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ABSTRACT

Larger field sizes together with the concerns about pesticide residues leaching

into surface and groundwater has given impetus to research and development of

measures that can reduce pesticide use in Europe. Spatially variable application

or patch spraying of weeds is one of the measures that have shown potential

saving of herbicide usage. Manual weed counting has been used to establish

treatment maps for patch weeds. However, there is a need for development of

more rational weed surveying method, e.g. using image analysis to detect species

and measure density or weed coverage. Computerized decision support systems

have been developed for spatial weed management and several systems have

been developed as prototypes or commercial products. The ultimate goal of

patch sprayingis to select an efficient herbicide and an economically optimum

dose for each part of the field. This goal requires, among other things, a

position related decision support system that includes the yield variations in the

calculations. Further the breakthrough of new technologies may lead to research

and development of advanced weed control measures, such as real-time

intelligent robotic weed control system.

INTRODUCTION

During the last two centuries, fields throughout Europe have been amalgamated into larger

units which are now managed as one, although large within-field variation still exists.

Together with the concernsaboutpesticide residues leaching into surface and groundwaterit

gives impetus to research and development of measures that can reduce pesticide use in

Europe. Integrated weed management, site-specific weed management and non-chemical weed

control are options that maylead to herbicide savings and diminished herbicidal loading of the

environment. The development ofdifferential global positioning systems (DGPS) and yield

monitoring technologiesin the late 1980's inspired several scientists, advisors and farmers to

study the spatial variation of crop and soil parameters, in conjunction with weed occurrence

and density.

The great within-field variance of weeds, which has been found in several studies (Nordbo ef

al., 1995; Auld & Tisdell, 1988; Hughes, 1989; Thornton ef a/., 1990; Wilson & Brain, 1990;

Mortensen ef al., 1992) showsthat there is good reason to believe that herbicide input can be

diminished in manyfields, as compared to the standard whole-field spraying. New equipment

developed for patch spraying has provided a higher precision and the possibility to record and

explore the responses of crop and weeds due to spatial application of herbicide (Langkilde,

1999). Herbicide savings have a direct positive impact on the costs. Whether this will show

up as an increasing marginal return, depends largely on the cost of surveying the weeds but
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also to which extend crop yield and quality can be retained. The probable yield-reduction from

a higher over-all weed pressure in a patch-sprayed field may partly be compensated by a

decrease in possible direct herbicidal yield depressing effects. Also, a lower level of herbicide

residues in harvested crops may be regarded as a qualitative improvement. In all cases, to

managethe correct and timely spraying of small cells in the fields demands careful assessment

and sound decision-making can be carried outat the tactical control level.

WEED SURVEYING METHODS

To date, several weed surveying and mapping methods may be used for patch spraying in cereals

(Nordbo ef al, 1995; Nordmeyeref a/., 1996; Rew et al., 1996; Christensen ef al, 1998). The grid

weed surveying and mapping method is so far the most common method used in Europe. It

involves the detection and counting of weeds pnor the spraying. One advantage of this approach

is the possibility to choose a herbicide, a herbicide mixture or several herbicides applicable for

treating the varying weed composition and density. Further, it enables optimization of the

logistics of herbicide and water volumebefore entering the field.

Walter (1996) suggested a conceptusing historical weed mapse.g. from previous years as the basis

for spatial herbicide application in cereals, The author found that although the populations of

dicotyledonous. weed species were stationary, weed emergence varied between years, thus weed

density of the species had to be measured every year. Walter ef al. (1997) and Christensen ef al.

(1999a) used a stratified mapping method based onhistorical weed mapsto divide the field into

zones to orientate where manual weed surveying was to be carried out. Rew ef al. (1996) showed

that visual assessment of density of couch (E/ymus repens) could be used to map the spatial

distribution of this species. Rew e/ al. (1996, 1997) described a semi-automated system of

weed detection that relies on manual recognition from a vehicle. The absence of weeds, or

presence of low or high weed density of blackgrass (Alopecurus myosuroides) couch, Italian

ryegrass (Lolium multiflorum), bulbous oatgrass (Arrenhenathurumelatius), wild oat (Avena

fatua), sterile brome (Bromussterilis) and perennial thistle (Cirsium arvense) were recorded

onto dedicated keypads mounted on the vehicle.

Manual weed counting is time consuming and thus there is a need for the developmentofa rational

weed surveying method,e.g. using image analysis to detect and measure weed density. Thomtonef

al. (1990) was able to discriminate patches of blackgrass (Alopecurus myosuroides) at

flowering in a winter cereal field from colour aerial photographs. Brownef a/. (1994) used a

multi-spectralstill video camera from a low flying (500 to 700 m) aircraft to detect patches of

weed species in corn field and maize. The species could be fairly well discriminated by their

spectral characteristics of their reflectance characteristics. It must be noted that the spectral

characteristics of the weeds must be sampled from the local population andstatistically
established shortly before the detection process, as the features are strongly variable with

growth stage. With remote sensing generally only a few weed species at a certain growth

stage and with a prolific growth penetrating the crop canapy can be distinguished. Patches

must be comparatively large and dense. Stafford ef al. (1997) showed the potential to
discriminate between some weedsand cereal using aerial and near-ground images. The authors

concluded that other methods must complement these approaches such as manual surveying. 



Woebbecke ef al. (1995) used shape feature analyses on binary images originally obtained

from colour images of 10 common weeds. Shape features were generally independentofplant

size, image rotation, and plant location within most images. In cereals, however, feature

analyses are complicated by mutual coverage of leaves among weeds and between crop and

weeds. Gerhards & Kiihbauch (1993) digitised slides taken in the field and used image analysis

to estimate weed and crop cover, successfully. Martin-Chefson ef al. (1999) used image-

processing techniques to discriminate between weeds andcereals, that provide the potential of

mapping weed biomassof coverage.

Reflectance measurements may be used before crop-emergence or at crop ripeness. However,
real time weed detection and spraying have only been developed for weed controlin stubble land

using simple sensors detecting green vegetation and an intermittent sprayer. Felton & McCloy

(1992) have described a commercially available sprayer and its profitability has been

investigated by Ahrens (1994).

Automatic detection and offset spraying for control of weeds along roadsides and public areas

have been investigated by Slaughter es al. (1999) who developed an image-based detection

system. A colour look-up table was developed from training data set and used to categorise

pixels into weed or background classes. The system was demonstrated on a commercialscale.

Shape- and colour-based algorithms were used by Lee ef a/. (1999) to discriminate between

weed and crop plants in tomatoes. Once weeds werelocated, a precision spray system applied

spray liquid exclusively onto the weed plants. Video imaging was used by Giles & Slaughter

(1997) to guide a precision band sprayer in row crops.

SPATIAL WEED MANAGEMENT

Computerized decision support systems offer an ideal means of achieving economical,
environmentally safe, and sustainable weed management. Wilesez al. (1996) divided decision

support systems for weed managementinto either efficacy-based or population-based systems.

The efficacy-based systems assist decision-makers’ in choosing herbicide (e.g. SELOMA,

Stigliana & Resina, 1993) and herbicide dose (PC-Plant Protection, Rydahl & Thonke, 1993).

Population-based models incorporate weed biology and ecology through simple deterministic

models e.g. HERB (Wilkerson e/ a/., 1991) WEEDSIM (Swinton & King, 1994) GWM,

PALWEED(Kwonet al., 1995; Wiles ef al., 1996) and GESTINF (Berti & Zanin, 1997). The

efficacy-based system comprises large databases with herbicide performances in different

crops, weed species, growth stagesetc. that enable ranking and recommendations of the most

efficient herbicide or herbicide dose against a weed mixture. So far, none of these systems

relate weed control to the associated yield losses. In the population-based systems, the

estimatedyield loss or changesin the soil seed bank without weed control define the need for

weed control and determine whether a chemical or physical weed control may be beneficial.

An essential assumption in the population-based systems is a binary weed response to

herbicide doses, i.e. weeds that survive a herbicide treatment (dose) have the same

competitiveness and provide the sameyield loss as untreated weeds (Pannell 1990, Audsley

1993; Swinton & King, 1994). However, cereal crops, which by virtue of their rapid

development, high plant density and even spacing, can exert a high competitive ability, and as
a consequence reduced herbicide dosages will often be sufficient to retard the growth of
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weeds to such an extent that they will be suppressed completely by the crop (Christensen,

1994).

A decision algorithmfor patch spraying broad-leaved weedsin cereals (DAPS) has been developed

at the Danish Institute of Agricultural Sciences, Research Center Flakkebjerg (Christensen ef al.,

1996). DAPScalculates the total yield loss and finds the economical optimal dose of a herbicide or

mixtures of several herbicide in all points. Weed species competitiveness, weed density, crop and
herbicide price, and dose-response parameters are included in calculating the economic maximal

herbicide dose. Kriging and a GIS are used to produce a treatment map for applying one

herbicide or several treatment maps for applying several herbicides with an injection sprayer

system.

At Silsoe Research Institute, UK, a spatial and temporal model has been developed to
simulated the temporal and spatial distribution of a weed species (Paice & Day, 1997). The

model describes propagation and dispersal of blackgrass and a temporal population model to

estimate the yearly state variable of population cycle of blackgrass. The model is comprised of

a dispersal model that manages migration between specified units, e.g. 1 m by | m cells.

Christensen ef al. (1999b) used the model to comparethree different weed control strategies

in a 140 m by 140 m areaofa field with varying infestation of blackgrass. The strategies were

the use of an economic threshold, the decision support system PC-Plant Protection and DAPS

every year. Eight years simulation runs with site-specific weed control showed significant

spatial and temporalvariation in the seed bankusing | plant/m? of bleckgrass as the economic

threshold and 3.5 I/ha of IPU beyond the threshold. The population size increased in the areas

with low initial Blackgrass infestations. Further, herbicide usage increased overthe eight years

period with the threshold strategy. The Blackgrass population decreased using the same low

IPU dose recommended by PC-Plant Protectionin all cells. However, the yield loss after weed

control was higher than expected indicating that the economic optimal IPU dose was higher

than the recommended dose. Over an eight-year period, DAPS showed the lowest herbicide

usage, lowest yield loss after spraying and lowest seed bank.

PATCH SPRAYING TECHNIQUES

In 1989, a Danish farmer develop a system for spatial application offertilizer and pesticides. A

computer program wasused to divide the field into specified treatment units, e.g. 12 m by 12

m units that fitted the distance between the spray tramlines. The treatment map was edit by

farmer using his knowledge about the occurrence of different weed species. The sprayer had

two tanks with two pesticides or two doses of a pesticide, i.e. four treatments could be

achieved including the no-spray treatment. The sprayer was mounted with two pumpsand an

on/off system of a dual independent nozzle system on two booms. The sprayer was controlled by

a on-board computer and an treatment map.

Since 1989, several patch sprayers have been developed as prototypes or commercial

products. An experimental patch spraying rig was designed and constructed at Silsoe Research
Institute in 1994 to 1996. The system had been designed to use a novel injection. metering
system in which the liquid chemical formulation was drawn into metering cylinders mounted

on the 12 m sprayer. The system was designed to operate with clean water in the spray tank.

Concentrated chemical formulation was metered into the spray delivery lines by pumping
water into the base of the metering cylinders to displace the active formulation, at a rate 



depending on speed of spraying vehicle and the dose requirements specified on a treatment

map (Paice et al., 1995). Further, an experimental patch sprayer in which a combination of

injection metering and on/off controls both the doses rate and pesticide mixture has been

constructed. The patch sprayer was controlled by a treatment map generated from field survey

data and an appropriate transform to accommodate a range of factors relevant to the applied

treatment. The boom wasarranged in 2 m sections with each section supplied by equal lengths

of small bore pipes from a central mixing chamber. The pipe size was designed to give a

response time ofless than 4.0 s when the sprayer wasfitted with nozzles to apply 120 litres/

ha at a speed of 8 km/h.

In Denmark, collaboration between Danish Institute of Agricultural Sciences, Flakkebjerg,

HARDI INTERNATIONAL,Dronningborg Industries and Datalogisk has led to development

of a system in which treatment maps were generated with DAPSonthe farm office computer

and then downloaded to the Fieldstar unit (AGCO DK) connected to a GPS receiver in the

tractor cab. The Fieldstar was connected to the Hardi Pilot that controlled the pressure of the

nozzles, At each position in the field, the control system sent a message to the sprayer

containing the required dose. The system has been used in three years at three locations for

patch spraying dicotyledonous weed species in cereals. Currently, the system has been modified

with a pulse-width modulation ofthe liquid flow from the nozzles developed at The University of

California, Davis (Giles ef al, 1999). In another collaboration between Danish Institute of

Agricultural Sciences, Flakkebjerg, HARDI INTERNATIONAL and Raven Industries, an

injection system with five pumps andfive tanks with concentrated herbicides has been used for

patch spraying mixtures of weed species in cereals. Each herbicide was metered into the spray

delivery lines by the individually operating pumps. A DGPS system and the software Patch

Pro® (Tech International) controlled the five pumps according to a treatment map for each

herbicide. Preliminary tests have shown that the pumps operate very accurately, however,

there is a need for improving the cleaning methodsof the system.

PATCH SPRAYING RESULTS

The potential reductions in herbicide usage that can be obtained by patch spraying depend on

the density and distribution of the w :d population and the strategy of spatial application of

herbicides. Varying potential herbicide savings obtained in field and desk studies are shown in

Table 1. In highly infested fields herbicide savings may be marginally, especially using the

or/off strategy with a low economic threshold. In otherfields with sparse weedsin distinct

patches herbicide saving can be very high (Table 1). A more conservative strategy, that

minimises the risk of weed population increase, is the species and density dependent choice of
herbicide and dose.

Having selected the density-specification of a weed patch the perception scale includes a

numeric and an area scale, the latter again split into one for sampling area and one for area of

a treatment unit. The choice of spatial and numeric scales for a certain task is a pragmatic

trade-off between the cost and benefit or saving of precision application of herbicides.

Obviously, the spatial resolution of the treatment unit scale should not exceed that of the

succeeding weed control technique. If, for example, the smallest area that can practically be

sprayed is 2 m by 2 m,the cell should not be madeless than this area. Similarly, the numeric

scale of number or coverage estimation of weeds should not aim at a precision higher than that
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relevant for practical decision-making from an agronomic viewpoint.

Even before these resolution criteria are met, it is probable that the spatial resolution will be

limited by the cost of sampling. Weeds, therefore, can only be detected with some degree of
uncertainty, and it seemsaninevitable part of patch spraying, in research as well as practice, to

consider and evaluate the potential risk as a function of the assessment uncertainty or the

chosen 'error acceptance level’.

FUTURE DIRECTIONS

Herbicide efficacy varies among weed species, which must be taken into account in spatial

weed managementstrategies. Thus, the ultimate goal of patch spraying is to select an efficient

herbicide and an economically optimum dose for each part of the field. This goal requires,

among other things, a position related decision support system that includes the yield

variations in the calculations.

The economic threshold concept has been used for spatial studies to decide which field areas

should be sprayed orleft untreated. Wiles ef al. (1992) and Audsley (1993) used the threshold

concept to simulate economicbenefit of patch spraying with a single species population. Johnsonet

al. (1995) used a mean threshold value for varying mixtures ofbroad leaf and grass weed species to

simulate the spatial variation in the need for weed control. Weed populations, however, rarely

consist of single weed species or a uniform weed composition with a constant threshold. Further,

the threshold concept may causesignificant problems in following crops in uncontrolled areas

unless there are no weedsatall. Thus, spatial weed management needs to be based on a multi-

species decision modelthat includes the long-termeffect of the level ofweed control.

Experiments in winter wheat showed that the need for weed control varied among different

drilling dates, seed rates and varieties (Christensen & Rasmussen, 1996). The results showed

that the optimum crop competitiveness was obtained beyond a seed rate of 300 seeds/m’ and

with late sowing. However,there is a trade-off betweenall cropping factors and the value of

crop competitiveness, which depends on the current weed population and the cost of weed

control. The objectives of future research in precision weed management may be to integrate

spatial crop managementstrategies.

Weeddetectionis a critical componentin the utilization of the ideas developed in the research

projects carried out during thelast five years in Europe. Novel approachesarestill needed to

identify weed species and measure weed density. Cost-effective methodologies that combine

automatic and manual weed surveying may also be a direction for mapping permanent and
semi-permanent weed management zones, e.g. mapping areas with consistently high weed

pressure, areas with consistently low weed pressure or areas with unstable weed pressure.

Knowledge about the temporal and spatial stability of weed patches may be used to achieve

cost-effective weed mapping (Walter, 1996) 



Table 1. Herbicide saving with spatial variable applicationof herbicide. 
Crop Experimental

layout

Decision

support

system

Savings Reference

 

Spring barley Complete

comparisonin

block design

DAPS 59% Heiselef al. (1997a)

 

Spring barley Desk-study DAPS 53% Christensen ef al. (1996)
 

Spring barley Whole-field trial DAPS 54% Heisel ef al. (1999)
 

Winter wheat Whole-field On/off

strategy with
threshold

40-50 % Gerhardsef al. (1995)

 

Winter wheat Whole-field On/off

strategy with

threshold

(only C.

arvense)

Potential

up to 89%

Nordmeyeref al. (1996)

 

Winter wheat Desk study On/off

strategy

9-32% Rew ef al, (1996)

 
Winter wheat Whole field Full rate/half

rate strategy

with

threshold

App. 21 % Gerhardsef al. (1997)

 

Winter barley Whole-field trial DAPS 66 — 75% Heisel et al. (1997b)
 

Winterbarley Desk-study DAPS 19% vs.

PCP

29% vs.

Threshold

Christensen ef al. (1999b)

 

Winter

wheat

Maize and

sugar beet

Whole-field On/off

strategy

Levels

based on

density

1. 54-70%

2,:25%

Gerhardse/ al. (1999)

 

Maize and

soybean

Desk study On/off
strategy

30-72% Johnsonef al. (1995)

 

Maize Desk-study on

12 farms

On/off

strategy with

threshold

71% broad-

leaf

94% grass

weeds

Mortensenef al. (1995)

 

Desk study On/off

strategy with

threshold

40 % Brown & Steckler (1995)

   Wholefield  On/offstrategy with

threshold  12-51 %  Williams ef a/.(1998)

 

The breakthrough of new technologies and demands for reduced agro-chemical input to  



benefit the environment and farm economy have given impetus to research and development

of advanced weed control measures, e.g. the real-time intelligent robotic weed control system

for selective spraying of in-row weeds using a machine vision system and a precision chemical

application system (Lee ef al., 1999).
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ABSTRACT

Automatic crop-weed distinction has become increasingly important in weed

control applications. A newapproachbased on the combination of sensors with

different properties and a microcontroller hierarchy has been developed and

applied.

Plants may be described in terms of their geometrical, optical and mechanical

properties; each of the sensors selected is aimed at least at one of these

properties. Since selectivities vary, intelligent and real-time combination of

sensorsignals is crucial for distinguishing weed and crops, thereby compensating

for the lowerselectivities of single sensors. This is achieved by an architecture

utilizing high-end 8- and 16-bit microcontrollers communicating via CAN bus.

The high flexibility has been enhanced by adding programmable devices,

facilitating online adaption to specific crop-weed patterns. Sensors and software

are being activated as required. The system is designed for speeds up to 10 km/h

with a resolution of 1 sample/mm.

The multi-sensor-system has been applied to maize cultures in a greenhouse and

field experiments thereby activating mechanical hoes or position sprayers. The

first prototypes have been tested as mobile standalone equipmentand tractor-

mounted versions. The first experiments resulted in crop-weed-selectivities of

above 90 %.

INTRODUCTION

Ecological as well as economical demandsaim at further reduction of herbicide applications

for weed control. However, the local application of herbicides as well as mechanical weed

control systems strongly depend onthe availability of detection systems. The corresponding

sensorshaveto be able to distinguish between crop and weed or even recognize the different

weedplants. Moreover, the detection processhasto be veryfast for practical applications.

Up until nowno sensors have beenavailable satisfying the above mentioned requirements

with respect to quality and real time ("on-line") detection ability. 



The most promising concepts for detecting single plants use optoelectronic devices, e.g.

image sensors or photodiodes.

The processing of image data obtained via a video camera has been improved during recent

years (Gerhards et al. 1998). However, the problems with respect to algorithms for

overlapping structures and the short processing time needed for on-line detection are not yet

solved. Addressable xy-imagers in CMOS technology have recently become available and

have been applied to crop-weed distinction by the authors (Linzet al., 1998, see table 1). The

high flexibility of these digital CMOS-cameras as well as their lowprice might result in a

strong impact of xy-imagers for on-line image analysis.

The second concept is based on the spectral properties of plants. Due to the typical reflection

in the near-infrared range caused bychlorophyll, green plants can be distinguished from soil

or wheat by relative measurements (Biller et al., 1997). Such systems are commercially

available for non-selective plant detection. Despite the fact that there are differences in the

reflection spectra from different weeds, the application of photo diodes with mountedfilters

for distinguishing "green" plants from "green" weed is limited caused by the mixed spectral

signature ofplants and soil.

The idea of combining different sensors in order to overcome the above described

disadvantages has recently been proposed by the authors (Dzinaj et al., 1998). The realisation

and application ofthis "multi-sensor-system" is described below.

MATERIALS AND METHODS

The multi-sensor-system has been designed for high precision agricultural applications to

detect single plants within rowcultures for crop/weed distinction and mechanical weed

control. The sensorsignals are available every millimeter up to a velocity of 10 km/h.

In order to detect single plants within rowcultures , the characteristics of crop and different

weed plants have to be considered. The spectral, geometric or mechanical properties could

vary due to their growth stages or environmental parameters. Thus a "plant database" is

generated which is crucial for the application. On the other hand, each sensor- as a part of a

multi-sensor-system - detects different aspects of the plants or non-target surfaces. The basic

idea of the concept is the correlation of different sensor signals with respect to the plant

characteristics. As an example the measured correlation of two optical sensors is shown in

figure 1.

The selectivity of the sensor signals with respect to the plant characteristics vary. A single

sensor signal might lead to a misinterpretation whereas the combination of all sensor signals

results in a higher selectivity for crop-weed-distinction.

The system architecture is shown in figure 2. Several sensors have been tested. including

various configurations with photodiodes and filters, CMOS-cameras, triangulation and

ultrasonic as well as pressure sensors (Dzinaj et al., 1998). In order to avoid high volume data

streams, each sensor has its own "intelligence" , namely an 8-bit microcontroller. In our

602 



application the PIC-microcontroller from Arizona Microchip Technology was used . All

sensors were connected to the CAN bus via a CAN-interface. The multi-sensor-system was

controlled by a powerful 16-bit host microcontroller (C167 from Siemens). Data sampling on

the sensors was simultaniously triggered by a frame which is sent every millimeter by the

host controller. After a signal was detected by the CAN-interface a frame with reduced signal

data wasreturned to the host. The host combined the reduced signal data and took control

over a mechanical hoe, a position sprayer or any other actuator. The distance of the actuators

relative to the sensors as well as the velocity have been taken into account in the system

design.

 

Height-detector

Side-view sensor

Fig.1: Measured correlation of two optical sensor

signals. The information of a "Height-detector" (vertical axes)

is compared to corresponding numbers obtained from "Side-

view sensors"(horizontal axis).

The system is fully programmable thereby allowing a highflexibility with respect to different

row cultures, growth stages or environmental influences. The application of microcontrollers

has resulted in an embeddedsolution, no personal computer is needed for the application.

The humaninterface is realised via a touch panel, where input and output parameters can be

transfered.

The system setup consists of a learning phase, where the sensor data for a special row culture

are collected without any filtering. The high-volume data are analysed ("off-line") with a PC

and the correspondingcorrelations and thresholds are defined. These numbers are transfered

to the microcontrollers and the system is applicable. Depending on properties of the field and 



the impact of environmental influences sensors as well as software programscan beactivated

or de-activated as required.

As far as possible standard sensor and electronic components have been used, thereby taking

into account cost considerations as an important issue during all stages of development.
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Fig.2 : Architecture of the multi-sensor-system for on-line crop/weed

detection.

DISCUSSION

The method has been applied to maize cultures as test plants for row cultures. This selection

has been influenced by selective geometric parameters of maize plants during the period of

mechanical weed contro].

Two different pieces of equipment have been constructed for use in practice (see table 1).

One multi-sensor-system was mounted on a vehicle and served as a test module (Sensor

Modul: "SEMO") for the implementation of newsensors or features (e.g. user interface,

position sprayer, slip correction, etc.) or test runs. The position of the vehicle was determined

by a position-sensitive sensor. Moreover a slip correction method has been developed by

using the information from the multi-sensor-system. A second multi-sensor-system (Low

Cost Modul: "LCM"; see fig. 3) has been designed with fewer sensors and optimised with

respect to lower susceptibility to malfunction, The influence of vibrations and dust or water

has been investigated and taken into account. Moreover, additional functionality - including
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sensors - insure the reliability of the electronic signals. The LCM can beeasily changed from

a standalone mode fortest runs (similar to SEMO)to an aggregate coupled on a wagon for

agricultural tractor applications.

The multi-sensor-systems and the corresponding equipmenthasbeentested in different stages:

static and dynamic laboratory measurement setups , greenhouse and maize field. Experience

with respect to sensorselectivities and disturbances have been obtained.

To our knowledge, it has been demonstrated for the first time that a single crop (in our case:

maize) can be distinguished from a weed plant with an online multi-sensor system thereby

controlling a mechancial actuator or a position sprayer. A prototype version of the equipment

is available for determining agricultural parameters andreliability investigations.

Table 1 : Equipment for multi-sensor-systems

 

SEMO LCM

(mobile sensor module) (lowcost module)

Application Data collection

Test runs Test runs

UserInterface Aggregate for tractor-

Slip correction mounted hoe

Applied "Height-detector" "Height-profile-detector"

Sensors "Side-viewsensors" "Side-viewsensors"

"Soil-plant sensor" "Soil-plant sensor"

CMOS-camera CMOS-camera

Pressure sensors

Triangulation sensors

Ultrasonic sensors

Actors Hoe

Position sprayer

Acoustic or optical signals

There is still some optimisation to be done in order to create semi-automatic adaptions of the

system for different growth stages or soil structures. The corresponding task is dominated by

analyzing measurement data and changing the software of the microcontroller devices. The

whole system can be easily extended by connecting another sensor to the CAN-bus(see fig. 2)

and modifying the corresponding host controller software. The development of a multi-

sensor-system has movedstrongly from hardware optimisation to software activities.

The first field experiments in a greenhouse and a test maize field have been analyzed.

Preliminary results showthat typically 2-5 % of the maize plants were detected as weed, while

1-8 % of weed were detected as maize. Depending on the strategy of the actuator (position 



sprayer, mechanical hoe) this would result in a loss of maize plants up to 5 % or an

incomplete weed control of 8 %. This numberstrongly depends on the soil structure and the

numberand shape of the weed plants.

Fig.3: Low-Cost-Modul (LCM) with a mechanical actuator
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ABSTRACT

Restricting the spraying of herbicides to control weeds is desirable, both from an
economic and environmental point of view. Using an imaging spectrograph, hy-

per-spectral signatures of vegetation samples are gathered online. A classifier not
only distinguishes soil and vegetation but also recognises different vegetation

classes.

As the reflectance of plants varies with plant stress, depending on the unknown

field situation, a representative set of field samples must be collected for training

on a specific field. Manually collecting a representative set of samples requires

user-knowledge and time and is not economically feasible. Semi-supervised la-
belling based on k-meansclustering, enables a system to automatically collect,

label andtrain the classifier for a set of hyper-spectral data samples.

Using this system to selectively spray on weeds only would result in acceptable

weed hit rates of 89% or higher and significant reductions in herbicide use (15-

67%), depending on the actual weed density in the field.

INTRODUCTION

Growing environmental consciousness and increased competition are the driving forces be-

hind precisionfarming. This trend encompassesefforts to decrease the use of herbicides. One

of the most promising techniques toward this end is place-specific spraying, i.e. to only spray

where the weed is. Studies have shownthat this approach could reduce the use of herbicides

for dicotyleclons (most of the vegetation) by 30-71% and for monocotyleclons (mostly

grasses) by 70-94% (Johnsonet al., 1995).

Initial attempts to reduce the use of herbicides were focused on distinguishing vegetation
from soil. Spraying would thenberestricted to patches covered with vegetation, i.e. weeds

and crop. The goal of the reported work in this paper is to go a step further and also make the
more subtle distinction between crop and different weeds. A few approaches have already

been suggested. One approach has been based on analysing the shapes and sizes of leaves

(Guyer et al., 1986; Gerhards et al., 1993; Franz et al., 1995). However, the current computa-

tional real-time requirements are probably beyond those that are economically feasible. Other
research has shownthat spectral reflectance of different plants may sufficeto tell them apart

(Knipling, 1970; Nitsch et al., 1991; Price, 1992 & 1994; Hahn & Muir, 1993). Classical

multi-spectral measurement devices (like a filter wheel held before a camera) are cumber-

some, slow, too expensive and too vulnerable to be mounted on a spray boom,or, as de-

scribed by Felton & McCloy (1992), they suffer from having too lowspatial resolution. 



The work reportedin this paper aimedto establish the necessary technology to achieve these

goals. In particular, our aim was to design a weed sensorthat was sufficiently cheap and rug-

ged to be used on spray booms, repeated at distances of approximately 2.5 m. Real-time

analysis, high crop/weed recognition rates and minimal user-interaction are required to be

economically feasible.

Additional applications include selective fertilising or chemical thinning of crops(like sugar

beet) or fruit (e.g. apples). In combination with a GPS positioning system, the sensor can be
used to make weed maps, importanttools in the decision part of the Precision Agriculture

chain.

METHODS AND MATERIALS

Multi-spectral sensor

The proposed weedsensoryields the spectrumof each point on a narrow linearstripe (Battey

and Slater, 1993; Herrala et al., 1994). The principle of operation is shownin Figure1.

Front

=

[siv\

x |}

Diffraction ~

Grating

ccD
Camera

Figure 1: Working principle of imaging spectrograph

The objective lens (not shown in Figure 1) projects the image of a field patch on theslit ap-

erture of the spectrograph. This slit extracts a small stripe from the patch on the ground.

After collimating the incominglight in the front optics, the light is split into its spectral com-

ponents by a diffraction grating. The back optics form an image ofthe diffracted light on a
monochromecamera. In this way, one of the axes of the camera acts as a spatial axis while

the other camera axis is a spectral axis. The quality of front and back optics, the height above
the surface and the angle of view of the objective determine the spatial resolution along the

analysed stripe, while the resolution in the other direction is mainly determined by theslit
width. The slit width and the numberof grooves in the diffraction grating mainly determine
the spectral resolution of this sensor.

It should be emphasised that the parameters of this spectrograph were designed to obtain a

low cost device that should operate under nermal daylight conditions with no light sources

other than the sun. With a slit width of 200 um, slit length of 8 mmand an objective with a
focal distance of 3.5 mm,it is possible to analyse a stripe having a length of 2.5 m from a

height of 1 m with a spatial resolution of approximately 1.5 cm’. The spectral range (400-

1000 nm) with a resolution of about 35 nm, coincides with the typical spectral range of a

camera. 



The imaging spectrograph has several clear advantages over other multi-spectral sensors. It

has no moving parts, resulting in high robustness with respect to vibrations of the spray
boom. All the spectral information relating to the analysed surface is available at once,

through diffraction of the reflected light. The limiting factor concerning speed is the frame

rate of the camera. Reflectance spectra can be gathered and processed online. There is also no

point in using the reflectance for all wavelengths. Computation times would be prohibitive

and there is substantial redundancy in the data. The optimal set of wavelengths depends on

the plants to be distinguished. One can take the wavelengths which maximise the following

class-to-class separation function in which theA/,(A)are the mean values of the reflected

light for class X and Y at wavelength A and in which thea? (A) are the class-dependent meas-

ured variancesat

F(aye IM» (A)=M,(A)| (1)

Voi (A)t+o7(A)

the same wavelength. Local extremes are found at certain wavelengths. The differences re-

flect underlying, physical differences between the plants (Hahn and Muir, 1993; Carter,

1993). Differences in the visible region are mainly determined by the plant-specific produc-
tion of chlorophyll. It is even more important to analyse the reflectance in the near infrared

region where the reflectance depends rather on the internal structure of the plant like the

numberofcell layers, the size of cells and the orientation of the cell walls. The presence of

leaf hairs and waxes, characteristic for some plant species, can also influence the infrared re-

flectance.

Algorithms

Vegetation detection

Thefirst step in the process is to segment the vegetation parts from the background(soil) on
a pixel-by-pixel basis, using the difference in reflectance of soil and vegetation in the red and

near infrared wavelength region.

Spectral reflectance of plants

Dueto intensity variations of sunlight and presence of shadowsyielding a higher share of

shorter wavelengths in the illuminating spectrum, reflectance (relative intensity) must be
measured rather than irrradiance (absolute intensity). Comparing the irradiance from each

vegetation sampleto the irradiance from a referencedirectly illuminated by the sun orillumi-
nated with shadow,results in illumination independentspectral plant signatures. Using a data

set of characteristic class spectral reflectance seems feasible. However, Carter (1993) showed

that plant reflectance is affected by external factors (stress) such as nutrient and water con-

tent, competition between plants, senescence, disease levels, herbicides and soil type. Not
knowing in advance the actual parameters influencing the plant reflectance makes the use of

such a database impossible, as the actual field subset cannot be determined.

Scene prior knowledge

Presence of crop rows enablesthe use of prior knowledge about the scene, e.g. vegetation

between the crop rows can only be weed. However, the position of the spray boom with re-
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spect to the crop rowsis not known exactly as the spray boom moves in the horizontal and

vertical planes. Therefore, the crop rows must be detected digitally by examining repetition

in the distances between the geometric centres of the vegetation parts, The distance between

the crop rowsis repeated most if weeds are uniformly distributed over the analysed area. It

needs mentioning that weeds need only be distributed uniformly on a local scale. On a field

scale, they may be, and often are, localised in patches.

Practically, repetition in plant-to-plant distances is determined counting the occurrence of
remainders x after division of the distance by some denominator 6. The denominators can be
restricted to the set of plant-to-plant distances. The error in row establishment and measure-

ment (€) is also included to restrict the number of evaluations even further. All distances

closer than tolerance é can be regarded as the same distance. The base with the most almost

zero or almost base remainders, is probably the distance between the crop rows. In fact, the

distance between row-plants can bee larger or smaller than the average row-distance, re-

sulting in small or very large remainders.

The proposed algorithm only holds if weed is uniformly distributed at a local scale, if the

sensor is able to analyse a sufficient number of crop rows at the same time and if the weed

density is sufficiently small. It is noticed that if the weed density is too high, the crop rows

will not be recognised. In that case, if the number of vegetation parts is below weedtoler-
ance, every plant sample needs to be evaluated spectrally. Otherwise, the spray nozzles can

be activated immediately.

Automatic gathering and labelling of data samples

Gathering a field representative training set suffices to discriminate betweenall the crop and

weedplants onthat field. This method requires gathering of samples and training ofthe clas-
sifier on each field separately. Collecting samples manually is not feasible as the possible

end-users do not have the time and may not always have the required knowledge.

The proposed procedure eliminates these restrictions completely. User-interaction in particu-

lar is eliminated if the crop is planted in rows. This is the case for a lot of economically im-

portant crops such as maize or sugar beet. Spot spraying with a mix of herbicideskillingall

the weeds in one run,is feasible if the samples can be labelled as crop or weed. The weed

samples need not necessarily be groupedinto the individual weed classes.

Thebasic principle of the algorithm is that crop only appears in the rows while weed appears
both in and between the rows. Each subset (cluster) jof the collected data set consists

ofN7; data samples with NR, row-samples and N7’, — NR, between-the-row (certainly weed)

samples. If V,(Eq.2) is the relative amount of row samples in cluster j, x, =1—V,is the

relative amount of known weed samplesin cluster j. x, is a good first order estimate for the

relative number of weed samplesin the set of row samplesif this subset is a good representa-

tive for the cluster population. The estimated relative number of weedsin cluster 7 (Q, seca )

and the corresponding variance (o ) are therefore calculated as in Eq.2.J.weed 
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Assigning a croplabelto the cluster samples is acceptable if the hypothesis that the samples

are weeds can berejected on a (high) significance level (.§ , Eq.3) calculated as the unilateral

Gaussian probability with expected number of weeds and corresponding variance.
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The relative number of samples, given a crop label, labelled incorrectly ( € ) is given by Eq.3.

Labelling as crop after clustering the set of samples based on the spectral signatures of the

sampleswill actually result in even more errors at low values of V,. As crop and weeds have

characteristic spectral signatures, most of the row-samples in the set of samples that are
closely located to mostly weeds in the feature space, will probably be weeds also. At higher

values of V7, the error will probably be lower as there will be almost no known weed sam-

ples around inthe feature neighbourhood, so that the row-samples are mostlikely crop.

The collected set of data samples must be split in crop and weed clusters. The k-meansclus-

ter algorithm that was used, is a stochastic algorithm in which & cluster centres are chosen

randomly in a set of data samples. The cluster centres are shifted towards stable positions,
minimising the summed distances between each sample and the cluster centre. Adaptation of

the algorithm by choosing the initial cluster centres evenly over the subsets of row-samples

and between-the-row samples, guarantees faster convergence towards crop and weedclusters.

The density of the crop samples may be much lowerthan the density of weed samples sothat
randominitialisation may result in only weed clusters. Each subset for which the hypothesis

of weed cannot be rejected with necessary significance must be split in two subsets of which
one may contain significantly more row-samples and one may contain less row-samples. As

shownpreviously, above a certain V’,, the latter may be interpreted as a weedcluster. To

keep the rejection significance high, clusters are also only split if they contain a large number
of samples of whichat least 10% are expected to be crop. Thesplitting algorithm stopsif the

resulting numberof crop samples reaches the expected number of crop samples. This number

can easily be calculated taking into account the length, width and numberofanalysed lines

and the real row-distance and distance between cropplants in the row.

Using high weed rejection significance, most of the samples in crop labelled clusters will

actually be crop samples. Also a small number ofreal weed samples will get the wrong la-

bels. On the other hand, weed labelled clusters may contain some false-labelled crop samples.

By iteration of the procedure, weeds will mostly be labelled as weed whereas crop will be

labelled as crop or weed, resulting in small variation in labels for weed and higher variation
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for crop samples, The sampleis finally labelled as weed if the variance is lower than the re-

ciprocal of the numberofiterations, otherwiseit is labelled as crop.

RESULTS

Measurementconditions

The spectral measurements were obtained underreal-field conditions: outdoor measurements

for actual plants on real fields. Plant leaves and soil showed natural variation in orientation.
The sun’s illumination (intensity, spectrum and direction of incidence) and the vehicle speed

varied while gathering the spectral data samples.

The experimentsin the rest of this paper were based on reflectance measurements (reference
corrected) of manually labelled plant samples on onefield only. Samples were collected until

a statistically relevant number of samples was obtained. The actual range of influencing fac-

tors on thatfield therefore most likely affects the reflectance of the samples. Special care was

taken to gather a data set of only healthy looking crop and weed samples. One of the most

economically important crops, sugar beet, was selected for the experiments. The data set con-

sisted of 905 samples of Beta vulgaris L. (commonbeet), together with Poa annua L. (annual

meadowgrass, 1830 samples), Plantago lanceolata L. (narrow-leaf plantain, 1412 samples),

Stellaria media L. (common chickweed, 1019 samples), Chenopodium album L. (fat-hen, 867

samples) and Polygonum persicaria L. (Redshank, 988 samples). The plants, fully grown,

varied in age from 4 to 8 weeks.

Measurements were performed using a monochrome 2” (4.8 x 6.4 mm) CCD-camera (MX5

of Adimec) coupled to the imaging spectrograph described earlier. The processing unit con-

sisted of a 166 MHz Pentium PC with 32 Mbytes RAM.

As we were dealing with more than two classes, wavelengths were selected for each combi-
nation of crop and weed. The most separating wavelength for each pair was selected auto-

matically. Lower ranking wavelengths were only added if they were separated by more than
the spectral resolution from those already selected (higher ranked extremes). The samples

were classified using a non-linear mapping neural network (Rumelhart et al., 1986) with
three layers: an input layer with 5 neurons, a hidden layer with 8 neurons and an output layer

with 2 neurons, one for each class (crop or weed). The training procedure was implemented
with a back-propagation learning rule using an adaptive learning rate and momentum. The

former minimises the learning time, the latter minimises the risk to get stuck in a local mini-

mum ofthe error function.

Case study

For the experiments, data sets were created synthetically from the perfectly labelled set, con-
taining crop and weed samplesin selected amounts. Every crop sample and part of the weeds,

depending on the ratio of rowtolerance W (7.5 cm) and distance between the rows K (45 cm),

were given a row label. The rest of the weed samples were given a between-the-row (known

weed) label. This kind oflabelling is possible with the algorithm presented above. The cluster

procedure was repeated on data sets with different relative amounts of crop and weed sam-

ples for a fixed row width W and compared to classification, weed hit rates and herbicide re-

ductions with perfect labelling calculated under standard conditions on sugar beet fields. The
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spray resolution was determined by spray width and spray length. The spray width is the size

of the spray pattern along the axis of the spray boom. The resolution in the driving direction
(spray length) was determinedbythesize of the spray pattern in that direction, the on/off fre-

quency of the spray nozzle in combination with the driving speed and the set-up time for a

stable spray pattern. A planar spray pattern, extremely small in the driving direction and sta-

ble within milliseconds, has an achievable on/off frequency, limited by fluid dynamics, of 15

Hz. Driving at a speed of 4.05 km/h resulted in a spray length of 7.5 cm.

Table 1: Classification results, hit rate and herbicide reduction for varying weed density after

proposedlabelling (left) and perfect labelling (right)

Weed density (#m~) 12 37 86 Weed density (#/m”) 37
Proposedlabelling Perfectly labelled

Sugarbeet 97 97 99

Weed 95 96 97

Weedin row as weed 75 85
Average Noofclusters 9 14

Classification Classification

Sugarbeet 97 96 98 Sugar beet 97
Weed 91 88 61 Weed 99

Average 94 92 80 Average 98

Spraying effect Spraying effect

Hit rate 93 94 89 Hit rate 99

Herbicide reduction 68 31 15 Herbicide reduction 26

 

Table 1, right showsthat for perfectly labelled samples, the classifier has an average sample

classification success rate of 98%, an expected weed hit rate of 99% and a herbicide reduc-

tion of 26% for an average weed density of 37 weed plants/m’. With the proposedlabelling,

Table 1 showsthat the labelling accuracy is almost insensitive to the weed density. A low

increase in accuracy with increasing weed density could be explained by the fact that rela-

tively more weed samples present between the rows(certainly weed) enable to cluster the

weed samples more accurately. For the same reason, crop could also be labelled more accu-

rately. Correspondingclassification success rates do not differ significantly from the case in

which the sample labels are perfectly known. The success rate for the crop samples follows

the same tendency as the crop labelling accuracy. However, they show a decrease in recog-

nising the weeds with increasing weed density. Weedhit rates arestill acceptable for all weed

densities. Herbicide reductions decrease, as expected, with increasing weed density. Due to

an increase in the classification error, the herbicide reduction remains significant, even for

the higher weed density.

CONCLUSIONS

Existing spectral measurement techniques are far too slowto beintegrated into an online in-

telligent spray apparatus. The spectral measurement technique we implemented combines

spectral resolution andspatial sensitivity to a fast and sufficiently accurate crop versus non-

cropclassifier. 



The proposed cluster algorithm can be used to label a set of data samples, collected with the

proposed multi-spectral image sensor. Prior row or between-the-row labels that were as-

signed to each of the samples suffice to eliminate every user-interaction and user-knowledge
in collecting and labelling the data set. Based on the labelled data set, a classifier was trained
to recognise crop and weed for selective spraying of weeds only. This resulted in acceptable

weed hit rates of 89% or higher and significant reductions in herbicide use (15-67%), which,

for the simulated weed densities, spot-spraying becomes economically feasible.
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ABSTRACT

Three distinct growth stages of black nightshade and couch grass were treated
with eight different glyphosate rates. Black nightshade wastreated at the 3-4,

5-6 and 9-10 leaf stage and couch grass wastreated at the 3-4, 5-6 and 7-9 leaf

stage. Dose responserelationships demonstrated that the EDso for glyphosate

was 7, 36 and 130 g ae/ha with black nightshade at the 3-4, 5-6 and 9-10 leaf

stages, respectively. The EDso (dose giving 50 % response) with couch grass

was on average 18 g ae/ha and wasfairly constant at the different growth

stages investigated. Relevance of relative growth rate, absolute fresh weight,

spray retention and species-dependenceis discussed.

INTRODUCTION

Insight into the impact of different weed species and the weed growth stage on herbicide

susceptibility may contribute to reduction of application rates (Kudsk, 1989). In this study
we investigated the influence of growth stage on the susceptibility for the herbicide

glyphosate. The application of glyphosate in glyphosate-resistant crops with a population

of weedsat various stages of growth is another argumentfor this study.

Previous reports indicated that plants at later growth stages are less susceptible to

glyphosate (Ahmadief a/., 1980; Mesa-Garcia ef al., 1984; Ralphs ef al., 1992; Taylor &
Oliver, 1997). Broad bean (Vicia faba L.) (Mesa-Garcia ef al., 1984) and duncecap

larkspur (Delphinium occidentale S. Wats.) (Ralphs ef al., 1992) becameless susceptible
during and after flowering. The perennial couch grass (Elytrigia repens L. Nevski)

appearedto beless susceptible at young stages (1-3 leaf) when compared with the 4-7 leaf

stages (Rioux ef al., 1974; Ivany, 1975). A study onfive species of annual morningglory

(Ipomea spp.) demonstrated that the influence of growth stage on glyphosate efficacy

depended onthe species (Wehtje and Walker, 1997).

The stage of growth may influence the susceptibility-determining factors like entry of

glyphosate into the plant and the distribution in the plant. Young barnyardgrass absorbed

more glyphosate and translocatedthe herbicide moreefficiently than older stages (Ahmadi
et al., 1980). At the shoot elongationstage, ligustrum (Ligustrum japonicum Thunb.) and

blue pacific juniper (Juniperus conferta Parl.) absorbed more glyphosate than at other

stages (Neal e# al., 1985). Studies on flax (Linus usitassimum L.) (Harvey et al., 1985) and
Canada thistle [Cirsium arvense (L.)] (Hunter, 1995) indicated that the source-sink

relation at the different stages of growth determined the direction of the glyphosate

translocation in the plant. 



In addition to the obvious demand for entry of glyphosate into the plant and translocation

of sufficient amounts to the meristems, we argue that the plant’s response, after inhibition

of the enzyme EPSP synthase by glyphosate, may also depend on the growth stage. A

young rapidly growing plant needs the functioning of the target and will be harmed more

by target-inhibition than an older plant growing notat all or slowly. Studies on water-

stressed plants provided some evidencefor this idea (de Ruiter and Meinen, 1998). In this
study we wanted to investigate whether relative growth rate is a suitable tool for fine-

tuning of glyphosate application rates. Therefore, we measured the influence of growth

stage on glyphosate susceptibility in relation to the growth rate at different stages. To

determine accurately the influence of growth stage, we established a dose-response
relationship at each growth stage using black nightshade (Solanum nigrum L) and the

perennial couch grass. Wealso investigated whether spray retention was affected by

growthstage.

METHODS AND MATERIALS

Plant material

Black nightshade and couch grass were grown in 1 1-cm diam.potsfilled with a mixture of

sand and humicpotting soil (1:2, v/v/). After emergence the black nightshade plants were

thinned to one plant per pot. Five one-node segments of couch grass rhizomes were

planted and the plants emerged were thinned to three per pot. The plants were grown
under the following conditions: additional light (high-pressure mercury lamps, 12 h),

18/12 °C (light on/light off) temperature and 70/80% (light on/light off) relative humidity.

The pots were placed on sub-irrigation matting which was wetted daily with water and
twice a week with nutrient solution.

Characterization of plant growth

The growth ofblack nightshade and couch grass plants was monitored during a period of

eleven weeks. The first harvest of both species was ten days after emergence and was

followed by twenty-one harvests with an intervening period ofalternately three and four

days. The growth of black nightshade was analyzed by measuring fresh and dry weight of
the aerial parts and the roots. The growth of couch grass was analyzed by measuring fresh

and dry weight of the aerial parts, the roots and the rhizomes. Wealso determined per pot
(three plants) the numberof rhizomes, the length of the rhizomes and the numberofbuds.

The influence of growth stage on glyphosateefficacy

Black nightshade plants at the 3-4, 6-7 and the 9-10 leaf stage and couch grassat the 3-4,

5-6 and the 7-9 leaf stage were sprayed with glyphosate solutions. In one experiment we
also treated black nightshadeat the 1 1-leaf (flowering) and the]3-leaf stage (seed-filling).

Each week, the growth of a new batch ofplants was started such that the different growth
stages of one species could be treated on the same day. Prior to treatment four pots were

used to characterize the plants at the time of treatment as described above. Another four
pots were used to determinethe retention of spray solution on the foliage for each stage of

growth. The glyphosate solutions contained the monoisopropylamine salt of glyphosate at
eight different concentrations and the polyoxyethylene (15) tallow amine surfactant 



(Ethomeen 1/25) at 2.5 g/litre. The 3-4 leaf and the 6-7 leaf stage of black nightshade

weretreated with glyphosate at application rates ranging from 1 to 265 gae/ha. The 7-9

leaf stage and older stages were treated with rates ranging from | to 1908 g ae/ha. Couch

grass was treated with glyphosate at application rates from 1 to 578g ae/ha. The

glyphosateefficacy was determined by measuring the fresh weight of the aerial parts two

weeks (black nightshade) and two or three weeks (couch grass) after treatment. The

glyphosate solutions were applied with an air-pressured laboratory track sprayer delivering

400litres/ha at 303 kPa. Spray solutions used for quantification of retention on the foliage

contained the fluorescent dye Na-fluorescein at a concentration of 0.1 g/litre and the

surfactant at 2.5 g/litre. Retention of the spray solution was quantified by

spectrofluorometry according to Richardson (1984).

Experimental design and data analysis

Period of growth wasthe variable in the growth experiment. At each of twenty-two time

points four pots were takenout for harvest of the plants. Due to a limitation in the number

of pots that could be placed in a tray, the pots were distributed over two randomized

blocks with each two replicates. One experiment was conducted under the greenhouse

conditions as described underplant material and another experiment was conducted under

similar conditions in a climate chamber. The mean fresh weights ofthe aerial parts were

subjected to nonlinear regression (Genstat 5) using the equation for the Gompertz curve:

y =atcexp (-exp (-b (x-m)))

In this equation y is the fresh weight, x is the numberof days after emergence, a, b, and c

are parameters describing the shape andthe position of the curve. The calculation of

relative growth (RGR) wasbased on the equation for growth by using:

RGR= (1/y) (dy/dx).

Glyphosateefficacy

All pots of one growthstage wereplaced in one completely randomized block with four

replicates in the block. The positions of the blocks were randomized. At least four separate

experiments were conducted with each species. The mean fresh weights ofthe aerial parts

were subjected to nonlinear regression (Genstat 5) using the equation:

y=a+c/(1 + exp (-b (x-m))

In this equation, y is the fresh weight, x is In(glyphosate concentration), a is the lower

limit at large doses, a + c is the upper limit at zero dose, m is the InNEDso (EDso is

equivalent dose for 50 % response) andb is the slope parameter that determines the slope

around the EDso. The InEDso values were subjected to analysis of variance.

RESULTS AND DISCUSSION

Growth of black nightshade and couch grass 



Growth of black nightshade (Fig. 1A) was monitored until 83 days after emergence and
that of couch grass (2A) was monitored until 81 days after emergence.
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Figure 1. Fitted growth (A)andrelative growth (RGR)ofblack nightshade(aerial parts)
grownin the greenhouse.
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Figure 2. Fitted growth (A)andrelative growth (RGR)ofcouch grass(aerial parts)
grownin the greenhouse.

The flowering of black nightshade started around 40 days after emergence and the seed-

filling period started around 60 days after emergence. Couch grass did not flower during

the growth experiment. Development of rhizomes started from 33 to 36 days after

emergence and the numberofrhizome budsperpot(three plants) was 80 at the end of the

monitoring-period. The RGR ofboth species was relatively low 40 days after emergence
(Figs. 1B and 2B). At the young stage of couch grass, the fitted growth curve diverged

somewhatfrom thepattern in the plot of the fresh weights measured (not shown) and this

resulted in unrealistic high values for the RGR between 10 and 20 days after emergence.

Influence of growth stage on susceptibility for glyphosate

Black nightshade becameless susceptible at later stages of growth (Table 1) as was shown
for other species (Ahmadi et al., 1980; Mesa-Garcia et al., 1984: Ralphs et al., 1992;

Taylor & Oliver, 1997). At the flowering stage (49 days after emergence) and the seed

filling stage (63 days after emergence) the plants lost their susceptibility almost
completely. The limited number of growthstages tested so far (5) do not allow to consider

accurately a mathematical relationship between EDso and RGR (Table 1B). There seems
to be a clear inverse relationship: EDso increases when RGR (based on aerial parts)
decreases. 



Table 1. Influence of growth stage on the susceptibility ofblack nightshade for glyphosate

EDso (g ae/ha)

Experiment

DAE! Leaves 1 3 4 5 Mean

21-22 3-4 6.7 10.9 4.9 9.1 Ta
28-29 5-6 14.9 44 10.4 nd 36b
33-36 9-10 nd 133.9 86.6 258.4 130¢
49 1 >>
63 13 >>?

' DAE days after emergence.
? Means within one experiment followed by the same letter do not differ at the 5 %

probability level (LSD).
> Glyphosate at 1908 g ae/ha reduced the fresh weight by less than 20 % ofthe control

plants.

 

 

 

 

 

Byusing the data of the separate experiments we could describe a linear relation between

fresh weight on the day of treatment (x) and the EDso (y) as y=12.3x (R7=0.75). The

retention of spray solution (y) was influenced by the fresh weight on the day of treatment

(x) according to y=0.7x?-52x+1021 (R?=0.97). This means that the retention decreases
from 1000 to 100 yl g-' dry wt from the very young stageto theseedfilling stage. The

retention decreases by 50 % from thefirst stage to the third stage (from 21 to 36 days after

emergence) and we do notthink that this explains the substantial increase of EDso (Table

1). The surfactant selected was included for its property to enhancethe foliar uptake of

glyphosate (de Ruiter 1998). Although foliar uptake is not yet determined at the older

stages we suggestthat the source-sink relationships in the plant and the RGR rather than
the targeting of the herbicide determined the influence of growth stage on glyphosate
efficacy. The data indicated that the absolute fresh weight on the day of treatment and

RGRofthe aerial parts of black nightshade hasthe potential to serve as an indicator for

glyphosateefficacy.

Couch grass demonstrated the same susceptibility for glyphosate at the stages tested

(Table 2). We did not find a lower susceptibility at a young stage (3-4 leaf) as mentioned

before for the 1-3 leaf stage (Rioux ef al., 1974; Ivany, 1975). Difference in growth stage

Table 2. Influence of growthstage onthe susceptibility of couch grass

for glyphosate.
EDsv (g ae/ha)

Experiment

DAE! Leaves l 2 3 4 Mean’

17-18 3-4 nd 20.9 11.7 10.5x IS.la

23-25 5-6 20 28.4 16.7 18.8 21 a

31-37 7-9 22.9 26.2 9.7 10.4 17.34

TDAE days after emergence.

? Meanswithin one experiment followed by the same letter do not differ at the

5 % probability level (LSD).

 

  



and experimental procedures may explain this. Equal susceptibility at older stages was
found previously (Ivany, 1975), The level of retention of spray solution varied between
350 and 500 ul g’' dry wt among the separate experiments and was not influenced by
growth stage (data not shown). The RGRofthe aerial parts was lower at the older stages
tested but this had no impact on susceptibility for glyphosate. At the oldest stage tested
(33-36 days after emergence, 9-10 leaf stage) the plants just started with the development
of new rhizomes. This means that the foliage, although growing at a lower RGR, is an
active tissue involved in the translocation of assimilates and a phloem-mobile compound
like glyphosate to the rhizomes and the roots. Apparently, RGR ofand fresh weight of the
aerial parts of couch grass are no suitable parameters for fine-tuning of glyphosate
application rates. We suggest that rhizome development and the ratio between aerial parts
and the rhizomes maybetter parameters. We suggest that regrowth from budsis the best
and most relevant methodtotest this,

Weconclude that the usefulness ofthe relative growth rate of the aerial parts and the fresh
weight on the day of treatment, as indicators for glyphosate efficacy, is species-dependent.
Our data with black nightshade indicate that these parameters are suitable for annual
dicots.
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ABSTRACT

Targeting weed patches for herbicide application potentially represents cost

savings for operators and reduction in environmental herbicide load. An

experiment wasinitiated in a no-till corn field in Ontario, Canada, in 1998 and

continued in rotation with no-till soybeans in 1999. Weeds were intensively

scouted in a 4 ha area and weed distribution maps were generated for both

years. Efficacy of weed control and yield were compared between

conventional broadcast treatments and site-specific application treatments.

Treatments were applied using a direct injection sprayer. Cornyield in 1998

wasidentical acrossall treatments. In 1998 and 1999 there was no difference

in the level of weed control between treatments and the percent area sprayed

in the site-specific treatments was reduced as much as 26 to 59% in some

treatments.

INTRODUCTION

In traditional agricultural weed managementsituations herbicides are sprayed on the entire

field with the assumption that weed distribution is random or uniform throughout the field.

However, in most cases weeds are patchy or clustered in distribution (Mortensen &

Dieleman, 1997; Cousens & Woolcock, 1997). The concept of site-specific herbicide

applications offers the opportunity to reduce the environmental impacts of herbicide use in

farming while maintaining efficacy and profitability. In theory, site-specific herbicide

applications would only target the areas in the field that have weed patchesat densities that

would impacton the yield of the crop. Stafford & Miller (1996) have suggested that there

would be a 40 to 60% reduction in the amountofherbicide inputs into the environmentif

site-specific applications were utilised. As well as the potential environmentalbenefits, site-

specific applications would economically optimise the use of herbicides and thus result in a

cost reduction for the farmer.

As of yet, there has been verylittle research done examining if site specific herbicide

applications would perform as effectively, with regard to weed control, compared to

broadcast herbicide applications. Another important issue relating to site-specific

applications that has not been adequately investigated is the effect of targeting weed patches

for herbicide applications onpatchstability. If patches remained relatively stable in a field

from year to year then farmers could use the same weed maps for several years without

havingto havetheir fields re-mapped yearly. 



The objectives of this research are to monitor the efficacy of site-specific herbicide
applications comparedto broadcastherbicide applications for weed control andyield, and to
monitor the dynamics of weed patches and weedfree areas overtime.

METHODOLOGY

A commercial no-till field site in a corn-soybean-wheatrotation was chosen for the study. In

the spring of 1998, a 100 x 400m portion ofthe field was flagged on a 6 x 6m grid. Flags

were geo-referenced using a GPS andleft as semi-permanent markersin the field throughout

the summer. In 1998 the field was planted into corn and in 1999 wasplanted into soybeans.

Just prior to the 5" leaf stage of the corn and the 2”trifoliate stage of the soybeans weed

counts were conducted. At each flagged intersection point a 1 x 1m quadrat was laid down

on the ground and weeds within the quadrat wereidentified and counted.

From the weed counts, weed contour maps were developed for the most prevalent species
using the GIS program Surfer. Simple point kriging was used as the interpolation method
based on the variograms developed in Gstat for each species.

The field was further divided into 16 plot areas of 28 x 85m. The experiment waslaid out
according to a randomized complete block design with 4 replications and 4 treatments. The

same randomization was used from year to year. Each weed contour plot map was divided

into management units of 3 x 5m that the sprayer was capable of targeting. Decisions on

whether to spray or not were based on the presence of targeted weed species above the
threshold density of 1 shoot m? in any portion of each decision unit. For each plot there

were 136 decision units. The broadcast treatment plots were not assessed and the wholeplot

area was targeted for herbicide application. Depending on the treatment, twoorthree of the

weed density contour maps were overlaid. Once the decisions about what units would be

sprayed had been made, prescription maps were created that could be read by the on-sprayer
computer.

The direct injection sprayer system (Bennett & Brown, 1999) is equipped with a water tank

and a separate container of the herbicide that is to be injected according to the prescription

map. The sprayer constantly sprays the carrier and injects the herbicide only for those

decision units that have been prescribed for application. Therefore two types ofsite-specific

applications were possible, 1) injection of herbicide for targeted areas only or 2) injection of
herbicide for the targeted areas and simultaneous blanket coverage overthe entire plot area

with another herbicide mixed into the carrier tank.

In 1998the herbicides sprayed were nicosulfuron/rimsulfuron, flumetsulam/clopyralid/2,4-D
and atrazine at 0.10 kg ai/ha, 0.28 kg ai/ha and 1.15 kg ai/ha, respectively. In 1999 the

herbicides sprayed were chlorimuron ethyl at 0.009 kg ai/ha and acifluorfen at 0.6 kg ai/ha.
Applications were madeat the 6" leaf stage of the corn in 1998 and the 2™trifoliate stage of
the soybeans in 1999 according to the treatmentlists in tables 1 and 2. Three to four weeks
after application, weed counts were conducted on the same 6 x 6m sampling grid. Yield was

also collected in the autumn of 1998. Statistical analysis was performed using an ANOVA
and means were compared using the LSD test. 



Table 1. Herbicides applied and weeds targeted in 1998
Weedstargeted”

Treatment no.

_

Herbicides TAROF SONAS  EQUIR

Flumetsulam/clopyralid/2,4-D r° I I

Atrazine + nicosulfuron rimsulfuron I I I

Flumetsulam/clopyralid/2,4-D BC BC BC

Atrazine + nicosulfuron rimsulfuron x I I

Flumetsulam/clopyralid/2,4-D BC BC BC

Atrazine + nicosulfuron rimsulfuron I I I

Flumetsulam/clopyralid/2,4-D BC BC BC

Atrazine + nicosulfuron rimsulfuron BC BC BC

* TAROF: Taraxacum officinale, SONAS: Sonchus asper, EQUIR: Equisetum arvense.

> 1: herbicides injected for patches above threshold density, X: no injection even if density is

above threshold: and BC: broadcastapplication of the herbicides to the whole plotarea.

 

Table 2. Herbicides applied and weedstargeted in 1999
Weedstargeted"

Treatment no. Herbicides CHEAL SONAS EQUIR
 

Chlorimuron +acifluorfen I I I

Chlorimuron BC BC BC

Acifluorfen I Xx I

Acifluorfen BC BC BC

Chlorimuron Xx I X

4 Chlorimuron +acifluorfen BC BC BC

* CHEAL: Chenopodium album, SONAS: Sonchus asper, EQUIR: Equisetumarvense.

® Symbolsas pertable 1.

RESULTS AND DISCUSSION

The most prevalent weed species found over the two years were field horsetail (Equisetum

arvense), spiny-annual sowthistle (Sonchus asper), common lambsquarters (Chenopodium

album) and dandelion (Taraxacum officinale). Visually the field horsetail patch was quite

localized and very dense and this was confirmed by the geostatical analysis. The variogram

equation reflected the high spatial correlation with a nugget value of zero and the range of

spatial dependence was of 61.54 m. The spiny-annual sowthistle patches ran lengthwise in

the field following the direction of the implementtraffic and this was reflected in the

variogram equations with north/south (N/S) anisotropy. Both spiny-annual sowthistle and

common lambsquarters had relatively low nugget values indicating that spatial correlation

existed but random variation was also present. Common lambsquarters had a muchshorter

range of spatial dependenceat 6.7 m while spiny-annual sowthistle had a range of 14.33 m.

Common lambsquarters was not present at high densities in 1998 and was not targeted.

Howeverit was found to be very abundantin this field in 1999 and densities warranted its

inclusion in the decision grid. Dandelion wastargeted for herbicide application in 1998 but

not in 1999. The variogram equation indicated that there was no spatial correlation and
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therefore was randomly distributed. A preplant application of glyphosate at 900 g ai/ha

controlled dandelion in 1999, The variograms derived from counts of field horsetail and

spiny-annual sowthistle in 1998 were very similar to those derived from 1999 observations.

This suggests that the level of patchiness of a particular weed may remain stable within a

field. However no conclusions can be drawn about relative field to field patchiness of a

particular weed. Asfor the stability of a patch in a field over time it seemed to be dependent

on the weed type. Thefield horsetail patch was almost in exactly the same location as the

previous year (Figure 1). There was a greater year to year variation in patch location for
spiny annual sowthistle (Figure 2).

4998 1999

350

Figure 1. Initial field horsetail maps from 1998 and 1999 for the 4 hafield area. Axes

present distances are in meters.
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Figure 2. Initial sowthistle maps from 1998 and 1999 for the 4 hafield area. Axes

represent distance in meters. 



Weed control was assessed by comparing the initial weed counts in each quadrat with the

counts for that same quadrat 3 to 4 weeksafter application. Regardless of the year, there

wasno significant difference in weed control between any of the treatments for each species.

In 1998, excellent control of spiny-annual sowthistle and field horsetail were obtained with

values ranging between 76 to 92% and 86 to 99%, respectively. Control of dandelion ranged

between 69 to 80%. In 1999, control of spiny-annual sowthistle ranged between 97 to 99%.

Control of lambsquarters and field horsetail was lower which reflects the fact these species

are difficult to control with the herbicides used in 1999. Levels of control ranged between

28 to 70% for lambsquarters and 10 to 41%with field horsetail.

There were no differences in yield between any of the treatments in 1998 with values

ranging from 9.0 to 9.5 tonnes/ha. There was, therefore, no yield advantage in applying

herbicides to the whole field as compared to the site-specific applications. The absence of

yield differences among the four treatments is in agreement with the fact that weed control

levels were identical.

With these results in mind the next relevant question is whether the actual plot area sprayed

was reducedin the site-specific treatments and to what magnitude. In 1998 the actual area

sprayed in the site-specific treatment (1) was 26% less than the traditional broadcast

treatment (4 in Figure 3). However, the combination site-specific/broadcast treatments (2

and 3) were not different from treatment 4. In 1999, there was no differencein the total area

sprayed with site-specific treatment (1) as compared to treatment 4, but the combinationsite-
specific/broadcast treatments (2 and 3) reduced the actual area sprayed by 59 and 50%,

respectively. The reductions seen in the combination site-specific/broadcast treatments (2
and 3) are only representing the injection componentofthe application.

01998

m 1999

Av
er

ag
e
%

A
r
e
a
Sp
ra
ye
d
of

Tr
ea
tm
en
t
Ar
ea

Treatment

Figure 3. Reduction of area sprayed by using site-specific herbicide applications in both

1998 and 1999 as comparedto broadcast.

Site-specific herbicide applications provided encouraging results in both years. The
reduction in herbicide inputs would be meaningful economically to a farmer as well as

environmentally to the public. However the entire process is in need of refinement.

Obviously, in a large field scale situation the intensive sampling method that was used would

be time consuming and costly. As technology progresses, better ways of accurately locating 



weed patches in the field when the weeds are small and within the herbicide application

window will be developed. The direct injection sprayer restricted the size of our decision

unit. Perhaps a flexible decision unit size would reduce the number of zones that were

targeted where only a very small portion of the area was above the threshold density.
Moreover, the decision whether to spray an area or not was based on single criteria forall

broadleaf weed species. Realistically, each weed species would have a different impact on

the crop based on density, location in the patch (Mortensen & Dieleman) and time of

emergence. Leaving an area unsprayed because it did not have weeds above threshold

densities may impact the possibility of using the same weed maps overseveral years. For

example in 1998 common lambsquarters was not targeted because it was not above the

threshold but in 1999 it was one of the major species in this field. More research into the
dynamics of weed patches as well as the impact of site-specific herbicide applications is

required if precision weed managementis to be a success.
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ABSTRACT

This paper reviews the merits of real-time and map-based systems of weed

assessments and discusses the importance of the precision of the map.

‘Traditional’ mapping based on weed density counts on a regular grid are useful

for research purposes but are too expensive for practical on-farm mapping. Visual

weed detection systems can already be used to record weeds but tend to be labour

intensive and so need improvement to increase their cost-effectiveness. The

potential for automatic weed detection is being explored by a numberofresearch

teams. Reflectance techniques can already be used to detect weeds in uncropped

areas and between crop rows in crops sown with wide row spacings. However,

although progress is being made with experimental systems, commercially viable

methods to detect weeds within narrow row crops are not yet available. Systems

involving combinations of reflectance, colour and leaf shape are in development

and someare being tested in the field. There has to be a compromise between the

cost of mapping and the needfor the mapto reflect the distribution of weeds. Thus

fine maps are preferred to the cheaper coarse maps since some of the advantages of

the technique will be lost if sample grids are too coarse.

INTRODUCTION

The development of the mechanical and electronic components of spatially selective weed

control (patch spraying) is proceeding apace, in step with yield mapping andspatially variable

fertiliser application. A number of manufacturers are developing variable rate sprayers with

the capability to patch spray weeds. Control systems such as the AGCO Fieldstar have the

potential to control such sprayers and Global Positioning Systems (GPS)are able to locate the

sprayer’s position in the field with reasonable reliability. A recent (1998) survey of maize

(corn) growers in the mid-west USA reported by Robert (1999) indicated that 29% ofall

growers were field mapping in some way and 14% were yield monitoring. In Europe uptake of

this technology is also growing and the number of combine harvesters with a yield mapping

capability is increasing. However, the current low prices for grain may be slowing the uptake

of this new technology. Most emphasis, to date, has been put on spatially variable fertiliser

application. The use of this technology to control weeds on spatially selective basis is not so

far advanced. Oneof the main reasons forthis is the difficulty of resolving the question, how

do you assess the weeds? The answerto this question has considerable implications for the

economic success of the technique of patch spraying weeds, as expensive assessments could

nullify the cost savings arising from the reductions in herbicide use.

There are three basic questions that have to be answered.

1) Howdo yourecord the distribution of weeds? Can a visual (human) method

be used or should assessment be automated? 



Should the assessment be based on creation of a weed distribution map for

subsequentuse in controlling the sprayer or should the weed mapping and

treatmentbe in one operation (real-time detection)?

3) Howprecise does the map have to be?

In the following sections we will review the current state of development of the various

techniques that can be used to assess weeds. It is clear that some potential users believe that

the only practical way forward is to combine detection and herbicide application in one

operation, with real-time detection of weeds. However, we believe that there are also

advantages to map-based systems, where the weeds are assessed either automatically or

visually prior to application and the herbicide application is controlled by an application map

derived from the weed map. The former has the advantage of immediacy, whilst the latter

offers the potential for consideration of herbicide choice and the need for buffers, prior to

treatment. Many of the mapping issues described belowrelate to both real-time and mapped

based application systems.

MANUAL WEED DETECTION TECHNIQUES

Assessment systems that involve some form of human assessment of weed distribution

normally require the production of a map which can then be used to control the herbicide

application. Except at a very primitive level, real-time detection and treatment is not possible

in such systems. It is possible for farmers, when treating weeds late in the season, to switch

spray booms on and off as they travel across fields, identifying primary weed patchesat the

same time. However,this is a very coarse approachto patch treatment.

Density assessments from GPSlocated quadrats

Most of the research programmes concerned with the potential of spatial treatment of weeds

have been based on grids of quadrats, located either with GPS or by measurement. The counts

generated by these quadrats have then been converted to weed contour mapsby kriging or a

related method. This is a satisfactory method for research purposes, although the issue of the

optimum grid size is still to be resolved (see below). The practical field mapping and spatial

treatment programmes in Germany (Gerhards et al., 1997; Hiusler er al., 1998), Denmark

(Heisel et al., 1999) and Canada (Goudy er al., 1999) all use grids of various sizes to

determine thespatial distribution of weeds. This technique is perfectly acceptable for research

purposes andis an invaluable tool for ‘ground truthing’ assessments made from aerial images

or from other automated detection methods (see Rewet al., 1999). It is, however, far too

labour intensive for practical farm use.

Ground-basedvisual detection

This technique is based on a humanobservertravelling in a regular pattern overthe fields to be

mapped, visually recording the presence and absence ofthe target species. The operator's

position is geo-referenced using a GPS system and the resultant map can be used subsequently

to control herbicide treatments. It is possible to map weeds using this technique from anall-

terrain vehicle (ATV), whilst the crop is small (e.g. in winter in autumn sown crops),

providing an opportunity for pre-treatment mapping. It is also possible to map certain species 



during summerfrom a tractor or at harvest from a combine harvester, recording areas of poor

control, which will highlight those areas where seed return will be highest and where most

weedswill be expected in the following year. It is possible to record presence absence and/or

to quantify infestations into low/high. Such a technique wastested extensively by Rew in the

UK, (Rewet al., 1996; Lutman er al., 1998) but she used three people (a driver and two

assessors) to map weeds, whichis too extravagant with labour to be commercially viable. The

mapped species tend to be the more aggressive ones that inevitably are more visible. This is

an advantage,as it is these species that are the most appropriate targets for spatially selective

treatments, and are targeted with specific rather than broad-spectrum treatments, which tend to

be expensive (e.g. control of Alopecurus myosuroides (black-grass) and Galium aparine

(cleavers) in UK winter cereals). Faechner & Hall (1999) have reported a two-person system

ATV-based method for mapping Cirsium arvense (creeping thistle) and Sonchus sp. (sow-

thistle) in oilseed rape (canola). They were able to map presence and absenceofthethistles (at

20 mintervals) in a 28 ha field in | h. Colliver ez al. (1996) have compared quadrat counts of

Avena fatua (wild-oats) with observations of pre-harvest and at-harvest panicle distributions.

Quadrat counts were most time consuming but were mostaccurate.

Our ownstudies this year have explored the practicality of single-person mapping from an

ATY,atractor or from a combine harvester. It is possible to map in this way but current

mapping hardware needs to be modified for single person operation. Progress is being made

with voice-recognition software so that the tractor/combine driver mapping weeds has only to

speak into a microphone (M E Paice, pers. comm., 1999). Preliminary estimates from ATV

mapping based on 6 m intervals, and tractor mapping based on 12 m intervals, indicate thatit

is possible to map at 2-4 ha/h from an ATV and 3-6 ha/h from a tractor, depending on field

length and numberof turns (N H Perry, unpubl. obs.). Combine mappingis inevitably slower

than tractor mapping, but provided the driver is doing the mapping, this is not a problem.

Combine mapping has the advantage that the width of view (header width) would be less than

with other forms of mapping, providing a more accurate weed map. Howeveronly certain

weeds, such as A. fatua, C. arvense and Elymus repens (common couch) will be visible at this

time. Our work suggests that such visual methods are practical for commercial farmers or

their crop protection advisors, provided maps do not have to be created every year.

AUTOMATED WEED DETECTION TECHNIQUES

Automated detection systemsoffer the possibility of both creating weed maps that can be used

to control subsequent herbicide treatment, or could be connected directly to the sprayer

providing a mechanism for real-time detection and treatment.

Satellite and airborne remote sensing

Both these remote sensing techniques depend on automated detection, with sensors recording

multispectral differences in the landscape. These images can then be manipulated, if

necessary, to highlight the specific aspects of the image that are of interest, to create a

treatment map for subsequent herbicide application. 



Satellite mapping

The accuracyofsatellite-based mapping has improved overthe last 10 years and such maps are

widely used to evaluate changes in larger scale features of the landscape. Their potential to

map weeds has been explored by several research teams, mostly concentrating on extensive

agriculture or weed problems of semi-natural and natural habitats. For example, Anderson et

al. (1993) report the use ofsatellite images to map Ericamera austrotexana (false broomrape)

in Texas rangelands. At certain times of the yearsatellites could be used to detect major

stands of this weed and produce geo-referenced maps. In this surveyeach cell (pixel) was 20

m*. This technique has limited relevance to weeds in arable fields, as satellites still have

relatively coarse spatial resolution and onlya limited range of spectral bands. Consequently,

the technique is more suited to mapping invasive weeds that inundate large areas, such as

bracken in the UK, than for mapping weedsin arable fields.

Aircraft based mapping

A numberof researchers concerned with extensive arable agriculture have investigated the

potential for aircraft mounted spectral reflectance meters to detect and locate weed patches. A

recent paper by Rewezal. (1999)reports the results of airborne mapping ofA.fatuain a field

oftriticale in Australia. Multispectral images were collected, with a pixel resolution of 1m and

the maps created were compared with maps from quadrat counts on a 7 x 7 m grid. The

multispectral images detected high infestation areas but could not detect those where A. fatua

density was below 20 plants/m’. A similar study on flowering infestations of Hieracium

pratense (yellow hawkweed) in meadowsofIdaho, also used multispectral images collected

from an aircraft (Carsonef al., 1995). They too achieved 1m ground resolutions. However, as

with the Rew study, the imaging system was unable to detect low infestations of the weed (less

than 20% cover).

At present, this technology does not provide adequate precision for the mapping of weed

infestations in arable fields, especially where weeds occurat relatively low, but still damaging,

levels of infestation. Improvements in sensor technology and in ground resolution down to sub

metre pixel sizes may result in more practical systems being developed in the future

(McGowan, 1998).

Vehicle and hand-held systems

Ground-based detectors that use red and infra-red reflectance to detect green weeds against a

brownsoil background, have been in existence for more than 15 years (Haggaret al., 1983).

Commercial machines have been developed for treatment of weeds pre-drilling, pre-harvest,
post-harvest and in fallows, and for application between the rows of crops, such as maize and

soybeans sown with wide row spacings (Felton, 1995; Blackshaw er al., 1998; Hanks & Beck,

1998). Research on reflectance characteristics of the visual and infra-red spectra has shown

that individual plant species differ in their reflectance characteristics at certain wavelengths.

Consequently, it may be possible to utilise such differences to develop in-crop methods to

identify weeds. However, changes in sunlight, in plant age and in physiological conditionsall

alter reflectance characteristics, making reliable distinction between species hard to achieve.

More recent research has attempted to improvereliability, with some success. Vrindts ef al.

(1999) reported some progress with the technique when they comparedreflectance ratios ofsix
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specific wavelengths on nine different species and were able to discriminate between sugar

beet and maize and weeds with a 99% level of accuracy. However, this work was done with

plants in containers and needs to be validated under more variable field conditions. The

research by Feyaerts et al. (1999), reported at this conference, continues the investigations of

the potential for multi-spectral reflectance to identify the presence of weedsin crops.

An alternative approach to exploit reflectance has also been investigated (Christensen, 1993).

This assumesthat the crop had a uniform green area and consequently it is possible to calibrate

a reflectance meter on weed free areas of the crop. The presence of weeds would result in a

change in reflectance from the background level. This technique will not identify species but

will indicate areas ofthe field that have high and low levels of weed infestations. However,it

has not been very successful becauseofspatial variability in crop cover.

Image-based systems

Becauseof the difficulties of detecting weeds within crops using spectral reflectance, a number

of researchers have been exploring the potential for using images from digital cameras to

detect weeds. There are a number of problems. Detection systems have difficulty

discriminating between species when the leaves overlap and the computing time to achieve

identification of species is appreciable, making fast real-time detection difficult. Andreasen et

al. (1997) have investigated the potential for integrating optical coloured images. Some

discrimination was possible. Research by Gerhards (Gerhardset al., 1998) has made progress

using a digital camera and computer system to identify plant species from their outline. A

similar system in Australia uses colour and shape to identify Chondrilla juncea (skeleton

weed) in wheat and lupin stubbles (Robbins, 1998). The prototype machines were able to

travel] at 12 kph, whilst still achieving 95%detection rates. Both these two examples use

shrouded cameras and artificial illumination to create even lighting conditions. Effective

visual detection may need to combine data relating to geometrical, optical and mechanical

properties of the species to be identified. The work of Chapron et al. (1999a) has attempted to

identify weed seedlings in maize using a combination of geometric and colourattributes of the

plants and has given encouraging results, even where leaves overlap. Chapron and his

colleagues have also been exploring the potential for using 3D images to enhance detection, as

this technique incorporates differences in heights of different species (Chapron et al., 1999b).

Only the Robbins project has reached the stage of extensive field validation, although the

Gerhards detector has also been tested in the field.

The aim ofall the research on automated detection is to develop accurate and speedy methods

for the field detection of weed species within narrow-row crops. Progress is being made but

although it is possible to detect weeds in wide row cropsorin fallows, it is not yet possible to

detect weeds in cereals, for example, reliably and quickly using automated techniques. It

seemslikely that successful systems will require computers to integrate information primarily

on plant colour and plant shape to create reliable detection methods

MappingIntensity and Accuracy of Maps

There has to be a compromise between intensity of sampling/detection that is required to

create an accurate weed map and the time and equipment required to do the work. This is

most clearly shown in the grid sampling for weed density, where researchers have used very
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different grid sizes to detect patches. For example, Mortensen in the USA has generally used 7

m grids (Johnson et al., 1996), Christensen in Denmark 24 m (Christensen & Heisel, 1998)

and Hausler in Germany 30 and 50 m (Hiuslerer al., 1998). The coarser the grid theless is

the precision, the greater the percentage ofthe field that appears infested and the lower the

potential reduction in herbicide use. The early work done in the UK was based on mapsusing

2 x 1 m resolution and calculations were done to assess the consequences of increasing grid

size to 6 x 1 m. This increasedthe area treated by approximately 10%(Rewet al., 1997). The

potential reductions in herbicide use depends on the aggregation of the species concerned, the

size of the assessmentgrid and theflexibility in the sprayer, as to the minimum area that can

be treated. There is a direct mathematical relationship between the grid size, the aggregated

nature of the distribution of the weeds and the percentage of the field that is infested

(Wallinga, 1995). For example,in a patchy field with a 10 x 10 m assessment grid, 50% of the

field appeared infested but if the grid was reduced to 4.6 x 4.6 m only 25% of the field

appeared weedy. Weed assessments based onlarge grid sizes that are relatively cheap to

produce mayfail to deliver optimum savings in herbicide use.

Automated detection systems have similar problemsto grid samples, as although detection in a

forward direction can be continuous, the sprayer may only be equipped with one or two

expensive detectors. This will result in a grid that could be | x 6 m or even 1 x 24 m, if a wide

sprayer was only equipped with one detector. Ideally, each boom section should have its own

detector. The same problem arises with visual weed assessment from the tractor. Although

the operator will be assessing continuously in a forward direction, he/she will only be able to

detect weedsto the left or to the right of the tractor and thus will be constrained by the width

of the tramlines and the width of the sprayer. Thus mapping from a 24 m sprayer would result

in grid sizes of | x 12 m. This can be overcome with maps created from a combine harvester

or ATV, wherethe grid width of the former is the header width of the harvester (circa 6 m) and

that of the latter could be 1 x 6 m, as the ATV can be driven between tramlines to create a

smaller grid size.

CONCLUSIONS

From discussions we have had in recent months in the UK, and presentations at the recent

Precision Agriculture Conference in Odense (Stafford, 1999). it seems clear to us that for ‘in

crop’ weed assessment there is currently no commercial alternative to manual weed

assessments to create weed maps. Reflectance techniques are already commercialised for

applications of herbicides in fallow and other non-cropped areas and in crops grown on wide

rows, where the detector is distinguishing between green plants against a brown background.

At the moment, automated detection is not an option for commercial use in patch spray

systems, as the technology is not yet able to detect green weeds in a green crop. There are

some exciting developments involving detection based on combinationsof reflectance at a

range of different wavelengths, colourand leaf shape, but as yet, such techniquesare still at the

experimental stage. If manual visual assessmentis to be used, it needs to be a single person

operation, preferably with the potential for the vehicle driver to map weeds whilst doing

another operation. This could be possible with voice recognition software or with simple

combinations of toggle switches. Thefinal crucial issue is that we believe that to optimise the

technique weed mapsneedto becreated with relatively small grid sizes. It is our belief that 



grids of 6 x 6 m should be the maximum size, otherwise too much of the potential of the

technology is discarded by the coarsenessofthe grid.
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