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ABSTRACT

Highly effective genes conferring pest resistance have been and are being

engineeredinto crop plants. There is a strong likelihoodthat these transgeneswill

be transferred from agronomic ecosystemsinto natural ecosystems. There will be

ecologicalrisks ranging from creating more invasive weedsto affecting beneficial

insects. I argue for the need of relevancy in choosing appropriate experimental

systemsfor assessing ecological risks of commercial transgenic insecticidal crops.

Finally, I will describe a transgene monitoring system based upon green

fluorescentprotein (GFP), and how it may be used commercially.

THE CURRENT INSECTICIDAL CROP PIPELINE

Duringthe past 10 years, transgenic crop developmenteffort has increased exponentially. In the

USA alone, there are now four different transgenic pest resistant crops that have been

deregulated (commercialised): corn, cotton, potato, and tomato. These four, all containing

Bacillus thuringiensis crystal toxin (Bt cry) transgenes,are the first of many pest-resistant crops

to flow from the industrial R&D pipeline. To date, there have been eighteen plant species

transformed with Bt cry genes and field tested in the USA:alfalfa, Amelanchier, apple,

belladonna, cabbage, cranberry, corn, cotton, eggplant, grape, oilseed rape, Populus, potato, rice,

soybean, tobacco, tomato, and walnut (USDA APHISpermits, Oct., 1998). This represents a

50% increase of plant species during the last three years. Most ofthese plants are slated for

commercialisation with insecticidal genes. While the arsenalofinsecticidal genes is growing,

Bt will be the primary insect resistance transgene on the marketfor the next 10 years.

Bacillus thuringiensis crystal endotoxins

Thefirst Bt transgenic plants were produced over 12 years ago (Vaeckef al., 1987). These first

plants contained native Bt genes that were not expressed very well. Now the genes have been

codon-optimized for high expressionin plants and have provento be very effective to controlling

specific insects (Perlak er al., 1991; Adang et al., 1993). Indeed, exclusively synthetic, codon-

optimized Bt genes are now usedfor plant nuclear transformation. The class of compoundsthat

are responsible for insecticidal activity are crystalline proteins also known as Cry proteins or

delta-endotoxins. The modeofaction of Bt endotoxinsis the disruption of cellular membranes

in the midgut. Endotoxinsare proteolytically converted into small polypeptides in the midgut.

These bind to glycoprotein receptors and disrupt osmotic processes (Adang, 1991). Bt Crys have

high specificity of toxicity, a highly desirabletrait.

As with anyinsecticide that has extensive use, insects can acquire resistance to Bt. Many have

warned that Bt resistance genes will becomefixed in insect populations rendering both Bt

transgenics andBtsprays ineffective (Whalon & McGaughey, 1993; Tabashnik, 1994; Whalon,
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1994), although there are a minority of scientists who do not seem to be very concerned about

Bt resistance management(Altman et al., 1996). Both diamondback moth (Plutella xylostella)

and tobacco budworm (Heliothis virescens) biotypes have been found to beresistant to several

Bt toxins (Gould ef al., 1992; Heckel, 1994; Gould et al., 1997; Tabashnikef al., 1997b; Liu et

al., 1998). Indeed, the genetic loci responsible for resistance in both species have been mapped
(Heckel etal., 1997; Tabashnik et al., 1997a). Thus, several strategies have been proposed,

including refugia, high dose, mosaics, rotations, and transgene combinations (reviewed in

Tabashnik, 1994). Currently, high dose (high Bt expression) and refugia are used to manage

resistancein all Bt transgenic crops grown in the USA (Gould, 1998), but industry is moving

toward transgene combinations (pyramiding) to manage Bt resistance. Pyramiding, in this case

combining Bt genes with other transgenes has been proposedas a necessary strategy to prevent

the developmentof Bt resistance (Wilson et al., 1992; Boulter, 1993; McGaughey 1994). A

notable advantage to pyramidingis that it would be transparentto the grower and not have the

associatedyield loss the refugia strategy demands.

New genesfor insect resistance

There are three main reasons whyseveral groupsare racing to discover novelinsecticidal genes.

Thefirst is to engineerplants insecticidal to control insects that are not susceptible to Bt Cry.

The secondis to discover candidate genes to pyramid with Bt. A third reason, related to the

first, is to capture a unique market niche. The benchmark of any new gene candidate in

transgenic plants that the gene product should haveat least equal toxicity compared with Bt.

However, onepotential problem is that new toxins haveless specificity than Bt. This means that

insecticidal transgenic plants of the future will likely have an increase of non-target effects. I

will briefly review the best candidate genes for commercialisation in transgenic plants. More

extensive reviews have been published recently (Estruchet al., 1997; Gatehouse & Gatehouse,

1998; Jouanin et al., 1998; Schuler et al., 1998).

Cholesterol oxidase

Cholesterol oxidase (CO) from Streptomyces culture filtrate has been foundto be highly toxic

to boll weevil (Anthonomus grandis) (Purcell et al., 1993). Monsanto is presumably developing

CO for the control of this economic insect on cotton (Purcell et al., 1993; Greenplate ef al.,

1995). However, it also has activity against southern corn rootworm (Diabrotica

undecimpunctata), tobacco budworm (Heliothis virescens), and yellow mealworm (Tenebrio

molitor) (Shenet al., 1997). The modeof action is the lysis of midgutepithelial cells (Purcell

et al., 1993).

Vegetative Insecticidal Proteins

In contrast to Bt endotoxins, which are accumulated to high amounts whenBtsporulates, Bt also

producesvegetativeinsecticidal proteins (Vips) whenit is not sporulating (Estruchef al., 1996;

Yu et al., 1997). While Vips comefrom Bt, they are unrelated to Bt endotoxins (Estruchef al.,

1996). Similar to cholesterol oxidase, the modeof action is midgut cell lysis (Yu etal., 1997).

The Vip3Ainsecticidal protein has been shown toxic to black cutworm,(Agrotis ipsilon), fall

armyworm (Spodopterafrugiperda), beet armyworm, (Spodoptera exigua), tobacco budworm

(H. virescens), and corn earworm, (Helicoverpa zea), a broad range of hosts (Estruch ef al.,

1996). Novartis is apparently developing Vips for controlling corn insects.
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Photorhabdus luminescens toxins

Newly discovered toxinsfrom the bacterium Photorhabdus luminescens, which maketheirliving

in gut of entomophagous nematodes have been shown to be toxic to several orders of insects

(Bowenet al., 1998). Similar to cholesterol oxidase and Vips, midgut epithelial cells are

damagedin insects that have consumed the toxins. DowAgroSciences has acquired an exclusive

license for the use of P. Juminescens toxins, and will presumably move towards the goal of

commercialisation oftransgenic plants expressing toxin-encoding genes.

Other-bioactive proteins for insect control

There are several insect-control proteins that have been proposed to be pyramided with Bt. None

of these have the toxicity of Bt Cry proteins, cholesterol oxidase, Bt Vips, or P. Juminescens

toxins. The most studied ofsuch proteins are proteinase inhibitors. The other insect resistance

proteins that have beenreceivedattention are lectins and chitinases.

Proteinase inhibitors (PIs) from plants have beenstudied as candidates for insect control for over

20 years (Ryan, 1990) The mode ofactionis the overstimulation of the production oftrypsin,

chymotrypsin andotherproteasesin the insect gut (Broadway & Duffey,1986). Most PIs inhibit

insect growth but are not antibiotic. Recent data supports the hypothesis that insect digestive

physiology has memory ofsorts. Thatis, certain insects can alter their arsenal of digestive

enzymes(e.g., trypsins) to overcome specific PIs. However, if an insect does not feed on a

certain plant, it may not be able to readily overcome the PI and as result, its growth and

developmentwill be inhibited (Jongsmaet al., 1995; Broadway, 1995; Broadway & Villani,

1995). Therefore, certain insects may be preadapted for resistance to PIs. This fact and their

relatively low toxicity to insects hamper their commercial feasibility.

Lectins, carbohydrate-binding proteins, from various plant species such as the snowdrop

(Galanthusnivalis) also decrease insect growth (Powell ef al., 1993). Lectins bind brush border

membraneproteins of various insects, but there is no apparent relationship betweenthe ability

to bind andtoxicity to the host (Harper et al., 1995). Lectins are generally more effective in

transgenic plants than PIs. Lectins in transgenic crop plants mightalso beof special biosafety

concern becauseof reports they can act as mitogens to human T-cells (Peumanset al., 1997).

Chitinases have also receivedattention recently as possible insect control agents that could be

used in transgenic plants (Kramer & Muthukrishnan, 1997). Chitinases from insects digest

chitin, an importantconstituentofinsect exoskeletonsandgutlinings. Similar to PIs andlectins,

chitinases affect a broad range ofinsects. They have apparent toxicity between PIs and Bt Cry

for insects they affect. Unlike Pls, chitinases seem to beeffectively synergistic with Bt Cry

toxins (Kramer & Muthukrishnan, 1997; Santosef al., 1997).

TRANSGENE FLOW FROM CROPS TO WEEDS

Thereare several crops in the US and Europethat have the potential to hybridise with wild

relatives. The crops that have sexually-compatible wild relatives growing in proximity to them

are at risk for receiving fitness-enhancing transgenessuchasinsecticidal genes, which could

alter ecological parameters. Some examples in the USA and Europeare rice (Langevinetal.,
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1990), sorghum (Paterson ef al., 1995), sugar beet (Bartsch etal., 1996; Bartsch & Pohlorf,

1996; Bartsch & Schmidt, 1997), and sunflower (Whitton ef al., 1997). There are several

incidental crops, vegetables andfruits that also have neighbouring wild relatives (reviewed by

Raybould & Gray,1993). Of course, the largest concern in the USA and Europe has been over

oilseed rape (OR) (Brassica napus), a crop with numerouswild relatives and increasing world-

wide cultivation. OR has beenthe subject of extensive research,is relatively easy to transform,

and has been the model of choice for biotechnology risk research. I will briefly review its

breeding and biology and someofthe research that has been recently accomplished in OR
transgene flow andinsecticidal transgenic OR.

Thecase of Brassica napus (oilseed rape)

The mustard (Brassicaceae or Cruciferae) family, to which the genus Brassica belongs, contains

many important crop plants and weeds. Brassica napus, is an amphiploid species (AACC 2n=38)

which putatively arose from naturally occurring interspecific hybridization between Brassica

oleracea (AA) and Brassica rapa (CC). Both winter and spring forms exist within B. napus.

Subsequent growth patterns differ depending onthe climate ofthe production region and the

form grown. Winterformsare fall-seeded and spring-harvested, while spring forms may beeither

grownas a spring-seeded annual crop in temperate regionsor as a fall-seeded crop in milder

climates, such as the southeastern USA. Brassica napus is a self-pollinating species that

outcrosses readily with the assistance of wind andinsectpollinators. Outcrossing frequenciesas

high as 30% fordirectly adjacent plants have been reported (Robbelin & Downey, 1989).

Brassica napus can be a volunteerin other crops and along roadsides butit is not consideredto

be a frequent invaderof non-disturbed ecosystems (Rich ,1991; Crawleyef al., 1993).

ORis known to beinterfertile with wild B. napus, B. rapa, B. oleracea, Brassica nigra, Brassica

kaber (Sinapsis arvensis) Brassicajuncea, Brassica adpressa, and Raphanus raphanistrum

(Bing, 1991; Kerlan et al., 1992, 1993; Scheffler & Dale, 1994; Eberet al., 1994; Darmencyet

al., 1995; Mikkelsen et al., 1996; Chevre et al., 1997, Metz et al., 1997). One conclusion of

these studiesis that there is significant maternaleffect in the efficacy of the crosses, with highest

hybridisation potential being when B. napus is used asthe pollen recipient. Agronomically-

importanttransgenegene flow from ORwill likely initially occur with ORas the pollen donor.

Even though hybridisation frequencies were low, all the authors warned of significant

introgression possibilities, as several of the resultant hybrids werefertile, especially under open

pollinating conditions. The complicated taxonomyandtractable biotechnology of ORandits

relatives have made this system a popular one for researching the risks of agricultural

biotechnology.

Transgenic insecticidal OR,wild relatives and herbivory

Thereareat least three foreseeable effects of the gene flow ofinsecticidal genes from crop to

wild relative. First, the persistence of transgenes may skew transgenic crop:regufia areas, which

could slightly affect resistance management (Wearing & Hokkanen, 1995). Second,insecticidal

transgenescould decrease beneficial and/or non-target insect populations. The published studies

of Bt side-effects to beneficial insects are sparse. However, where they have been studiedin the

field, significant effects to beneficial insects have not been found(Flint ef a/., 1995; Sims, 1995;

Arpaia, 1996; Orr & Landis, 1997). One example contrary to this is a recent report (Hilbeck, 



et al., 1998)that involved laboratory experiments using Bt corn, the pest/prey insect Ostrinia

nubilalis (European corn borer, ECB), and the lepidopterous predator Chrysoperla carnea.

While no direct effect of Bt was found on C. carnea, the predator grew more slowly and had

greater mortality when fed Bt-exposed prey. The authors hypothesised that the Bt-stunted ECB

weresick, leading to indirect toxicity to the non-target insect. Whileit is doubtful that direct

effects of Bt on non-target pests will be obtained, the toxins entering the pipeline may have

increased side-effects. Since they have a broader host range, there is a higher probability of

increased risks on non-target insects; risks that will need to be explored on a case-by-casebasis.

The third and potentially the largest effect of gene flow of insecticidal transgenes into wild

relatives will be the alteration of fitness or increased invasivenessofthe plant host. As above,

the OR/wild relative system is our best model.

Thereare very limited data on insect herbivory on the fitness of OR relatives. One study in small

field plots in England showedthatfoliar insecticide did not increase fitness of wild radish (Rees

& Brown, 1992). However, ambientinsect levels were low andlittle damage (<5% defoliation)

occurred on no-insecticide-treatment plants. However, because of higher ambient slug

populations, higher fitness was observed on molluscicide-treatment plants (Rees & Brown,

1992). These results show thatinsecticidal (Bt) R. raphanistrum and B. rapa could be newrisks

that should be assessed. Certainly others have warnedthat insect resistance in weeds would not

be a desirable modification (Kareivaet al., 1994; Stewart ef al., 1997). My labis in the process

oftesting the ecological performance of Bt-transgenic B. rapainthefield; the litmus test of gene

flow/transgeneeffect in OR.

Relevancy of biotech risk research

Threefield trials have been performed by companies (AgrEvo and Calgene) in 1998 using

insecticidal OR in the USA (USDA APHIS permits, Oct., 1998). These companies tested

lepidopteran-resistant transgenic OR with unspecified genes (confidential business information)

in California. We can assumethat thesefield trials are a precursor to eventual commercial

releases. It is evident that any commercial transgenic OR will donate genes to wild relatives

grown in proximity.It is also evident that insecticidal genes with broader pest toxicity will be

used moreoften in the future. Insecticidal proteins in transgenic plants that affect a greater

numberofpests will lead to greater uncertainty in tworisk factors. Thefirst is the effect to non-

target or beneficial insects. The second is herbivore-mediated selection effects that favour

insecticidal transgenic plants over non-transgenic plants. These effects couldlikely interact with

each other. Addedto these will be the effects of scale (Dale,1997). Commercialisation area is

muchlargerthan field trial area. Simply,the ability for the transgenic plant to affect negatively

more organismswill lead to greater complexity ofrisks.

The interaction of gene flow andpestresistance, therefore, needs to be studied using relevant

insecticidal genes, promoters, and hosts. | believe that the scientific community has responded

appropriately for the most part. However, the public availability of genes coding for cholesterol

oxidase, Vips, and P. Juminescenstoxinswill likely be limited becauseofintellectual property

concernsandother business reasons. Therefore,I predict that increased co-operation between

industry and public researchers will be necessary to thoroughly test new transgenicinsecticidal

plants for ecological risks. The days of using PI genes with the CaMV 35S promoterare over.

These experiments are no longer highly relevant to tomorrow’s agbiotech products. Can we

envision the day when multiple transgenes of broadeffects will put be into crop plants such as
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OR? Will webe able to even thoroughly test for and predict complex ecological interactions that
are set-off from such a GMOintroduction? The answeris both yes and no. To manage for
unintended effects of gene flow, it seems to be desirable to use monitoring tools to track

transgenes. Transgene monitoring maynot be able to mitigate for increased side-effects to non-

target pests, but it would enable the managementofpotentially problematic genes flowing out
of the host crop. One group has suggested an alternative to monitoring (Daniell ef al., 1998)
consisting of transferring transgenes into chloroplasts, which are assumed to be maternally
inherited. This approachis a controversial solution to transgene containmentthat is based upon
faulty assumptions (Cummins, 1998; Stewart & Prakash, 1998). However, the most pragmatic
pitfall to this possible solution is that tobacco is the only plant amenable to chloroplast

transformation today. Since the ability to transform anycrop using chloroplast transformation

is at least a decade away, it should not be considered a commercially viable alternative.

TRANSGENE MONITORING

In the past, studies of gene flow and transgene persistence in the environment have been

monitored largely using phenotypic (Manasse, 1992; Luby & McNicol, 1995), biochemical

(Klingeref al., 1992; Arias & Reiseberg, 1994), or molecular markers (Jorgensen & Andersen,

1994; Rogers et al., 1996). These often require expensive substrates (in the case of GUS

(Jefferson, 1989)), are not suitable for real-time andin vivo detection, and are not universal.

However, with the recent availability of green fluorescent protein (GFP) encoding genes, a

tractable monitoring system is feasible and has beenrecently introduced (Stewart, 1996). In this

method GFPin transgenic plants can be visualised on a macroscopic scale non-destructively

usingultraviolet light. GFP from jellyfish is a 27 kD monomerthat has the unique characteristic

of fluorescing green when excited with ultra-violet (360-400 nm) or blue (440-480 nm)light.

This fluorescence depends only upon elemental oxygen, necessary for double-bond formation

between the a and b bond of Tyr 66 (Ormoetal., 1996; Yang et al., 1996), and UV orbluelight.

Therefore, the protein does not need any substrate, enzyme,or co-factorforfluorescence, making

it a genuine, in vivo marker (Niedz et al., 1995).

Transgenic plants expressing GFP can be detected using only a hand-held UV lightin vivo and

in real time. Transgenic plants appear green underultra-violet light amidst non-transgenic plants

that appear red due to the red autofluorescence of chlorophyll when excited with UV light.

Greenfluorescentprotein is stably inherited in progenyandis usefulas a tag to mark transgenic

plants in vivo. Mylab (Stewart, 1996; Leffelet al., 1997) and others (Pang et al., 1996; Haseloff

et al., 1997) have shown that whole plantfluorescence with GFP is a powerfultool, and that GFP

is stably inherited (Leffelef al., 1997). We are now employing an improved chimeric gene with

a endoplasmicreticulum retention signal (Haseloff et al., 1997), mgfp5-er, which has proven to

be much improved over mgfp4 as a whole plant marker. (Mabonef al., submitted). This

procedure could be ofgreat benefit in a larger transgenic crop management system (Marshall,

1998).

For this method to be successful a GFP geneis linked or fused to a gene ofinterest, e.g., an

insecticidal transgene on the sameplasmid,priorto introduction into plants. The geneofinterest

is then monitored by visual observation of GFP in the plant. My lab has shown thatthis

procedure functions as expected (Mabonet al., submitted). In addition,there is no evidence that

GFPis toxic or has any costs to the host plants in the field (Harperef a/., submitted). These two
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facts greatly enhance the usability of a GFP monitoring system. One can envision releasing

plants with blue, cyan, green and yellow fluorescentproteins linked to genes of different

agronomictraits. One canalso envision remote sensing technology andprecisionagricultural

applications of the technology.

CONCLUSION

In conclusion,it is clear that the pipeline of pest-resistant transgeniccropsis full. These crops

havethe potential to greatly decrease conventionalpesticide inputs into the environment, and to

improve agronomicefficiency. There are, however, real risks that arise from the novel gene

introductions and geneflow from cropto wild relatives that will persist in the environment. It

is clear these risks need to be assessed, and science-based decisions made with regardsto real

biosafety issues. It also seems prudent to develop monitoring methodsto track transgenesin the

environment. Monitoring can serve as a long-term ecological research tool, and as a meansto

control for unintended problemsthat mightarise from commercialreleases.
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