pollination biology certainly suggests that, at least

for insect pollinated species, the crop speciesitself is unlikely to be a sufficient descriptor of

expected pollen movement. Factors including the type and density of surrounding vegetation,

flowering stage of other vegetation and meteorological conditions are likely to influence the

distance that pollen is carried to a far greater extent than the species of pollen donor. It is

obvious that such variability needs to be taken into accountif carrying out a risk assessmentas

a precursorto the possible release of a GMO.

It is clear that for insect pollinated species in particular, there can be a very strong effect of

experimental conditions determining the amount of gene flow measured. One striking

componentof the experimental design that has often been shownto have a majoreffect is that

of barren zones or borders separating potential pollen recipients from donors. Goplen et al.

(1972) reported on the effects of isolation distance on contamination in sweetclover (Melilotus

alba). They used a recessive gene marker, cu, for low coumarin content. In one of their

experiments, a source plot of 0.4 ha was located 46 m and 389 m from twosink plots of a

similar size. Both these plots showeda similar average level of contamination (0.14 and 0.13

respectively). However, within each of these plots, the contamination declined rapidly with

distance from the source. An explanation for the above observationsis that pollinators arrive

in the recipient plots loaded with pollen from the donors. They then unload their pollen as 



they move within the recipient plots. However, the likelihood of arriving at one or other

recipientplots is not determined,to any major extent, by the distance from the source.

In conclusion,there is a need to be extremely careful in using published data onisolation with

distance as an element of risk assessment. This due to two factors: first, the data in the

literature have frequently not been analysed appropriately for the purposes ofrisk assessment;

and, secondly,there is often great variability among experiments describing pollen movement

in a single crop. In general, the variability within crops can be assumed to be greaterin insect-

pollinated species than in windpollinated species. However, there is often insufficient data in

the literature to allow reasonably confident predictions to be made about the levels of

contaminationto be expectedin almostall crops.

The statistical method described above provides a basic standard for the analysis of

experiments designed to measure the decay of contamination by pollen as a function of

distance for use in risk assessment. It should be noted that although only three parameters

needbe estimated in this method, the majority of existing data-sets are insufficient to describe

significant decay of contamination with distance. This is a clear indictmentof the utility of

many existing descriptions of pollen movement in crop plants in the context of risk

assessment. The development of more complex methodsofstatistical description, taking into

account, for example, the effects of wind strength and direction on pollen movement(e.g.

Lavigne et al., 1996; Tufto et al., 1997), will not render existing data more useful as they will

require estimation of more parameters from very sparse data-sets
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